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Framework Overview
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PRNet: Outdoor Position Recovery for
Heterogeneous Telco Data by Deep Neural Network



Telco Localization

Working
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localization models prediction result

MRTime 2018/4/23 9:20 | IMSI XXX SRNCID 6188 | BestCellID 26051 LCSBIT 300
RNCID_1 6188 CellID_1 26051 AsuLevel_1 27 SignalLevel_.1 4 RSSI_1 -74.5
RNCID2 6188 CelllD2 27394 | Asulevel.2 10 SignalLevel 2 3 RSSI_2 -84.88
RNCID3 6188 CellID.3 27377 | AsuLevel 3 18 SignalLevel .3 4 RSSI_3 -85.13
RNCID 4 6188 CellID4 27378 | AsulLevel 4 12 SignalLevel 4 4 RSSI_4 -85.87
RNCIDS 6182 CellID.5 41139 | AsulLevel. 5 8 SignalLevel 5 3 RSSI_S -88.88
RNCID.6 6188 CellID_6 27393 AsuLevel 6 9 SignalLevel 6 3 RSSI_6 -90.22
RNCID_7 6182 CellID7 44754 | Asulevel.7 9 SignalLevel .7 3 RSSI.7 -95
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Motivation

»Why Telco Localization? »Why sequential neural network model?

« Well-known GPS weaknesses. * The associated locations obviously exhibit
spatiotemporal locality.

* Telco data can be collected cheaply, e Existing works using first-order sequence
frequently and on a global scale. models (HMM) cannot precisely capture
spatiotemporal locality.

* Recovering outdoor locations for applications
e.g., human mobility, urban planning and * Deep neural network is used in learning

traffic forecasting. ?Igl?ltlil;;I locality (CNN) and temporal locality
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» Mixed transportation mode (Fig 1) N
« walking, cycling, driving, etc. /
* higher speed -> weak dependency

”
BHRA ®)
-

» Irregular MR sampling rate (Fig 2)

* 1s~120s
* |ow battery, sensor anomaly, signal block

» Uneven density of base stations (Fig 3)
e Urban > rural urban

<— Walking <= Cycling e GPS point

~ - rural

To address those issues, we propose PRNet:
1) allows variable-length windows of MR samples to capture spatial locality within each window
2) designs two attention mechanisms for time intervals and MR sequences to capture temporal locality

3) Develops a network structure consisting of local and global predictors to merge the spatiotemporal locality
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MR (sub)sequence

[MR sequencel]
— Definition: The MR samples with 1) same primary serving
base station (RNCID 1 and CelllD_1) and 2) IMSI

- Examples: Sal SaZ Sbl sz Scl SCZ

@® Hand off points

[MR subsequencel]
— Definition: The MR samples with 1) same primary serving

base station, 2) IMSI, and 3) same non-serving base station
(RNCID_2 and CellID_2)

Reason: the MR samples show tight dependency within (sub)sequences

-> solve challenge &3 (uneven density of base stations)
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PRNet framework
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Figure 2: Framework overview of PRNet
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Global Recurrent Predictor

- Output layer
@z? )’9\\ Gi,li
- \4 \

Upper Recurrent Layer

]
—=\S s - 8
?
Bi B Py
t o4 t
hu :‘+1—>...—> h'%]t
f
P . p> @ - (pa)
| //,v[?l\subsequence attention
b
h'lZ lll
azz all al] time interval attention
pz Pi;
AtL 2 Atl 1
i-th MR sub- -sequence Bottom Recurrent Layer

42

Concatenate hidden states to produce
final output

Learn long-term dependencies / overall
moving trend

Learn short-term dependencies / local
moving trend

-> solve challenge &1 &2 (transportation mode, irregular sampling rate)
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Global Recurrent Predictor
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Experiments

* Datasets
Jiading Siping Xuhui
Num. of samples (2G/4G) 1735412245 | 6723/4953 14680/10455
Route len (2G/4G) in km 96.5/60.3 24.6/15.5 29.3/15.9
Sampling rate (sec) 3 3 2
Area size (km?) 1.67 0.862 0.57
% of MRs with walking/cycling/driving 64.7/25.2/14.1 63.8/36.2/0.0 | 58.5/0.0/41.5
Serving BSs density (2G/4G) 5.72/8.45 7.96/10.35 8.45/12.67
Table 2: Statistics of Used Data Sets
* Counterparts
Counterpart | Description Approach
NBL Recent fingerprinting method [13] Single Point
Deeploc 3-layer neural network [18] Single Point
RaF 1-layer Random Forest regression [28] Single Point
CCR 2-layer Random Forest regression [28] | Implicit Sequence
HMM HMM + particle filtering [15] Sequence
SeqtoSeq a LSTM-based seq. to seq. model [19] sequence
ConvLSTM a convolutional LSTM [17] Sequence
PRNet proposed hierarchical neural network Sequence

Table 3: Counterparts
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Fig. 9. Geographic locations of three testing areas in Shanghai
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Baseline Results

Median (m)  Mean (m) 90% (m) Median (m) Mean (m) 90% (m)

NBL 53.4 67.2 300.9 59.7 72.3 318.6
DeepLoc 35.1 47.6 250.3 40.2 53.9 280.6
RaF 38.3 48.3 168.9 38.5 47.2 158.9
CCR 34.1 43.2 142.3 30.2 44.5 145.9
HMM 36.5 52.3 172.8 42.1 53.6 188.4
SeqtoSeq 254 50.6 85.3 24.2 50.1 81.7
ConvLSTM 28.5 59.3 129.3 27.3 58.1 124.5
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Sensitivity Stud
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Visualization

Black: Ground truth

BDoe—ntes — 86-cq. ¢

(e) PRNet_M () HMM_M (g) CCRM (h) DeepLoc_M

Figure 11: Visualization (Map Scale 1.5:10000). Black: ground truth; Red: predicted location; Orange: Map-matching location.
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Conclusion

* We are the first to leverage DNN model to learn spatiotemporal knowledge from heterogonous
MR samples for accurate location recovery.

* The two components of PRNet: local predictor and global predictor is designed for learning local
dependencies of individual MR sample and both short- and long-term dependencies from a series
of MR samples.

* The evaluation by using six datasets collected on three areas in Shanghai (China) shows the
inspiration results of PRNet.
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Telco 3D Indoor Localization



Background & Motivation

» Smartphone-based indoor localization has recently created
significant commercial and social attraction by using various Micro
signals, such as WiFi, UWB, magnetic, visual light, etc.

* Why Telco indoor localization?

A
v’ Cheap, frequent and large-scale Telco data ccuracy

v" On-the-shelf infrastructure

v’ Passive, silent localization without disturbing smartphone user

Macro

* Why 3D localization?
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Indoor Localization

Sound
°)
RFID
' S5 4 Visible Light
Geomagnetism Communication
Wi-Fi

. :

Localization

SPS

* More and more tall buildings (>10f) are built for office and commercial usage
* Accurate floor number is helpful for potential advertisement application

v

Low Cost High

(device modification, extra infrastructure and battery cost)
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Challenges & Solutions

Challenges:
x No indoor map provided
x Infrequent handoff between base stations

O

x Only primary serving base station is visible

base PP
. . _ . station % Q !’3 < gg
Hard to differentiate those locations on different floors g 8 3
due to similar MR samples
[Zonghe] Validate X-Ys on whole dataset
Solution: . oy
Group 1 5
MR horizontal Group ID Vertical Localization Ch
. —— 3
samples | clustering as feature Model 52
Group n ] I

0
Median Error 67% Error 20
Errors
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Thanks |
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