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ABSTRACT
Facing the worldwide rapid spreading of COVID-19 pandemic, we
need to understand its diffusion in the urban environments with
heterogeneous population distribution and mobility. However, chal-
lenges exist in the choice of proper spatial resolution, integration
of mobility data into epidemic modelling, as well as incorporation
of unique characteristics of COVID-19.

To address these challenges, we build a data-driven epidemic
simulator with COVID-19 specific features, which incorporates
real-world mobility data capturing the heterogeneity in urban en-
vironments. Based on the simulator, we conduct two series of ex-
periments to: (1) estimate the efficacy of different mobility control
policies on intervening the epidemic; and (2) study how the hetero-
geneity of urban mobility affect the spreading process. Extensive
results not only highlight the effectiveness of fine-grained targeted
mobility control policies, but also uncover different levels of impact
of population density and mobility strength on the spreading pro-
cess. With such capability and demonstrations, our open simulator
contributes to a better understanding of the complex spreading
process and smarter policies to prevent another pandemic.

CCS CONCEPTS
• Information systems→Wrappers (data mining); •Applied
computing→ Life and medical sciences.
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1 INTRODUCTION
With a sudden outbreak, the COVID-19 pandemic has been sweep-
ing the globe with a rapidly growing number of infected cases. Up
to May 26, 2020, there have been over 5.4 million people infected,
resulting in over 343,000 deaths, according to the situation report
from theWorld Health Organization. At this crucial moment, it is of
high significance to understand the COVID-19 spreading patterns
in large-scale urban environments, based on which we can design
smarter control policies to fight back. Moreover, it is necessary to
take human mobility into consideration, as COVID-19 is known
to be transmitted mainly via person-to-person contacts, which are
highly correlated with human mobility patterns.

In the field of epidemiology, existing works on both the macro-
and micro-levels have laid a foundation for understanding the
spread of contagious diseases [2, 4, 6, 7, 13]. Facing this COVID-19
pandemic, recent studies focus on evaluating its high-level prop-
agation [5, 14], estimating efficacy of certain containment mea-
sures [9, 11], as well as making predictions for future develop-
ment [12, 18]. However, few is known about how the disease dif-
fuses in a specific urban environment with frequent population
flows, namely the intra-city level estimations. It also remains un-
clear how the heterogeneity in urban population distribution and
mobility influences the spreading processes. Such insights are in
urgent need for designing scientific containment measures and
control policies.

Although modelling the COVID-19 spreading in urban environ-
ments with real mobility is important, three major challenges need
to be dealt with. First, to balance between the accuracy and sim-
plicity of the modelling, choosing an appropriate spatial-temporal
resolution is difficult. Second, how to incorporate the urban-level
mobility data with the epidemic model effectively to capture the
spreading patterns is also unknown. Finally, the newly emerging
COVID-19 has unique features such as a relatively large ratio of
asymptomatic infectious cases, a high basic reproduction number,
etc., which calls for modification of the existing epidemic models.

To solve the above challenges, we build a data-driven epidemic
simulator on the level of city blocks, by incorporating the urban-
level real-world mobility data to obtain more realistic simulations of
the COVID-19 spreading process. Besides, we add an Asymptomatic
Infectious state into the epidemic model, and carefully design the
epidemic parameters to be consistent with the real scenario of
COVID-19.

Based on the built simulator, we conduct extensive experiments
to study the influences of mobility control interventions and het-
erogeneous population features on the process of disease spreading.
First, we design various mobility control policies (dynamic/static,
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between-/within- blocks). The implementation strength of the poli-
cies can be adjusted by changing the values of the critical param-
eters in the simulator. We then perform a series of simulations to
evaluate their respective efficacy. Second, we take a closer look into
the local features of population distribution and mobility strength.
After dividing the city blocks into groups with similar levels of these
two metrics, we use statistical methods to study the correlations
between the population density/mobility levels and the epidemic
spreading process. Conclusions are drawn that while both elements
make an impact, population mobility is much more influential than
population density.

Main contributions of our study can be summarized as follow:
• We build a data-driven epidemic simulator with COVID-19-
specific parameters by incorporating urban scale mobility. Our
simulator refines the meta-population method, which success-
fully captures the distinct features of different blocks within the
city. Such capability makes it possible to evaluate fine-grained
intervention policies in respond to such pandemic crises.
• Based on the simulator, we design and evaluate the efficacy
of three types of mobility control policies, under a range of
implementation strengths. From the results, we confirm the
efficiency of adaptive dynamic control as well as within-block
control policies.
• We conduct extensive analysis to explore the influence of pop-
ulation density and mobility on epidemic spreading processes.
Experiments uncover different levels of effects caused by popu-
lation density and mobility on the infection rate, the peak rate
as well as the peak height of an epidemic outbreak. Our findings
further support the necessity in conducting mobility control
policies to intervene the spreading of COVID-19.

2 RELATEDWORK
According to the different assumptions about population distri-
bution, epidemic modelling approaches can be roughly classified
into two categories: homogeneous models and heterogeneous mod-
els [1, 6, 15]. Classical homogeneous epidemic models are built
upon a strong assumption that individuals of all states are mixed
fully and homogeneously, which results in constant contact prob-
abilities [1, 15]. Due to the homogeneity assumption, such mod-
els are inadequate to capture important characteristics of the real
world. In contrast, our model explicitly incorporates heterogeneity
in population density and mobility, to form a realistic picture of the
environment.

On the other hand, simulators for heterogeneous models can
be further categorized into metapopulation-based and agent-based
simulators. (1) Metapopulation-based simulators divide the popula-
tion into sub-groups connected by mobility flows. Metapopulations
are constructed either merely from large-scale transportation net-
works [6], or supplemented by synthesized commuting flows [2, 3].
In contrast, our simulator directly utilizes real population flow
data to connect different blocks, looking into the local features of
the city to derive deeper understandings of the spreading mecha-
nism. (2) Agent-based simulators can generate simulations from
the micro-level of person-to-person contacts. Important instances
include EpiSims [7] and EpiSimdemics [4]. However, due to the
huge amount of information, they usually suffer from extremely
high computational complexity. Moreover, there are usually a large

quantities of parameters in need of calibration [16]. In contrast, our
simulator achieves a balance between accuracy and simplicity, by
incorporating individual mobility data and organizing them on the
block level.

3 METHOD
There exist three major challenges in modelling the COVID-19
spread in urban environments with real mobility.

• Choosing an appropriate spatial-temporal resolution to
capture themobility of large-scale urban population. For
one thing, classical models usually focus on amacro level of pan-
demic spreading, namely the inter-city or even inter-country
level [2, 6]. Though successfully revealing certain high-level
diffusion trends, they fail to understand the intra-city situations.
For the other thing, individual-based models can obtain more
accurate descriptions, but they are computationally expensive,
making it unrealistic to implement them on a real-world scale.
It is also hard to collect sufficient data describing behaviors of
every single citizen. Moreover, an excessive amount of detailed
information may instead hinder insights of the key mechanisms
from the simulation results [15]. Therefore, it is difficult to at-
tain a balance between accuracy and simplicity.
• Incorporating urban-levelmobility data into the epidemic
model effectively. Real world urban mobility data record the
mobility of population in the whole city while epidemic models
describe the spreading process of the pandemic inside a sub-
population. It is necessary to come up with a method that can
obtain the descriptions of population flows interconnecting sub-
populations and build a model of pandemic spreading process
over the whole city.
• Simulating the special epidemiological characteristics of
COVID-19. Apart from its high 𝑅0 [19], COVID-19 results in
a noticeably proportion of asymptomatic infectious cases [17].
This contributes to the unprecedented pandemic, as people may
be unawarely infected yet keep moving around, leading to more
infections. However, the traditional SIR/SEIR models [8, 10]
fail to capture such characteristic, since they mostly do not
distinguish different types of infected individuals.

In order to tackle these challenges, we build a simulator on
the block level, extract descriptions of population distribution and
mobility from real world mobility data and incorporate them into
the epidemic model of COVID-19. The detailed methods are shown
in the following section.

3.1 Real World Mobility Modelling
As discussed above, a properly chosen spatial-temporal resolution
plays a key role in the study. In our scenario, people inside a certain
block are regarded as a sub-population. This block-based spatial
resolution enables us to simulate on the intra-city level, about vari-
ous policies intervening the pandemic (see Section 4), and also the
features of pandemic spreading processes (see Section 5). Specifi-
cally, we divide downtown Beijing into 675 blocks based on major
transportation networks, as is shown in Figure 1 (a). For the tem-
poral resolution, we simulate the spreading process of pandemic
with a time step of 30 minutes.
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(a) Blocks division of downtown Beijing (b) 8 a.m. Monday (c) 6 p.m. Friday

Figure 1: Blocks division of downtown Beijing and the strengths of population mobility related to several selected blocks (red
indicates busy population mobility while green indicates the opposite) : (a) blocks division of downtown Beijing; (b) strengths
of population mobility at 8 a.m. Monday; (c) strengths of population mobility at 6 p.m. Friday.

Our real world mobility data comes from one of China’s most
popular Internet service provider, by collecting GPS coordinates
of users accessing location-based services. It offers fine-grained
descriptions of intra-city populationmobility. The raw data contains
records of users’ positions every 30 minutes during 3 weeks, with
the following information in detail:

• The number of Internet service users who travel from the 𝑖-th
block to the 𝑗-th during the 𝑡-th time step, which is denoted as:
𝑚𝑖 𝑗 (𝑡), where 𝑖, 𝑗 ∈ {0, 1, 2, ..., 674}, 𝑡 ∈ {0, 1, 2, ...1007}.
• The number of Internet service users in the 𝑖-th block at the
start of 𝑡-th time step, which is denoted as: 𝑛𝑖 (𝑡), where 𝑖 ∈
{0, 1, 2, ..., 674}, 𝑡 ∈ {0, 1, 2, ...1007}.

Considering the population mobility in a city has an obvious peri-
odicity of 7 days (a week, 336 time steps), due to the alteration of
weekdays and weekends, we calculate an average number of𝑚𝑖 𝑗 (𝑡)
and 𝑛𝑖 (𝑡) over the three weeks and get the average number of Inter-
net service users who travel from the 𝑖-th block to the 𝑗-th during
the 𝑡-th time step, denoted as 𝑀𝑖 𝑗 (𝑡); and the average number of
Internet service users in the 𝑖-th block at the start of 𝑡-th time step,
denoted as 𝑁𝑖 (𝑡), using the following method:

𝑀𝑖 𝑗 (𝑡) =
𝑚𝑖 𝑗 (𝑡) +𝑚𝑖 𝑗 (𝑡 + 336) +𝑚𝑖 𝑗 (𝑡 + 672)

3
, (1)

and

𝑁𝑖 (𝑡) =
𝑛𝑖 (𝑡) + 𝑛𝑖 (𝑡 + 336) + 𝑛𝑖 (𝑡 + 672)

3
, (2)

where 𝑖, 𝑗 ∈ {0, 1, 2, ..., 674}, 𝑡 ∈ {0, 1, 2, ...335}.
The total population size in the 𝑖-th block is denoted as 𝑁 [𝑖], 𝑖 ∈

{0, 1, 2, ..., 674}, and the strength of population flows interconnect-
ing the blocks is measured by the possibility for people in the
𝑖-th block to travel to the 𝑗-th at the 𝑡-th time step, denoted as
𝑃𝑖 𝑗 (𝑡), 𝑖, 𝑗 ∈ {0, 1, 2, ..., 674}, 𝑡 ∈ {0, 1, 2, ...335}. All 𝑁 [𝑖] and 𝑃𝑖 𝑗 (𝑡)
are estimated through the real world mobility data. The strengths
of population flow related to several selected blocks are shown in
Figure 1 (b) (c). We can observe the difference between Monday
morning and Friday afternoon, confirming the periodicity men-
tioned above. Since we have obtained the population distribution
as well as mobility strength from the real world mobility data, we
can further incorporate them into the epidemic model to build a
reliable simulator.

3.2 Simulator Building
In this section, we introduce the construction of our epidemic simu-
lator, which refines a GLEaM structured framework [2] to incorpo-
rate the real world mobility data. Inside the framework, we design
a compartment model with 6 states to describe the development
of the disease. Especially, a state of Asymptomatic Infectious is
included for a better description of the influence of the notably rel-
atively high occurrence rate of asymptomatic infection cases [17],
which is one of the outstanding features of COVID-19. Therefore,
possible states include Susceptible (𝑆), Latent (𝐿), Infectious (𝐼 ),
Asymptomatic Infectious (𝐼 [𝑎] ), Dead (𝐷) and Recovered (𝑅).

Specifically, all possible state transition processes are described in
Figure 2, with the respective transition probabilities. The parameter
𝛽 is the average number of new latent cases caused by one existing
infectious individual per day, through Infectious-Susceptible (𝐼 −
𝑆) contacts. Thus it measures the infectiousness of the pandemic.
For a Latent-Susceptible (𝐿 − 𝑆) contact and an Asymptomatic
Infectious-Susceptible (𝐼𝑎 − 𝑆) contact, it is weighted by 𝑟𝐿 and 𝑟𝑎 .
The parameter 𝜖 describes the probability for a Latent individual
to become Infectious or Asymptomatic Infectious per day. Further,
𝑃𝑎 determines the proportion of Asymptomatic cases among all
infections. The parameters 𝛼 , 𝜇 and 𝜇𝑎 respectively characterize the
𝐼 → 𝐷 , 𝐼 → 𝑅, 𝐼𝑎 → 𝑅 transition probabilities per day. The number
of cases in state𝑚 in the 𝑗-th block at 𝑡-th time step is denoted as
𝑋
[𝑚]
𝑗

, 𝑚 ∈ {𝑆, 𝐿, 𝐼 , 𝐼 [𝑎] , 𝐷, 𝑅}, 𝑗 ∈ {0, 1, 2, ..., 674}.
At initialization, each block is assigned an initial infection num-

ber 𝑋 [𝐼 ]
𝑗

, where the subscript 𝑗 stands for the 𝑗-th region. By sub-

tracting𝑋 [𝐼 ]
𝑗

from the total population of the 𝑗-th region, we obtain

𝑋
[𝑆 ]
𝑗

, the initial number of susceptible individuals in each region.
In each time step, the simulator updates the number of individu-

als in different epidemic states in the following two steps:
• Step 1: update 𝑋

[𝑚]
𝑗

, according to individual disease de-
velopment (state transitions):
The transition number from state 𝑚 to 𝑛 in the 𝑗-the block
is denoted as 𝐹 𝑗 [𝑚] [𝑛], given by the following polynomial
distribution. (Polynomial distribution is a discrete probability
distribution form, which is an extension of binomial distribu-
tion):

{𝐹 𝑗 [𝑚] [𝑆], 𝐹 𝑗 [𝑚] [𝐿], ...} ∼ 𝑃𝑁 (𝑋 [𝑚]
𝑗

; 𝑃𝑚→𝑆 , 𝑃𝑚→𝐿, ...), (3)
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Figure 2: All possible state transition processes in our epi-
demiological model, along with the respective transition
probabilities.

where 𝑃𝑚→𝑛 denotes the possibility for people in state𝑚 to
transfer to 𝑛 in one time step.
Then we update 𝑋 [𝑚]

𝑗
as:

𝑋
[𝑚]
𝑗
← 𝑋

[𝑚]
𝑗
+ Δ𝑋 [𝑚]

𝑗
, (4)

where

Δ𝑋
[𝑚]
𝑗

=
∑
[𝑛1 ]

𝐹 𝑗 [𝑛1] [𝑚] −
∑
[𝑛2 ]

𝐹 𝑗 [𝑚] [𝑛2], (5)

𝑚,𝑛, 𝑛1, 𝑛2 ∈ {𝑆, 𝐿, 𝐼 , 𝐼 [𝑎] , 𝐷, 𝑅}, 𝑗 ∈ {0, 1, 2, ..., 674}.

• Step 2: update𝑋 [𝑚]
𝑗

, according to humanmobility among
blocks:
The number of people in state𝑚, traveling from the 𝑖-th block to
the 𝑗-th is denoted as𝑇𝑖 𝑗 [𝑚], given by the following polynomial
distribution:

{𝑇𝑖0 [𝑚],𝑇𝑖1 [𝑚], ...} ∼ 𝑃𝑁 (𝑋 [𝑚]
𝑖

, 𝑃𝑖0 (𝑡 𝑚𝑜𝑑 336), 𝑃𝑖1 (𝑡 𝑚𝑜𝑑 336), ...) .
(6)

Then we update 𝑋 [𝑚]
𝑗

as:

𝑋
[𝑚]
𝑗
← 𝑋

[𝑚]
𝑗
+ Δ𝑋 [𝑚]

𝑗
, (7)

where

Δ𝑋
[𝑚]
𝑗

=

674∑
𝑖=0
(𝑇𝑖 𝑗 [𝑚] −𝑇𝑗𝑖 [𝑚]), (8)

𝑚 ∈ {𝑆, 𝐿, 𝐼 , 𝐼 [𝑎] , 𝐷, 𝑅}, 𝑖, 𝑗 ∈ {0, 1, 2, ..., 674}.

We obtain 𝑃𝑚→𝑛 𝑚,𝑛 ∈ {𝑆, 𝐿, 𝐼 , 𝐼 [𝑎] , 𝐷, 𝑅} according to medical
researches on COVID-19, thus we can achieve an accurate descrip-
tion of such pandemic.

The simulator is programmed in Python, using efficient matrix
computing libraries and programming skills. It is worth mentioning
that due to the rational spatial-temporal resolution choice and
proper programming technique, we can simulate the spreading of
pandemic very efficiently, only consuming no longer than 8 seconds
to simulate the spreading process for 1 day (48 time steps) in the
whole downtown Beijing, on a simple laptop.

Our built simulator is open for the community and available at
https://github.com/KYHKL-H/Epidemic-Simulator.

4 EFFECT OF MOBILITY CONTROL POLICY
Population mobility is a critical element governing peoples’ contact
patterns in the city. Therefore, mobility control is a common policy
to intervene the spread of pandemic. The positive effect of mobility
control between cities on the global level has been proven [5]. How-
ever, it is still unclear how mobility control on block levels within
a single city affects the pandemic spread. To better understand the
process, we design various mobility control policies both on the
level of inter-blocks and within-blocks. We perform the spreading
simulations using the built simulator mentioned above to estimate
the effectiveness of these policies.

4.1 Experimental Settings
We simulate a pandemic outbreak with 50 initial cases caused by
zoonotic exposure, a typical order of magnitude [5]. The initially
outbreak spot is set to be block #0, and it stays the same during
this section, eliminating the influence of different initially outbreak
spots. The simulation lasts 500 days, covering whole process of
the pandemic from outbreak to fading away. The following three
different mobility control policies are performed:

• Simple-ratio mobility control between blocks: The traffic
flows between different blocks (any flow crosses the boundary
of blocks, i.e., public transport taking, private car driving or
walking) in the whole city are restricted by a given restriction
rate 𝛾 (0 < 𝛾 ≤ 1).
• Dynamic mobility control between blocks: To find a prac-
tical dynamic policy, we flexibilize the mobility control pol-
icy with two tunable parameters, control-threshold 𝐶𝑡 and
adjusting-frequency 𝐶𝑓 (both positive integers), rather than
using a simple restriction ratio. We perform a judgment after
every period of time lasting 𝐶𝑓 (h). If the number of currently
infectious cases (𝐼 ) in a block is greater than 𝐶𝑡 (person), all
traffic flows from or to this block are banned until the next
judgment.
• Mobility control within blocks: The traffic flows within ev-
ery block, i.e., without crossing any block boundaries, in the
whole city are restricted. In lack of data describing the actual
traffic flows within blocks, it is difficult to directly set a re-
striction rate as above. Considering restriction within blocks
uniformly reduces the chance for people to contact with each
other, we solve this problem by setting a reduction factor 𝛾0
(0 < 𝛾0 ≤ 1). 𝛾0 acts on 𝛽 , leading to a decreased 𝛽∗ = 𝛾0 ∗ 𝛽
and this new 𝛽∗ reflects the restriction within blocks.

The result of simulations are analysed by viewing the curves
that show the spreading process of the pandemic, and a further
analyse through applying statistical techniques on the critical three
indexes:

• Infect-rate: the percentage of infected cases at a certain time,
which is defined as:

𝑟𝐼 (𝑡) =
𝑁𝑡 [𝐼 ] + 𝑁𝑡 [𝐼 [𝑎] ]

𝑁0
. (9)

where 𝑁𝑡 [𝑚],𝑚 ∈ {𝑆, 𝐿, 𝐼 , 𝐼 [𝑎] , 𝐷, 𝑅} stands for the number
of cases in state-m at the 𝑡-th time step, 𝑁0 denotes the total
number of population in downtown Beijing.
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• Peak-date: time when infect-rate reach the top during the
whole process of pandemic, which is defined as:

𝑡𝑃 = argmax
𝑡

𝑟𝐼 (𝑡) . (10)

• Peak-height: the highest level of infect-rate during the whole
process of pandemic, i.e., infect-rate at peak-date, which is
defined as:

ℎ𝑃 = max
𝑡

𝑟𝐼 (𝑡). (11)

4.2 Results and Analysis
Results of simulation under simple-ratio mobility control between
blocks are shown in Figure 3, where "baseline" refers to situation
without any traffic restriction.

Figure 3: Infect-rate under simple-ratio mobility control be-
tween blocks with different 𝛾 , where the baseline-cure over-
laps with the blue one.

Five different values (1.0,0.1,0.01,0.001,0.0001) of 𝛾 are chosen,
and their effect on are shown in Table 1. It can be noticed that when
𝛾 is set to 1.0, 0.1 or 0.01, there is no obvious effect of delaying
the arrival of the peak of this pandemic (no more than 3.56%) and
neither an obvious effect of decreasing the height of it (no more
than 3.62%). Only when 𝛾 is set to value 0.001 or 0.0001 (i.e., 99.9%
or 99.99% of the traffic flow is banned), will it present an obvious
effect on delaying and decreasing the peak. For such strict mobility
control is almost unattainable in the real world, it has very limited
positive effect on relieving the pressure of the medical system and
intervening this pandemic.It suggests that we need more effective
policies than this simple-ratio mobility control between blocks.
Table 1: Effect of different 𝛾 on 𝑡𝑝 and ℎ𝑃 under simple-ratio
mobility control between blocks.

−𝑙𝑜𝑔 (𝛾 ) 𝑡𝑃 /𝑑𝑎𝑦 (𝑑𝑒𝑙𝑎𝑦/%) ℎ𝑃 /%(𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑒/%)

𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 151.7(−) 21.25(−)
1 152.1(0.26) 21.23(0.09)
2 157.1(3.56) 20.48(3.62)
3 202.8(33.68) 17.19(19.11)
4 287.1(89.26) 12.81(39.72)

As an improvement of the simple-ratio mobility control between
blocks, we put forward a dynamic mobility control between blocks,
and the values of the two parameters are 𝐶𝑡 ∈ {10, 5, 2}(𝑝𝑒𝑟𝑠𝑜𝑛),
𝐶𝑓 ∈ {24, 48, 96}(ℎ), respectively, resulting in 9 simulations in total.
The results are shown in Figure 4, where the "baseline" also refers

to the situation without any mobility control. The effects of this
policy with different 𝐶𝑓 and 𝐶𝑡 on the spread of the pandemic are
shown in Table 2.

Table 2: Effect of different𝐶𝑓 ,𝐶𝑡 on 𝑡𝑝 andℎ𝑃 under dynamic
mobility control between blocks.

𝐶𝑓 −𝐶𝑡 𝑡𝑃 /𝑑𝑎𝑦 (𝑑𝑒𝑙𝑎𝑦/%) ℎ𝑃 /%(𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑒/%)

𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 151.7(−) 21.25(−)

24 − 10 150.2(−0.99) 20.55(3.29)
24 − 5 157.1(3.56) 18.91(11.01)
24 − 2 163.1(7.51) 14.19(33.22)

48 − 10 152.6(0.59) 20.59(3.11)
48 − 5 156.5(3.16) 19.12(10.02)
48 − 2 160.3(5.67) 16.05(24.47)

96 − 10 151.8(0.07) 20.62(2.96)
96 − 5 152.0(0.20) 19.48(8.33)
96 − 2 157.8(4.02) 15.96(24.89)

It can be noticed that whatever 𝐶𝑓 is, when the 𝐶𝑡 is set to
2, an obvious decrease on peak-height happens (24.47% or more).
Meanwhile, when 𝐶𝑡 is a fixed small number, even if 𝐶𝑓 is not
very small, it still has an obvious positive effect on intervening
the pandemic. This suggests that there is no need to adjust the
policy very frequently (i.e., one time per day), which adds to the
implementability of this policy in the real world. Although this
dynamic mobility control does not lead to an obvious delay in peak-
date, it does lead to a decrease in peak-height, which may serve to
relieve the pressure of the medical systems in the real world. And
thus this dynamic mobility control policy is of great meaning.

The influence of this dynamic mobility control policy on the daily
operation of the city is also evaluated. Only the situation of 𝐶𝑡 = 2
is evaluated, for larger control-thresholds do not have an obvious
effect on the intervention of this pandemic. Figure 5 shows the
influence on traffic flows under dynamic mobility control policies
with𝐶𝑡 = 2 (restrict-ratio refers to the percentage of banned traffic).
As showing above, only when 𝛾 is set to 0.001 (red line in Figure 5)
or smaller, will it make an obvious difference. In comparison, this
dynamic one has a lower influence on daily traffic flows, and the
influence goes downwith the pandemic fading away. In other words,
there is no need to keep a strict restriction until the number of
infected cases turns to zero.

We extend the mobility control policy further into inner-block
level. The method is by setting the reduction factor 𝛾0 as defined
above to infect rate 𝛽 , 4 values of𝛾0 are chosen, i.e.,𝛾0 ∈ {0.9, 0.8, 0.7, 0.6}
and the result is shown in Figure 6 ("baseline" refers to situation
without any mobility control). The effect of different values of 𝛾0 is
shown in Table 3.

Table 3: Effect of different 𝛾0 on 𝑡𝑝 and ℎ𝑃 under mobility
control within blocks.

𝛾0 𝑡𝑃 /𝑑𝑎𝑦 (𝑑𝑒𝑙𝑎𝑦/%) ℎ𝑃 /%(𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑒/%)

𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 151.7(−) 21.25(−)
0.9 170.5(12.39) 17.97(15.44)
0.8 208.2(37.24) 14.31(32.66)
0.7 253.4(67.04) 10.30(51.53)
0.6 379.7(150.30) 6.10(71.29)
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(a) 𝐶𝑓 = 24 (b) 𝐶𝑓 = 48 (c) 𝐶𝑓 = 96

Figure 4: Infect-rate under dynamic mobility control between blocks with different 𝑓 𝑟𝑒𝑞 and 𝐶𝑡 .

Figure 5: Influence on traffic flow under dynamic mobility
control between blocks with 𝐶𝑡 = 2 (the red line marks
99.99%).

Figure 6: Infect-rate under mobility control within blocks
with different 𝛾0.

We can tell from the result that the mobility control on the inner-
block level, which reduces the chance for people to contact with
each other and finally decrease the chance for the pandemic to
spread, make a much more obvious difference on intervening the
pandemic. Even when the reduction factor 𝛾0 is close to 1.0, both
an obvious delay in peak-date (𝛾0 = 0.8, 37.24% delay on peak-date)
and an obvious decrease in peak-height (𝛾0 = 0.8, 32.66% decrease
on peak-height) happen.

4.3 Summary
From the result of three different mobility control policies shown
above, we can conclude that simple-ratio mobility control between
blocks makes a difference only when the restriction is extremely

strict, while dynamic mobility control between blocks shows a more
obvious effect and has a lower influence on daily traffic flows when
the control-threshold is small enough. In comparison, mobility
control within blocks has a much more obvious effect on delaying
the arriving time and decreasing the height of the peak, even if
the restriction is not that strict. This does inspire us that in order
to intervene the pandemic, implementing a multi-level mobility
control, especially one with restrictions on small scales (i.e., within
the blocks), is of vital importance.

5 EFFECT OF POPULATION AND MOBILITY
Above study shows how different traffic restriction policies affect
the spreading of pandemic. However, it is still unclear how the pan-
demic spreading processes inside the city are affected by population
distribution and mobility of blocks. In order to solve this confusion,
we conduct the following experiments and analyses.

5.1 Population Distribution and Mobility
Among the 675 blocks divided originally, we wipe out the ones with
too few data related to them, and 627 remain. In order to study the
effect of population distribution and mobility on pandemic spread-
ing features quantitatively, we define the following two metrics of
a given block (𝑖 =0, 1, ... 626):
• Population density: population size on unit area, which is
defined as:

𝜌0 [𝑖] =
𝑁 [𝑖]

𝑎𝑟𝑒𝑎[𝑖] , (12)

where 𝑎𝑟𝑒𝑎[𝑖] refers to the area of the 𝑖-th block.
• Population mobility: the sum of possibility for people in the
𝑖-th block to travel to other blocks and possibility for people in
other blocks to travel to the 𝑖-th, which is defined as:

𝑓0 [𝑖] =
335∑
𝑡=0

∑
𝑗

(𝑃𝑖 𝑗 (𝑡) + 𝑃 𝑗𝑖 (𝑡)) . (13)

For convenience in mathematical operations, we perform nor-
malization on 𝜌0 and 𝑓0, and obtain the relative population density
𝜌 [𝑖] = 𝜌0 [𝑖 ]

max
𝑖

𝜌0 [𝑖 ] and relative population mobility 𝑓 [𝑖] = 𝑓0 [𝑖 ]
max
𝑖

𝑓0 [𝑖 ] .

The relative population density and flow of the 627 regions are
shown in Figure 7 (a). We discover that the blocks are naturally asso-
ciated with various combinations of features, i.e., high/medium/low
population density and high/medium/low population flow. In other
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(a) (b)

Figure 7: Relative population density and flow: (a) all 627
blocks; (b) blocks selected as outbreak spots.

words, the blocks are diversified and representative, which offers
great convenience to our study.

5.2 Experimental Settings
Now we research into the pandemic spreading process on a much
smaller scale, i.e., in each block. With a substantial increase in
the spatial resolution, it is necessary to consider the randomness
in the place of the initial outbreak. Thus, we choose 13 blocks
with different population densities and mobility as the outbreak
spots, shown in Figure 7 (b). In the set of selected blocks, both the
population density and the mobility strength vary from low to high,
making them representative of blocks with different features.

We take the selected blocks as the outbreak spot one by one for
simulations, assuming 50 cases caused by zoonotic exposures each
time and each simulation lasts 1 year (365days). To get more credible
results, we run every simulation for 5 times (i.e., 13 outbreak spots
and 5 simulations for each outbreak spots, 65 simulations in total).
In seek of a deeper understanding, besides the three indexes (infect-
rate 𝑟𝐼 , peak-date 𝑡𝑃 and peak-height ℎ𝑃 ) defined above, we further
study on another index, namely the accumulated infect-rate. It is
the percentage of people previously or currently infected at time 𝑡 ,
which is defined as follows:

𝑟𝑎𝐼 (𝑡) =
𝑁𝑡 [𝐿] + 𝑁𝑡 [𝐼 ] + 𝑁𝑡 [𝐼 [𝑎] ] + 𝑁𝑡 [𝑅] + 𝑁𝑡 [𝐷]

𝑁0
. (14)

5.3 Results and Analysis
The result in one of the blocks (block NO.101) is shown in Figure 8,
and other blocks has a similar variation trend.

5.3.1 Curve Fitting. In order to quantitatively describe the epi-
demic curves, we perform the method of curve fitting, expressing
the spreading process using a brief function as follows:
• Fitting infect-rate:

𝑟𝐼 (𝑡) ∼𝑚 ∗ 𝑒−
(𝑡−𝜇)2

𝜎 . (15)

Considering the attributions of Gaussian-like function, we have

ℎ𝑃 ⇔𝑚(%), 𝑡𝑃 ⇔ 𝜇 (𝑑𝑎𝑦) . (16)

The value of 𝜎 measures the relative lasting time of the pan-
demic, the larger 𝜎 is, the longer this pandemic lasts.
• Fitting accumulated infect-rate:

𝑟𝑎𝐼 (𝑡) ∼ 𝑘 ∗ 𝑒𝑎𝑡 , (17)

where the value of 𝑎 measures the relative spreading speed of
the pandemic: the larger 𝑎 is, the faster this pandemic diffuses.

(a) (b)

Figure 8: Result of simulation in block NO.101: (a) infect-
rate; (b) accumulated infect-rate.
The fitting result of block NO.101 is also in Figure 8. For the infect-
rate, 𝑅2 ∈ [0.9983, 0.9998]; while for the accumulated infect-rate,
𝑅2 ∈ [0.9947, 0.9980], both indicating a very good fitting result.

As the outbreak period of the pandemic rather than the fading-
away period is of more concern, curve fitting is only applied to the
first half of the infect-rate curve and the exponentially growing
part on the accumulated infect-rate curve, as is shown in Figure 8.
Moreover, we average the results of all the simulations, eliminating
the randomness brought by different outbreak spots and other
factors. The mean and median value of 𝑎, 𝜎 , 𝜇, 𝑚 of 627 blocks
are shown in Table 4. According to the median of every index, we
divide them into the lower part and the higher part.
Table 4: Average and median value of indexes in 627 blocks.

𝑖𝑛𝑑𝑒𝑥 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑚𝑒𝑑𝑖𝑎𝑛

𝑎 0.01499 0.01467
𝜎 895.84 897.29

𝜇 (𝑑𝑎𝑦) 146.56 146.60
𝑚 (%) 20.98 21.00

5.3.2 Effect of Population Density on the Spreading of Pandemic.
According to the quantile of relative density of the blocks, we divide
627 blocks into 5 groups, with very low, low, medium, high, very
high population density, respectively. The medium group is chosen
as the reference. From the effects of population density on the
pandemic spreading, we can draw the following conclusions.

First, very high population density tends to cause a decrease on
𝑎 [OR=0.328 (95%CI: 0.227-0.642), p-value=0.0004], in other words,
decrease the spreading speed. Note that the spreading is measured
by the infect-rate rather than the absolute number of infected cases.
Thus blocks with higher population density may witness a faster
increase in the number of infected cases, but a slower increase
on the infect-rate. However, when the population density varies
among other groups (very low, low or high), no obvious effect on 𝑎
happens, indicated by a p-value>0.05.

Secondly, very low population density tends to cause a decrease
on 𝜎 [OR=0.446 (95%CI: 0.268-0.742), p-value=0.0027], 𝜇 [OR=0.504
(95%CI: 0.302-0.840), p-value=0.0119] and 𝑚 [OR=0.475 (95%CI:
0.285-0.791), p-value=0.0058], in other words, causes a shorter last-
ing time, an earlier peak-date and a lower peak-height. However,
when the population density varies among other groups (low, high
or very high), no obvious effect on 𝜎 , 𝜇 and𝑚 is observed, indicated
by a p-value>0.05.

5.3.3 Effect of Population Mobility on the Spreading of Pandemic.
Using a similar statistical technique as above, 627 blocks are divided
into 5 groups, and the medium group is chosen as the reference.
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The results show that the value of 𝑎 decreases obviously with
the population mobility going up (OR>1 when population mobility
is lower than the reference group and OR<1 when population mo-
bility is higher than reference, with p-value no larger than 0.0241),
indicating blocks with a high population mobility show a slower
spreading inside themselves. In contrast, the value of𝑚 increases ob-
viously when population mobility goes up (OR<1 when population
mobility is lower than the reference group and OR>1 when popula-
tion mobility is higher than the reference group, with p-value no
larger than 0.0290), indicating blocks with high population mobility
meet a higher infect-rate peak. This especially alarms us that the
medical systems in high-mobility blocks are highly risky to suffer
from heavier pressure. And thus more effective control policies and
more adequate preparations are called for. Moreover, very low pop-
ulation mobility tends to cause a decrease on 𝜎[OR=0.228 (95%CI:
0.131-0.399), p-value<0.0001] and 𝜇[OR=0.146 (95%CI: 0.080-0.267),
p-value<0.0001], in other words, causing a shorter lasting time and
a earlier peak-date. However, when the population mobility varies
among other groups (low, high or very high), there is no obvious
effect on 𝜎 and 𝜇, indicated by a p-value>0.05.

5.3.4 Summary. We found in the above experiments that the spread-
ing process of COVID-19 is shaped by different population distri-
bution and mobility patterns. Very high population density leads
to a decrease on the spreading speed, while very low population
density results in a a shorter lasting time, an earlier peak-date and a
lower peak-height. The spreading speed inside the block decreases
and peak-height increases obviously as population mobility goes
up, and very low population density leads to a shorter lasting time
and a earlier peak-date. It can also be found that population mo-
bility has a much more obvious effect on the spreading process
than population density. This sheds light on the key role that the
population mobility plays in the process of pandemic spreading,
providing an evidence for the necessity of intervening pandemic
through mobility control.

6 CONCLUSION
In this paper, we incorporate real world mobility data into the epi-
demic model of COVID-19 and build an efficient simulator on the
block level, which is open to the community. By studying the influ-
ences brought by various mobility control policies under different
implementation strength, we conclude that mobility control within
blocks is the most effective one, which offers a meaningful sugges-
tion for the real world pandemic intervention. We further study
the differences in pandemic spreading due to varies population
density and population mobility levels. Our study not only sheds
light on the key role of mobility control policies, but can also be
very meaningful for making targeted policies to fight the pandemic
in different regions. Based on this open simulator, more intelligent
policies and fundamental spreading phenomena can be investigated,
which calls for collaborative future work of the community.
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