

Recent progress on Telco localization

Jinhua Lv

Prof. Weixiong Rao

School of Software Engineering, Tongji University

Aug.16th, 2019

Agenda

- Framework Overview
- Telco Outdoor Localization
- Telco Indoor Localization

Framework Overview

PRNet: Outdoor Position Recovery for Heterogeneous Telco Data by Deep Neural Network

Yige Zhang, Kun Zhang, Weixiong Rao

Accepted by CIKM, 2019

Telco Localization

Motivation

>Why Telco Localization?

- Well-known GPS weaknesses.
- Telco data can be collected cheaply, frequently and on a global scale.
- Recovering outdoor locations for applications e.g., human mobility, urban planning and traffic forecasting.

>Why sequential neural network model?

- The associated locations obviously exhibit spatiotemporal locality.
- Existing works using first-order sequence models (HMM) cannot precisely capture spatiotemporal locality.
- Deep neural network is used in learning spatial locality (CNN) and temporal locality (RNN).

同協大学 TONGJI UNIVERSITY

Fig. 2

➢ Mixed transportation mode (Fig 1)

- walking, cycling, driving, etc.
- higher speed -> weak dependency

Irregular MR sampling rate (Fig 2)

- 1s~120s
- low battery, sensor anomaly, signal block

Uneven density of base stations (Fig 3)

• Urban > rural

 $\begin{array}{c} \label{eq:constraint} \label{eq:constraint} \\ \label{eq:constraint} \\$

Fig. 1

To address those issues, we propose **PRNet**:

- 1) allows variable-length windows of MR samples to capture spatial locality within each window
- 2) designs two attention mechanisms for time intervals and MR sequences to capture temporal locality
- 3) Develops a network structure consisting of local and global predictors to merge the spatiotemporal locality

MR (sub)sequence

[MR sequence]

 Definition: The MR samples with 1) same primary serving base station (RNCID_1 and CellID_1) and 2) IMSI

- Examples: S_{a1} , S_{a2} , S_{b1} , S_{b2} , S_{c1} , S_{c2}

[MR subsequence]

Definition: The MR samples with 1) same primary serving base station, 2) IMSI, and 3) same non-serving base station (RNCID_2 and CellID_2)

Reason: the MR samples show tight dependency within (sub)sequences

-> solve challenge &3 (uneven density of base stations)

PRNet framework

Local Predictor

Global Recurrent Predictor

Concatenate hidden states to produce final output

Learn long-term dependencies / overall moving trend

Learn short-term dependencies / local moving trend

-> solve challenge &1 &2 (transportation mode, irregular sampling rate)

Global Recurrent Predictor

Experiments

• Datasets

	Jiading	Siping	Xuhui
Num. of samples (2G/4G)	17354/12245	6723/4953	14680/10455
Route len (2G/4G) in km	96.5/60.3	24.6/15.5	29.3/15.9
Sampling rate (sec)	3	3	2
Area size (km ²)	1.67	0.862	0.57
% of MRs with walking/cycling/driving	64.7/25.2/14.1	63.8/36.2/0.0	58.5/0.0/41.5
Serving BSs density (2G/4G)	5.72/8.45	7.96/10.35	8.45/12.67

Table 2: Statistics of Used Data Sets

• Counterparts

Counterpart	Description	Approach
NBL	Recent fingerprinting method [13]	Single Point
DeepLoc	3-layer neural network [18]	Single Point
RaF	1-layer Random Forest regression [28]	Single Point
CCR	2-layer Random Forest regression [28]	Implicit Sequence
HMM	HMM + particle filtering [15]	Sequence
SeqtoSeq	a LSTM-based seq. to seq. model [19]	sequence
ConvLSTM	a convolutional LSTM [17]	Sequence
PRNet	proposed hierarchical neural network	Sequence

Fig. 9. Geographic locations of three testing areas in Shanghai

 Table 3: Counterparts

Baseline Results

Dataset	Jiading (2G)		Jiading (4G)			
	Median (m)	Mean (m)	90% (m)	Median (m)	Mean (m)	90% (m)
NBL	53.4	67.2	300.9	59.7	72.3	318.6
DeepLoc	35.1	47.6	250.3	40.2	53.9	280.6
RaF	38.3	48.3	168.9	38.5	47.2	158.9
CCR	34.1	43.2	142.3	30.2	44.5	145.9
HMM	36.5	52.3	172.8	42.1	53.6	188.4
SeqtoSeq	25.4	50.6	85.3	24.2	50.1	81.7
ConvLSTM	28.5	59.3	129.3	27.3	58.1	124.5
PRNet	15.8	37.8	63.2	18.4	40.6	66.5

Sensitivity Study

□ Walking<Cycling<Driving (Errors)

- The faster speed is, the higher errors are
- PRNet<SeqtoSeq<HMM (Errors)</p>
- □ Short time intervals>Long time intervals
 - The denser, the better
- □ High base station density better

Visualization

Black: Ground truth

Conclusion

- We are the first to leverage DNN model to learn spatiotemporal knowledge from heterogonous MR samples for accurate location recovery.
- The two components of PRNet: local predictor and global predictor is designed for learning local dependencies of individual MR sample and both short- and long-term dependencies from a series of MR samples.
- The evaluation by using six datasets collected on three areas in Shanghai (China) shows the inspiration results of PRNet.

Telco 3D Indoor Localization

collaborate with Huawei by July, 1st

Background & Motivation

Smartphone-based indoor localization has recently created significant commercial and social attraction by using various signals, such as WiFi, UWB, magnetic, visual light, etc.

- Why Telco indoor localization?
 - ✓ Cheap, frequent and large-scale Telco data
 - ✓ On-the-shelf infrastructure
 - ✓ Passive, silent localization without disturbing smartphone user

Why 3D localization?

- More and more tall buildings (>10f) are built for office and commercial usage
- Accurate floor number is helpful for potential advertisement application

Challenges & Solutions

Challenges:

- × No indoor map provided
- × Infrequent handoff between base stations
- × Only primary serving base station is visible

Hard to differentiate those locations on different floors due to similar MR samples

Thanks !