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Increasing Concern on Privacy/Security

BAnonymized user trajectories are increasingly
collected by ISPs

»High research and business value

B Growing privacy concern

> |SPs are motivated to monetize or share user
trajectory data

B De-anonymization attack

»How likely users can be de-anonymized in the
shared ISP trajectory dataset?

Now Those Privacy Rules Are Gone, This Is How
ISPs Will Actually Sell Your Personal Data
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De-anonymization Attack: Theory and Practice

B Appalling Theoretical Privacy Bound
>4 |location points uniquely re-identify 95% users [Scientific Report 2013]

Is this true in practice?

BPractical Challenge: Lack of large real-world ground-truth datasets
»Small datasets
v'1717 users in [WWW 2016]
»Synthetized datasets
v'Parts of the same dataset [TON 2011]



Our Approach: Collect Three Real-world Ground-truth Datasets

Ground-Truth: Traces from the same set of users

Dataset Total# Users | Total# Records
ISP 2,161,500 134,033,750
Weibo App-level 56,683 239,289
Weibo Check-in (Historical) | 10,750 141,131
Weibo Check-in (One-week)| 506 873

Dianping App-level 45,790 107,543

HISP Dataset

»Shanghai, 4/19-4/26, 2016 (victim dataset)

>2 million users

» Access logs to cellular tower = Location traces

BMWeibo Dataset: One of the largest social networks in China (external information)

MDianping Dataset: “Chinese Yelp” (external information)
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How to Obtain the Ground-Truth?

ISP Traces

Weibo ID in HTTP Request
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Dianping ID in HTTP Request
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De-anonymization Attack: Threat Model

BAnonymized Trajectory Data Published by ISP
» Anonymization: Replace user identity with the pseudonym
» Obfuscation: Perturbation, Location hiding

BMAdversary
»Match the anonymized traces (e.g., ISP traces) and external traces (e.g.,
Weibo/Dianping traces)
»Social network has Pll = real-world identifier
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De-anonymization: Theoretical Bound based on Uniqueness

BNumber of points sufficient to
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5 points are sufficient to uniquely identify 75% trajectories!
High potential risk of trajectories to be de-anonymized!



De-anonymization Attack: Actual Performance
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Maximum hit-precision is only 25% !
Far from the privacy bound!




Reasons Behind Underperformance
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Algorithms with best performance

NFLX [IEEE SP 2008]

MSimilarity function

»Minimum time gap between
users’ visits to the same
location

HTolerate temporal mismatches
MSQ [TON 2013]

MSimilarity function

»Square root of distance
between trajectories

HTolerate spatial mismatches

Existing algorithms tolerating spatio-temporal
mismatches have the best performance




Reasons Behind Underperformance:
Large Spatio-Temporal Mismatches
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Potential Reasons behind the Mismatches

BGPS errors
» GPS unreachable locations (Indoor, underground) I_ —\

» Lazy GPS updating mechanisms [UbiComp 2007]

i} @

BMDeployment of base stations @
» Lower density = larger mismatches

MUser behavior
>39.9% remote (fake) check-ins [ICWSM 2016] %
»Earn virtual rewords, compete with their friends
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Reasons Behind Underperformance:
Data Sparsity
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Can we bridge this gap?



Our De-anonymization Method
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H1) Modelling Spatio-TemporgI Mismatches: Gaussian Mixture Model (GMM)
PO =) " 7)) NEOILE - p), o> ()

p=—H,
» Parameters chosen by empirical values or estimated by EM algorithm

M2) Modelling Users’ Mobility Pattern: Markov Model
»Solving the data sparsity issue: rare “encountering” event
» Missing locations are estimated by Markov Model

14



Our De-anonymization Method

M 3) Use Location Context
»Solve the data sparsity issue
» Use aggregated user behavior at locations

»To infer individual user behavior (location
transition probability)

H4) Use Time Context
»“Whether the user is active” is helpful
»Modelling user inactive period
(previously ignored feature)
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Our De-anonymization Method: Performance Evaluation

Weibo’s App-Level Trajectories Dianping’s App-Level Trajectories
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Our proposed algorithms outperform baselines by over 17%
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Can we utilize spatio-temporal mismatches
to better protect users’ privacy?
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Proposed Mismatch-Aware Location-Privacy Perserving Mechanism
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Summary

BLarge-scale Ground-truth Datasets
> ISP trajectories with over 2 million users
» 2 different social networks, 2 different types of external information

BDemonstrate the Gaps between Theory and Practice
»High theoretical bound
» Low actual performance

MBridge the Gaps between Theory and Practice
» Considering spatio-temporal mismatches, data sparsity, location/time context
» Utilize spatio-temporal mismatches in LPPMs
» Improve the performance = confirm our observations
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Thanks you!

For Data Sample and Code, Please Contact
whd14@mails.tsinghua.edu.cn
livong07 @tsinghua.edu.cn
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