

Detecting Malicious Accounts in Online Developer Communities Using Deep Learning

Yang Chen School of Computer Science Fudan University chenyang@fudan.edu.cn

Joint work with Q. Gong, J. Zhang, X. Wang (Fudan), Q. Li (Tsinghua), Y. Xiao (Aalto), P. Hui (U. Helsinki / HKUST)

About Me

- Associate Professor at Fudan University & Nokia Visiting Professor at Aalto University
- □ Leading the mobile systems and networking (MSN) group
- Focusing on computer networks, computational social systems and applied machine learning

Background of Developer Communities

• Online developer communities provide platforms for millions of developers

 Such communities themselves become a unique type of online social networks (OSNs)

GitHub ABC

GitHub has attracted 31 million developers, holding 96 million repositories

• GitHub regards each user activity as an event

- Developers interact with each other with a main focus on collaborative development and code sharing
 - Forming a special kind of *social network*

Malicious Users from GitHub Dataset 1/3 Example

- Identity impersonation
 - Copy famous developers' homepage to attract visitors

				7
	Login: pmq20		Created at: 2008-06-11, 07:46:37	
	Name: Minqi Pan		Public repos: 202	
	Company: Null		Public gists: 43	
	Location: China		Followers: 653	
Follow	Blog: www.minqi-pan.co	om	Followeing: 586	
	Bio: Hacker since 2003. Heavy user of Ruby, JS, C#.			
	Majored in Mathematics at CNU. Speaker of international			
	conferences e.g. RailsConf. One of Node.js Collaborators			
Repo 1	Re	epo 2	2	
 JavaScript 	★ 61.2k	C++	★ 2.5k	
	Login: pmq1980		Created at: 2017-02-07, 03:42:58	
	Name: Mingi Pan		Public repos: 0	
	Company: alibaba		Public gists: 0	
	Location: Null		Followers: 0	
Follow	Blog: http://www.minqi-pan.com Followeing: 3			
	Bio: Hacker since age 12. Heavy user of C/C++ and Ruby.			
	Majored in Mathematics. Bilingual in English and Chinese.			
	Public Speaker.			

Help the attackers exploit the reputation of the victims

Malicious Users from GitHub Dataset 2/3 Example

- Fake stars
 - Star a batch of repositories for bonus

Make one user's repositories look popular

Malicious Users from GitHub Dataset 3/3 Example

• Issue spams to related repositories

Send a "Game developer" advertisement to as many game-related repositories as possible

Data Collection and Labeling

- Time period: Jun. 20, 2018 Aug.27,2018
- Amount: 10,667,583 randomly selected GitHub users (21.5% malicious v.s. 78.5% legitimate)
- Format:
 - Demographic information (user ID, gender, registration date, number of followings/followers,...)
 - Statistical information about historical activities (number of public repositories, public gists,...)
 - Label signifying whether the account has been banned by GitHub (homepage "404" & accessible via API)
 - Historical (dynamic) events from GH Archive (<u>https://www.gharchive.org/</u>)

Ethical Issues

- All information we collected was publicly accessible
- We follow the "terms of service" of GitHub
- We have consulted GitHub about our research

Difference on Activities between Legitimate and Malicious Users

- Legitimate users tend to conduct more types of activities, in an irregular temporal mode
- Malicious users conduct similar types of activities, usually continuously

Challenges in GitHub User Activities Analysis

- Rich types of possible activities (e.g. 42 event types on GitHub)
- Irregular activity timeline, highly dependent on working schedules

Feature Selection

- The public data of each GitHub user consists of a <u>descriptive</u> part and a <u>dynamic</u> part
 - The descriptive part mainly refers to the information about a user's profile and a set of statistical metrics of her activities
 - The dynamic part covers the fine-grained records of the activities users have generated

GitSec Design

Behavioral Difference Between Legitimate and Malicious Users (Descriptive Features)

LSTM v.s. Phased LSTM

 LSTM networks [Hochreiter et al., Neural Computation'97] regard the elements in the input sequence equally and update the cell state when processing each element

- GitHub events are often sparse and distributed in a wide time range

- Phased LSTM [Neil et al., NIPS'16] extends the standard LSTM network by adding an additional gate over the updates of the cell status
 - Phased LSTM can deal with long & sparse sequences efficiently

GitSec: Multi-source activity analysis with coupled DNNs

- Two event sequences: event interval seq. & event type seq.
- Coupled deep neural networks to deal with different event seq.
- Attention mechanism to connect the two PLSTMs

Implementation

- Phased LSTM-based time series analysis
 - TensorFlow
- Decision maker
 - Scikit-learn

- Dataset for evaluation
 - Randomly selected 59,875 users (44,892 vs 14,965)
 - 7:3 for training and test datasets

Metrics

- Precision
 - The fraction of predicted malicious accounts who are really harmful
- Recall
 - The fraction of malicious users who are detected accurately
- F1-score
 - The harmonic mean of precision and recall

$$F1 = \frac{2 \cdot Precision \cdot Recall}{Precision + Recall}$$

- AUC
 - The probability that this classifier will rank a randomly chosen malicious user higher than a randomly selected legitimate user

Evaluation on Different Neural Networks

- We run different neural network models on the event type sequence (Type seq.) and the event interval sequence (Interval seq.), respectively, and compare their performance
- PLSTM performs the best for both the sequences

Comparison of Different Attention Mechanisms

Models	Precision	Recall	F1-score	AUC
PLSTM with the combined time series seq.	0.915	0.825	0.868	0.900
Parallel PLSTM	0.928	0.883	0.905	0.930
Parallel PLSTM + AttentionLoc	0.928	0.887	0.906	0.931
Parallel PLSTM + AttentionConcat	0.924	0.892	0.907	0.934

The <u>parallel design</u> produces higher F1-score and AUC value than taking the <u>combined time series sequence</u> as the input
 The result confirms the necessity to using a parallel design
 The advantage of the attention methods shows the importance of considering the relations between the two event sequences

Performance Evaluation on Different Feature Subsets

Feature sets	Precision	Recall	F1-score
GitSec	0.951	0.892	0.920
- Event features	0.928	0.854	0.889
-Account features	0.945	0.889	0.916
-Statistical features	0.943	0.887	0.914

Starting from GitSec, we delete one feature subset at a time
 The performance decreases the most after deleting the event features

Performance Evaluation on Different Feature Subsets

Feature sets	Precision	Recall	F1-score
Random Guess	0.248	0.496	0.330
+ Event Features	0.940	0.880	0.909
+Account features	0.594	0.678	0.633
+Statistical features	0.923	0.846	0.883

Starting from a random guess classifier, we add one feature subset at a time

□ Adding the Event feature subset could increase the F1-score the most

Comparison with

Existing Malicious Account Detection Approaches

Approach	Precision	Recall	F1-score
GitSec	0.950	0.892	0.920
DeepScan [1]	0.932	0.844	0.886
Al-Qurishi et al. [2]	0.870	0.804	0.836
Viswanath et al. [3]	0.479	0.937	0.634

DeepScan: single activity sequence design using an LSTM network

□ Al-Qurishi et al.: random Forest classifier with the feature preprocessed by PCA

Viswanath et al.: using PCA to process the raw user data and separate the residual space from the normal space, and distinguish malicious users from the features in the residual space

[1] Gong et al. IEEE Communications Magazine, 2018

[2] Al-Qurishi et al. IEEE Transactions on Industrial Informatics, 2018

[3] Viswanath et al. Proc. of USENIX Security, 2014

Future Work

- Evaluate GitSec with the data of other online developer communities
- Collaborate with some developer communities to take back-end user activities into consideration
 - By integrating the clickstream information and the entire social graph into our solution

Thank you!

https://chenyang03.wordpress.com/

