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Background of Developer Communities

• Online developer communities provide 
platforms for millions of developers 

• Such communities themselves become a 
unique type of online social networks (OSNs)
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GitHub ABC
• GitHub has attracted 31 million developers, holding 96 million

repositories

• GitHub regards each user activity as an event

• Developers interact with each other with a main focus on 
collaborative development and code sharing
– Forming a special kind of social network
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Malicious Users from GitHub Dataset
1/3 Example

• Identity impersonation
• Copy famous developers’ homepage to attract visitors

Bio: Hacker since 2003. Heavy user of Ruby, JS, C#. 
Majored in Mathematics at CNU. Speaker of international 
conferences e.g. RailsConf. One of Node.js Collaborators

Repo 1
JavaScript 61.2k

Follow

Repo 2
C++ 2.5k

Login: pmq20
Name: Minqi Pan
Company: Null

Blog: www.minqi-pan.com
Followers: 653

Created at: 2008-06-11, 07:46:37

Public repos: 202
Public gists: 43

Location: China
Followeing: 586

Bio: Hacker since age 12. Heavy user of C/C++ and Ruby. 
Majored in Mathematics. Bilingual in English and Chinese. 
Public Speaker.

Follow

Login: pmq1980
Name: Minqi Pan
Company: alibaba

Blog: http://www.minqi-pan.com
Followers: 0

Public repos: 0
Public gists: 0

Location: Null
Followeing: 3

Created at: 2017-02-07, 03:42:58

Help the attackers exploit the reputation of the victims 5



Malicious Users from GitHub Dataset
2/3 Example

• Fake stars
• Star a batch of repositories for bonus

Repo 1
JavaScript 16

Repo 3
Solidity 12

Follow

Repo 2
Java 10

Repo 4
C# 11

Login: AYIDouble

Star Star

Follow

Login: Stewartbenjamin

Make one user’s repositories look popular
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Malicious Users from GitHub Dataset
3/3 Example

Login: InlineEngine

Follow

Issue spam: “Are you looking for a C++ Game Engine/Game 
developer team (7 members) to gain deep knowledge?”

Repo 1
JavaScript 16

Repo 3: easingz/game

C++ 12

Follow
Repo 2
Java 10

Repo 4
C# 11

Login: easingz

Repo 1 : wjzhou/Game
Solidity 12

Follow

Repo 2
Java 10

Login: wjzhou

Repo1: gkbrk/GameEngine
C++ 16

Follow

Repo 2

Login: gkbrk

……

• Issue spams to related repositories

Send a “Game developer” advertisement to as many 
game-related repositories as possible
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Data Collection and Labeling
• Time period: Jun. 20, 2018 – Aug.27,2018
• Amount: 10,667,583 randomly selected GitHub users

(21.5% malicious v.s. 78.5% legitimate)
• Format:
– Demographic information (user ID, gender, registration 

date, number of followings/followers,…)
– Statistical information about historical activities (number

of public repositories, public gists,…)
– Label signifying whether the account has been banned by

GitHub (homepage “404” & accessible via API)
– Historical (dynamic) events from GH Archive

(https://www.gharchive.org/)
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Ethical Issues

• All information we collected was publicly 
accessible

• We follow the “terms of service” of GitHub
• We have consulted GitHub about our research
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Difference on Activities between
Legitimate and Malicious Users
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• Legitimate users tend to conduct more types of
activities, in an irregular temporal mode

• Malicious users conduct similar types of activities,
usually continuously 10



Challenges in GitHub User
Activities Analysis

• Rich types of possible activities (e.g. 42 event
types on GitHub)

• Irregular activity timeline, highly dependent
on working schedules
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Feature Selection

• The public data of each GitHub user consists 
of a descriptive part and a dynamic part 
– The descriptive part mainly refers to the 

information about a user’s profile and a set of 
statistical metrics of her activities 

– The dynamic part covers the fine-grained records 
of the activities users have generated
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Decision
Maker

Activity seq. Construction

Activity element

User Data

Feature set Label

Sequential
feature subset

Descriptive
feature subset

Sequential Analysis

Descriptive Feature Extraction

Username:…
Location: …
Account age: …
Number of Following/Followers: …
Indexes on activities: ……

Sequential Activity Feature Extraction

Label

User Classification

GitSec Design
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Behavioral Difference Between Legitimate 
and Malicious Users (Descriptive Features)
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LSTM v.s. Phased LSTM

• LSTM networks [Hochreiter et al., Neural Computation'97] regard the 
elements in the input sequence equally and update the cell state 
when processing each element
– GitHub events are often sparse and distributed in a wide time range

• Phased LSTM [Neil et al., NIPS’16] extends the standard LSTM network 
by adding an additional gate over the updates of the cell status
– Phased LSTM can deal with long & sparse sequences efficiently 

LSTM Phased LSTM
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GitSec: Multi-source activity analysis with
coupled DNNs

• Two event sequences: event interval seq. & event type seq.
• Coupled deep neural networks to deal with different event seq.
• Attention mechanism to connect the two PLSTMs
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Implementation

• Phased LSTM-based time series analysis
– TensorFlow

• Decision maker
– Scikit-learn

• Dataset for evaluation
– Randomly selected 59,875 users (44,892 vs 14,965)
– 7:3 for training and test datasets
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Metrics
• Precision

– The fraction of predicted malicious accounts who are really 
harmful

• Recall
– The fraction of malicious users who are detected accurately

• F1-score
– The harmonic mean of precision and recall

• AUC
– The probability that this classifier will rank a randomly chosen

malicious user higher than a randomly selected legitimate user

𝐹1 =
2 % 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 % 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
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Evaluation on Different Neural Networks

q We run different neural network models on the event type 
sequence (Type seq.) and the event interval sequence (Interval seq.), 
respectively, and compare their performance

q PLSTM performs the best for both the sequences
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Comparison of Different Attention Mechanisms

Models Precision Recall F1-score AUC

PLSTM with the combined time 
series seq.

0.915 0.825 0.868 0.900

Parallel PLSTM 0.928 0.883 0.905 0.930

Parallel PLSTM + AttentionLoc 0.928 0.887 0.906 0.931

Parallel PLSTM + AttentionConcat 0.924 0.892 0.907 0.934

qThe parallel design produces higher F1-score and AUC value 
than taking the combined time series sequence as the input
qThe result confirms the necessity to using a parallel design

qThe advantage of the attention methods shows the 
importance of considering the relations between the two 
event sequences



Performance Evaluation on
Different Feature Subsets

q Starting from GitSec, we delete one feature subset at a time
q The performance decreases the most after deleting the event

features

Feature sets Precision Recall F1-score

GitSec 0.951 0.892 0.920

- Event features 0.928 0.854 0.889

-Account features 0.945 0.889 0.916

-Statistical features 0.943 0.887 0.914
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Performance Evaluation on
Different Feature Subsets

q Starting from a random guess classifier, we add one feature subset at 
a time

q Adding the Event feature subset could increase the F1-score the most

Feature sets Precision Recall F1-score

Random Guess 0.248 0.496 0.330

+ Event Features 0.940 0.880 0.909

+Account features 0.594 0.678 0.633

+Statistical features 0.923 0.846 0.883
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Comparison with
Existing Malicious Account Detection Approaches

Approach Precision Recall F1-score

GitSec 0.950 0.892 0.920

DeepScan [1] 0.932 0.844 0.886

Al-Qurishi et al. [2] 0.870 0.804 0.836

Viswanath et al. [3] 0.479 0.937 0.634

q DeepScan: single activity sequence design using an LSTM network
q Al-Qurishi et al.: random Forest classifier with the feature preprocessed by PCA
q Viswanath et al.: using PCA to process the raw user data and separate the residual

space from the normal space, and distinguish malicious users from the features in
the residual space
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Future Work

• Evaluate GitSec with the data of other online 
developer communities

• Collaborate with some developer
communities to take back-end user activities 
into consideration
– By integrating the clickstream information and 

the entire social graph into our solution
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Thank you!

https://chenyang03.wordpress.com/


