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ABSTRACT
We study the problem of predicting regional economy of U.S. coun-
ties with open migration data collected from U.S. Internal Revenue
Service (IRS) records. To capture the complicated correlations be-
tween them, we design a novel Attentional Multi-graph Convolu-
tional Network (AMCN), which models the migration behavior as
a multi-graph with different types of edges denoting the migration
flows collected from heterogeneous sources of different years and
different demographics. AMCN extracts high quality feature from
the migration multi-graph by first applying customized aggregator
functions on the induced subgraphs, and then fusing the aggregated
features with a higher-order attentional aggregator function. In
addition, we address the data sparsity problem with an important
neighbor discovery algorithm that can automatically supplement
important neighbors that are absent in the empirical data. Experi-
ment results show our AMCN model significantly outperforms all
baselines in terms of reducing the relative mean square error by
43.8% against the classic regression model and by 12.7% against the
state-of-the-art deep learning baselines. In-depth model analysis
shows our proposed AMCN model reveals insightful correlations
between regional economy and migration data.

CCS CONCEPTS
• Computing methodologies → Learning latent representa-
tions; • Information systems→ Data mining; • Applied com-
puting→ Economics.
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1 INTRODUCTION
Uncovering the correlations between population migration and re-
gional economy has been a long-standing research problem [1–3],
which carries profound implications for policy making [4] and city
planning [5]. Survey shows most of economists believe migration
replenishes the labor market of the destination regions [6] and pro-
vides cash flow for the origination regions through remittances [7],
and therefore can benefits the economy of both the destination and
origination regions [4, 6]. However, empirical studies often show
very mixed results (negative, positive or no impact) in real-world
scenarios [8–10]. On the other hand, recent years have witnessed a
proliferation of large-scale migration datasets collected from het-
erogeneous sources, which provides a unique angle to investigate
this problem with a data-driven approach. In this paper, we aim to
design a novel model for regional economy prediction based on the
open migration datasets.

The main challenges of our research are three-fold. First, the
correlations between regional economy and migration data are in-
herently complicated. For example, empirical studies on migration’s
impact yield highly volatile results that has no strong statistical
support for theoretical predictions [4]. It indicates the proposed
model needs to be expressive to capture complex correlations. Sec-
ond, although including migration data from heterogeneous sources
might benefit the prediction, it also poses challenges to the model’s
flexibility, which is required to jointly model the heterogeneous
migration datasets, e.g., of different demographics and in different
years. Third, the distribution of migration data is often significantly
biases to the highly populated regions. Therefore, it is non-trivial
to achieve accurate prediction for the less populated regions due to
data sparsity.

To address these problems, we propose a novel predictive model,
i.e., Attentional Multi-graph Convolutional Network (AMCN). The
key idea is to model the heterogeneous migration datasets as a
migration multi-graph, where each node represents a region and
there are multiple edges between two nodes denoting the heteroge-
neous types migration flows. The proposed AMCN model can be
broken down into three key components, which address the main
challenges accordingly. First, to capture the complicated correla-
tions, we extend the newly emergent graph convolutional networks
(GCN) to model the heterogeneous migration multi-graph [11, 12].
Specifically, it uses customized aggregator functions to collect fea-
ture from the induced subgraphs of different migration flows, which
allows it to simultaneously capture the structure of heterogeneous
migration graph and region attribute. Second, to differentiate the se-
mantics of heterogeneousmigration flows, we design a higher-order
aggregator function that leverages the attention mechanism to fuse
the feature aggregated from the different induced subgraphs [13].
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It allows the model to identify the most important features by dy-
namically assigning different attention weights to the aggregated
features. Third, we design an important neighbor discovery algo-
rithm to address the data sparsity issue in less populated regions.
To be specific, by drawing strength from both theoretical migration
model and deep learning technique, it accurately supplements the
important neighbors to the less connected nodes in the empirical
migration graph.

To evaluate the effectiveness of our proposed model, we leverage
the public available U.S. Internal Revenue Service (IRS) records to
extract a large-scale county-to-county migration data 1. In addi-
tion, we use the county’s GDP per captia statistics released by U.S.
Bureau of Economic Analysis as the ground truth 2, which is one
of the most adopted regional economic indicators. We evaluate
our model’s performance with the task of predicting the regional
economy in 2015 with the migration data from 2013 to 2015. We
make the following observations: First, the proposed model AMCN
significantly outperforms all baselines in terms of reducing the rel-
ative mean square error by 43.8% against the classic support vector
regression model and by 12.7% against the best deep learning base-
lines (p<0.001, two tailed Student’s t-test). Second, the important
neighbor discovery algorithm shows prominent effect in addressing
the data sparsity issue in terms of supplementing more neighbors
to the less connected nodes on average. Third, through visualiz-
ing the attention weight of the higher-order aggregator function,
we make insightful observations on the different importance of
the heterogeneous migration data sources. For example, the tax-
exemptor’s migration in current year and the taxpayer’s migration
in two years before carry most influence in the prediction of current
year’s regional economy.

The main contributions of our study can be summarized from
the following aspects:
• We formally define the research problem of predicting regional
economy with migration data in the framework of predicting
node’s label given migration multi-graph, which allows the
predictive models to jointly model migration graph structure
and region attribute.
• We propose a novel attentional multi-graph convolutional net-
work to effectively carry out the predictive task. It consists
of three key components: multi-graph convoluional network,
attentional higher-order aggregator function and important
neighbor discovery algorithm.
• We conduct extensive evaluations on real-world migration data
among U.S. counties. Experiments show our model achieves
significant performance gain against the state-of-art baselines,
and in-depth model analysis shows the proposed model can
reveal insightful correlations between regional economy and
migration data.

2 RELATEDWORKS
2.1 Economy and Migration Data
Migration’s impact on the economy of destination and origination
regions has been a constant research topic for the past decades [1–
3], which has important influence over migration policy making
1https://www.irs.gov/statistics/soi-tax-stats-migration-data
2https://www.bea.gov/data/gdp/gdp-county

and numerous applications. Previous studies in this area mostly
focused on specific scenario and population. For example, survey
showed economists and public generally believe high-skilled immi-
grants can improve the economy of destination regions [6]. On the
other hand, many public members held the view that low-skilled
immigrants have adverse impact on destination regions, while stud-
ies showed very mixed results in real-world scenarios [8, 9]. As for
the origination regions, researchers found evidence that migration
benefited the economy in terms of increasing investment through
remittances [7] and increasing average wages for those remain [14].
In addition, studies also showed migration could promote trades
in goods and service as well as technology innovation [15]. These
works studied the implications of migration in specific circum-
stances. However, the investigation on how all kinds of migrations
as a whole impact on the regional economy is woefully inadequate.

In summary, previous works mainly focus on the empirical and
theoretical correlation analysis between the regional economy and
migration. Different from them, we propose a predictive model —
AMCN, which provides a principal framework to jointly model the
impact of heterogeneous migration data, e.g., in different years,
consist of different population and with different directions. We
show that the proposed model achieves significant performance
boost over classic regression model and is able to offer interpretable
prediction results through the attention mechanism.

2.2 Mining Human Mobility Data
With the rapid proliferation of portable smart devices, human mo-
bility data is now ubiquitously sensed and computed at population
scale. To be specific, the newly emergent ubiquitous sensing tech-
nology facilitates the fine-grained mobility trace extraction from
call detail record [16], mobile traffic consumption [17], GPS mod-
ules [18], crowd sensing [19] and IOT devices [20]. Such valuable
data sources increasingly gain popularity in wide range of applica-
tions. At individual level, mobility data has been successfully ex-
ploited in monitoring mood [21], predicting social relation [22, 23]
and improving application recommendation [24]. As for the popula-
tion level mobility data, previous researches show promising results
in urban activity detection [25], transportation scheduling [26] and
improving intelligent urban sensing [19]. In addition, previous stud-
ies on migration data analytic mostly focus on understanding the
patterns of migration behavior, such as predicting the churn rate
of migrants [27] and understanding how they integrate into the
native community [28].

In this paper, we study a novel problem of predicting regional
economy with the migration data. Our study sheds light on how
human mobility interplay with the economy growth, which has
important implications for policy making and wide range of appli-
cations.

2.3 Graph Convolutional Network (GCN)
The key idea of GCNs is a end-to-end deep learning model that
jointly captures the graph structure and node feature [12]. It is
achieved by learning a spatial in-variant aggregator function to
aggregate important feature from each node’s neighborhood to pre-
dict its label. The recently emergent GCNs has rapidly set a series
of new records in graph learning tasks, such as link prediction [29],
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node classification [30] and community detection [11]. In addition,
it has also been successfully applied in numerous applications, such
as urban traffic forecast [31], social influence modelling [32] and
recommender system [33]. Since our task relies on both the county’s
feature and the migration graph structure, the GCN framework nat-
urally fits our research. However, the spatial in-variant aggregator
of classic GCN models means applying same aggregator function
to every node on every edge, which prevents it to capture the dif-
ferent semantics of different types of edges. Therefore, they cannot
be readily applied in our problem. On the other hand, several re-
cent works have generalized the GCN framework to heterogeneous
graph by leveraging the Metapath technique [34], which essentially
constructs a homogeneous graph by fitting the original graph to a
template of edges, i.e. Metapath [35]. However, designing suitable
Metapath is knowledge intensive process and the current models
cannot adequately address the challenges in predicting regional
economy with migration data, e.g., heterogeneous data sources
and data sparsity. In this paper, we propose a novel attentional
multi-graph convolutional network. It fundamentally extends the
classic GCN framework to migration multi-graph, which achieves
significant performance gain over state-of-art baselines.

3 PROBLEM DEFINITION AND CHALLENGES
3.1 Research Problem
To properly formulate the investigated research problem, we for-
mally define the data structure and notations we use throughout
this paper. Specifically, the migration record is defined as follow.

Definition 3.1. Migration Record. It is defined as a quadruple
(ci , c j , t ,n), which denotes the number of people n that migrate
from county ci to c j at time t , with n > 0.

We organize the migration record as a migration graph among
counties, which allows us to model the overall migration pattern
as a whole.

Definition 3.2. Migration Graph. It is defined as a directed and
weighted graphGt,s = (V,Et,s ), where V denotes the node set with
nodevi ∈ V representing county ci and F(vi ) denotes the attributes
of node vi . Each category s denotes a combination of population
profile and directions. In addition, the weight of edge Et,s (vi ,vj )
denotes the normalized number of people migrate from ci to c j (or
from c j to ci w.r.t category s), which is computed by dividing the
actual number of people with total number of people departing
from (or arriving at w.r.t s) ci .

In addition, the migration data often can be classified into differ-
ent categories, i.e.. migration in different years, of different demo-
graphic (e.g., taxpayer and tax-exemptor) and with different direc-
tions (i.e., inflow and outflow). Therefore, we propose a multi-graph
structure to simultaneously capture the heterogeneos migration be-
havior. That is there could be numerous parallel edges between two
nodes that denote different migration data respectively. Specifically,
it is formally defined as follows.

Definition 3.3. Migration Multi-graph. It is defined as a di-
rected and weighted multi-graph G =

⋃
{Gt,s } = (V,E), where V

denotes the node set that corresponds to counties and F(vi ) denotes
the node attribute ofvi ∈ V. In addition,E = {Et1,s1,Et2,s2,Et3,s3, ...}

(a) Correlation between regional econ-
omy and migration

(b) Distribution of migration inflow

Figure 1: Visualizing the empirical patterns between migra-
tion data and regional economy across U.S. counties in 2015.

denotes the heterogeneous migration edge sets with Et1,s1 repre-
senting the migration data in t1 year and belong to s1 semantic
categories.

With the notations properly defined, we formulate the research
problem as follow.

Problem1. Regional EconomyPredictionwithMigrationData.
Given a migration multi-graph G = (V,E), we aim to learn a predic-
tion function Φ(F(vi ),E). It takes both the node attribute F(vi ) and
the graph structure in E as input, and output the prediction of regional
economy ŷi for each node vi ∈ V.

3.2 Not Straightforward Path from Migration
to Economy.

To showcase the empirical correlation between regional economy
and migration, we present the GDP per capita and migration inflow
of U.S. counties in 2015 in Figure 1(a). From the figure, we can
observe that there is a general trend of positive correlation between
them, which can be fitted by a linear function with 0.1734 slope
coefficient in log-log plot. It indicates the regional economy gener-
ally is higher if it has higher migration inflow, which is consistent
with the conventional wisdom. In addition, it suggests migration
data does possess predictive signal on regional economy, which
supports the feasibility of this task. However, we also notice that
there is a large variation in the empirical data, where the maximum
deviation in regional economy of counties with same migration
inflow can reach to about 2 magnitude. Therefore, it cannot achieve
accurate regional economy prediction by leveraging simple mi-
gration statistics, which suggests more sophisticated algorithms
are needed to reveal the underlying correlation between them. Re-
gional economy often correlated with each other through the flow
of migration [1, 2]. Therefore, the predictive model should be able
to capture the region’s attribute as well as the migration graph
structure, which poses a significant challenge to the classic feature
based regression models.

3.3 Data sparsity for Less Populated Counties.
Finally, the unevenly distributedmigration data is another challenge
for achieving accurate prediction. That is the migration records
mostly take place in the counties with large population, while
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(a) Origination Counties to New York (b) Origination Counties to Haskell

Figure 2: An example of uneven data distribution in empiri-
cal migration data.

Figure 3: Overview of the attentional multi-graph convolu-
tional network for regional economy prediction withmigra-
tion data.

the relative smaller counties have few migration records, which
might hinder the prediction accuracy. Figure 1(b) shows the number
of origination counties distribution in 2015, which denotes the
counties have immigrant from how many other counties. We can
observe that the distribution follows a well defined power law,
with 1972 (76.1%) counties have less than 10 origination counties.
In addition, Figure 2 visualizes the origination counties of New
York county and Haskell county. New York county has immigration
from all over the country, while Haskell only has migration from a
neighboring county. Moreover, Figure 1(a) shows the county with
less migration inflow generally has higher variation in regional
economy, which indicates the less connected counties are more
difficult to predict. Therefore, the data sparsity for less populated
counties presents a challenge to achieve accurate regional economy
prediction.

4 METHOD
To achieve accurate prediction, we propose a novel Attentional
Multi-graph Convolutional Network (AMCN), which is illustrated
in Figure 3. Now, we elaborate on the design of each module as
following.

Figure 4: Illustration of graph convolutional network onmi-
gration subgraph (Best view in color).

Algorithm 1 : Aggregator Ψt,s for migration graph of year t and
category s .

Input: Node embedding set
{
Ht,s (v)|∀v ∈ V

}
, migration graph

Et,s , target node v ;
Output: Updated embedding H′t,s (v) of node v ;
1: Nt,s (v) ←

{
w | ∀Et,s (v,w) > 0

}
2: hc ←

∑
∀w ∈Nt,s (v) Et,s (v,w)Ht,s (w)

3: H′t,s (v) ← ReLU
(
Wt,s concat(Ht,s (v), hc ) + bt,s

)
4.1 Preliminary: Graph Convolutional

Network on Migration Multi-graph
The key idea behind graph convolutional networks (GCN) is to learn
a powerful aggregator function to capture the important feature
for each node’s prediction from its neighborhood on graph. That is
each node’s prediction is based on its own attribute and the context
of the neighbor nodes’ attribute, which allows the predictive model
to jointly model the node attribute and graph structure. However,
classic GCNs are designed to model homogeneous graph [11, 12],
i.e., the graph with only one type of node and edge. When model-
ing the migration data from different years, of different population
profile and with different directions, it cannot explicitly differenti-
ate the semantic differences of heterogeneous edges in migration
multi-graph. To remedy this problem, we extend the classic GCN
framework to account for semantics of heterogeneous edges.

Specifically, we propose to first aggregate the feature on the
subgraphs that induced by certain types of edges with customized
aggregator functions respectively, and then fuse the features from
subgraphs with a higher-order aggregator function. Algorithm 1
describes the customized aggregator function Ht,s (v) for each sub-
graph. The underlying intuition is that the counties have higher
migration flowswith the target county should have higher weight in
predicting its economy. The computation process is also illustrated
in Figure 4. The left figure shows the empirical migration graph
with thicker arrows in deeper color representing more migrants,
and the right figure shows the feature aggregate process.

Based on the customized aggregator function Ψt,s , we design the
complete model, i.e., multi-graph convolutional network (MCN),
showing in Algorithm 2. Specifically, we first iteratively sample
out the l-hop neighborhood of target node on the subgraphs in-
duced by certain type of edge set Et,s (Line 3-6), which is storied in
{Rt,s (i), f or i = 0, 1, ..., l}. Then, we iteratively aggregate the node
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Algorithm 2 : Multi-graph Convolutional Network

Input: Migration multi-graph G = (V,E), node attributes F, aggre-
gator functions

{
Ψt,s ,∀Et,s ∈ E

}
, target node v ;

Output: Predicted GDP per capita ŷ(v) for node v ;
1: for ∀Et,s ∈ E do
2: /*Iteratively sample the neighbors in this migration graph */
3: Rt,s (0) ← v
4: for i = 1 to l do
5: Rt,s (i) ←

⋃ {
Nt,s (w)| ∀w ∈ Rt,s (i − 1)

}
6: end for
7: /*Aggregating features */
8: Ht,s (w) ← F(w),∀w ∈ Rt,s (l)
9: for i = l to 1 do
10: Ht,s (w) ← Ψt,s(Ht,s ,Et,s ,w),∀w ∈ Rt,s (i − 1)
11: end for
12: end for
13: h(v) ← Average(

{
Ht,s (v),∀Et,s ∈ E

}
)

14: ŷ(v) ← Predictor(h(v))

feature from the sampled l-hop neighborhood back to the target
node v with the corresponding customized aggregator function
Ψt,s in each hop (Line 8-11). The feature captured through each
types of edgesHt , s(v) is fused with a higher-order aggregator func-
tion (Line 13). Without loss of generality, we choose the average
function here for simplicity. The fused embedding vector is fed
into a 2-layers fully connected multi-layer perceptron (MLP) [36]
to predict the economic status of that county. Since the prediction
task is a regression problem, we adopt the relative Mean Square
Error (MSE) to minimize the error of the model’s prediction, which
is computed as follows,

O =
1
|V |

∑
∀v ∈V

( ŷ(v) − y(v)
y(v)

)2
, (1)

where ŷ(v) is the predicted result on node v and y(v) is the ground
truth.

4.2 Differentiating the Features from
Heterogeneous Migration Data

Although choosing average function as the higher-order aggrega-
tor function benefits the model from simplicity, it has limitations
in differentiating the importance of features from heterogeneous
edges for different counties. For example, the migration patterns
of taxpayers and tax-exemptors might carry different importance
for two different counties due to the migration policy and region
population profile. However, simple average function models both
features equivalently and statically, which prevents the predictive
model to capture the complex correlation between migration data
and regional economy.

To address this problem, we design a higher-order aggregator
function that draws inspiration from the multi-head attention mech-
anism [13], which is illustrated in Figure 5. The key idea is to learn
an additional deep learning model to predict the importance of
the features from different subgraphs dynamically. Since attention
mechanism can effectively prioritize the importance of different
neighboring nodes [30], we design a multi-head attention module

Figure 5: Illustration of the attentional higher-order aggre-
gator function.

to serve as the higher-order aggregator function. It consists of mul-
tiple parallel attention modules which are referred to as “attention
head”, and each attention head outputs separate set of weight for
the feature vectors independently. The underlying intuition is that
the parallel attention heads can project the features into different
semantic space and capture the important features from different
perspective [13]. Specifically, given am dimension feature Ht,s (v)
captured from Et,s edges, the attention weight α it,s (v) of the i-th
attention head on this feature is computed as follow,

Qi
t,s (v) =Wi

qCONCAT({Ht,s (v),∀Et,s ∈ E}),
K i
t,s (v) =Wi

kHt,s (v),

α it,s (v) = SOFTMAX
(
δ
(
Qi
t,s (v) · K

i
t,s (v)

) )
,

(2)

whereWi
q is a learnable weight matrix withm/n×m∗e dimensions

that projects the concatenated feature vectors from all types of
edges to am/n dimension query vector Qi

t,s (v), with n denoting
the number of attention heads and e denoting the number of edge
types. In addition,Wi

k is am/n ×m learnable weight matrix that
projects the feature vector Ht,s (v) to am/n dimension key vector
K i
t,s (v). The attention weight is computed as the inner product

of the query vector and key vector, which is activated with the
widely adopted Leaky_ReLU function δ (⋆) [37] and normalized
with So f tMax function [38]. The computation of the attention
weight is illustrated in Figure 5. Finally, the fused feature H′(v) for
node v is computed as follow,

H′(v) = CONCATi
(
{ReLU

( ∑
∀Et,s ∈E

α it,s (v)K
i
t,s (v)

)
}
)
, (3)

where each attention head outputs the weighted sum the key vector
Kit,s (v) activated with ReLU function. The output of each attention
head is concatenated together as the final fused feature.

4.3 Important Neighbors Discovery
One important obstacle for achieving accurate regional economy
prediction is the data sparsity issue for the less connected counties.
That is a large portion of counties only have migration records with
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(a) Empirical Migration (b) Candidate Counties (c) Detected Neighbors

Figure 6: Illustration of the important neighbor discovery
algorithm.

small amount of other counties. For example, Figure 6(a) shows
the target county (green color) only has migration flow with two
counties, which is marked red and deeper color indicating higher
migration. Therefore, automatically discovering and supplementing
the important neighbor counties (i.e. counties that have migration
flowwith target node) that aremissed out in the empirical migration
data is of significant importance to improve prediction accuracy.

We find inspiration from the prevalent theoretical model of hu-
man migration, i.e., gravity model [39–41]. Originated from the
physical gravity law, it predicts the migration flow between two
regions to be positively correlated with the product of two region’s
population and negatively correlated with the square of the dis-
tance between them, which is illustrated in Figure 6(b). Specifically,
the migration flow between the blue county and green county is
predicted to bem ∗n/d2, wherem,n denote the population of these
two counties and d denotes the distance between them. The basic
assumption is that nearby regions should be more connected and
highly populated regions are more influential [40]. However, grav-
ity model only generates coarse-grained predictions. For example,
two county pairs with identical populations and distance can have
different migration flows due to different migration policy. On the
contrary, utilizing deep learning technique to predict the important
neighbors is also difficult, since there are more than 2,500 counties
as potential candidates. Therefore, we aim to combine the strength
of gravity model and deep learning technique to achieve accurate
neighbors discovery.

Specifically, we first leverage the gravity model to identify the
most plausible candidates for each county to form candidate pool
P(v), which can be derived as follow,

P(v) = {w |
ρ(w)

Distance(v,w)2
> θ ,∀w ∈ V}, (4)

where ρ(w) denotes the population in countyw andθ is a predefined
threshold. By leveraging the gravity model, we dramatically narrow
down the candidate neighbors of each county. For example, the
yellow color counties in Figure 6(b) denote the selected candidates.
Moreover, we design a deep learning model to further select the
neighbor counties and fine tune the migration flows between them.
It is built on top of attention mechanism [13], where the learned
attention weight between two counties served as the normalized
predicted migration flow between them. Specifically, given target
county v and a candidate neighbor countyw , the attention weight
between them can be computed as following,

γt,s (v,w) = SoftMax
(
δ
(
F(w)WnF(v)

) )
, (5)

where F(⋆) denotes the node feature and Wn is a learnable weight
matrix that linearly transformed the node feature vector to atten-
tion space. δ (⋆) denotes the activation function, which is chosen
as the widely adopted Leaky_ReLU function [37]. The attention
coefficient γt,s (v,w) is computed as the activated value normalized
with So f tMax function [38]. The learned attention coefficient cap-
ture the importance of the candidate neighbor nodes in predicting
the target node’s label. Therefore, we use it as the weight of the
newly added edges between target node and candidate nodes, with
0 indicating the candidate nodes are not selected as supplemented
neighbors. The discovered neighbors are illustrated in Figure 6(c),
where red color denotes the supplemented neighbors and deeper
color indicates higher predicted migration flow. Specifically, the
updated edge set E′t,s (v,w) is computed as follows,

E′t,s (v,w) = Et,s (v,w) + γt,s (v,w), for ∀w ∈ P(v). (6)

It is worth pointing out that the important neighbor discovery
model also adopts the multi-head attention structure [13]. That is
there can be multiple parallel attention heads with each head at-
tending to a specific feature, i.e., detecting the important neighbors
with a certain characteristics.

5 EXPERIMENT
5.1 Dataset
We evaluate the proposed model on the migration data extracted
from U.S. Internal Revenue Service (IRS) public records. It is based
on year-to-year address changes reported on individual tax returns
and tax exemptions filed with the IRS and we use the county-to-
county migration data from 2012 to 2015. Based on the combination
of inflow and outflow with taxpayer and tax-exemptor, we
construct 4 directed migration graphs for each year and finally we
obtain 16 migration graphs in total. To ensure the connectivity of
the graphs, we iteratively filter out the counties have no migration
records. As a result, we obtain 2593 counties to evaluate different
methods, which is 82.5% of the total number of counties. Besides,
we employ GDP per capita statistics in 2015 published by Bureau
of Economic Analysis as the groundtruth, which is one of the most
adopted regional economic indicators. The total number of migrants
is 61,058,028, while the average number of migrants and GDP per
capita is 23,547.25 and 37.73 thousand dollars, respectively.

5.2 Experiment Settings
BaselinesWe compare our model with two categories of baselines:
classic regression models and graph representation learning models.
The classic regression models directly map the node attribute to
the predicted GDP per capita. On the other hand, since the main
contribution of our model is to extract powerful representation for
each node, we also compare our model with the state-of-art graph
representation learning models. The node embedding extracted by
these baselines are also fed into a 2-layersMLP for prediction, which
is consistent with our model’s predictor module. In addition, we
also report the performance of two degraded variants of our model
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Table 1: Performance comparison with baseline models,
where (∗∗) indicates p<0.001 significance over best baseline.

Method MSE Standard
Deviation

Relative
Improvement

SVR 0.2793 0.3709 –
NODE2VEC 0.1800 0.2522 35.56%
DEEPWALK 0.2219 0.2860 20.55%

LINE 0.1880 0.2418 32.69%
MCN 0.1644∗∗ 0.2371 41.14%

AMCN(w/o ND) 0.1591∗∗ 0.2373 43.04%
AMCN 0.1571∗∗ 0.2374 43.75%

to show the performance gain of each key components. Specifically,
the baseline models are introduced as follow.
• SVR [42]: It is the classic support vector regression model. It
is a powerful regression model to capture complex correla-
tion without deep learning.
• DeepWalk [43]: It is a state-of-art representation learning
model to capture graph structure by simulating truncated
random walks in the graph. This approach only supports the
graph with binary edges.
• Node2Vec [44]: It is an extended version of DeepWalk, which
can model weighted edges with biased random walks.
• LINE [45]: It is a state-of-art representation learning model
that can efficiently learn node representation to preserve
both proximity and structural role on graph.

There are two variations of our model:
• MCN: The vanilla version of our model, which not includes
the attentional higher-order aggregator function and neigh-
bor discovery mechanism. It also serves as a baseline of
GCN.
• AMCN(w/o ND): Our complete model without neighbor dis-
covery mechanism.

To evaluate the performance of different methods, we adopt
relative Mean Square Error(MSE) as the metric, which is computed
by relative error to avoid the impact of uneven distributed ground
truth. To improve stability, we randomly split the counties into 5
groups and perform cross-validation by training on four groups
and test on the other group iteratively.

5.3 Overall Performance
The experiment results are reported in Table 1. From the results,
we make the following observations.

1) The proposed AMCN model outperforms all the baselines on
both effectiveness and robustness. Specifically, it provides relative
performance gain of 43.8%(p<0.001) over SVR and 12.7% (p<0.001)
over best deep learning baseline. In addition, its standard deviation
is much smaller than SVR and deep learning baselines. This result
demonstrate that the AMCN model is able to successfully aggre-
gate information from the multi-graph to uncover the complex
correlation between regional economy and migration.

2) AMCN and its variants outperform the deep learning base-
lines, while the deep learning baselines perform better than the
classic SVR. It suggests that migration graph is indeed conducive to

Table 2: Higher-order aggregator function’s attention
weight on heterogeneous migration data.

Year
Category Attention

HeadTaxpayer Tax-exemptor
Outflow Inflow Outflow Inflow

2012 0 0 0 0

Head 12013 0 0 0.001 0
2014 0 0.004 0.008 0.008
2015 0.078 0.156 0.353 0.392
2012 0 0 0.001 0.002

Head 22013 0 0 0.001 0.003
2014 0.001 0.008 0.009 0.011
2015 0.080 0.160 0.339 0.384
2012 0.149 0.084 0.018 0.027

Head 32013 0.347 0.235 0.040 0.096
2014 0.002 0.002 0 0.001
2015 0 0 0 0

regional economy prediction, therefore it is important to explicitly
capture the graph structure. In addition, our model significantly out-
performs previous deep learning methods in capturing the feature
of migration graph.

3) We find AMCN performs best while MCN is poorest among
these three variants. It indicates both neighbor discovery and higher-
order aggregator are effective in terms of consistent performance
boost.

To conclude, AMCN and its variants significantly outperform
all the baselines, and have stronger robustness at the same time.
In addition, ablation study shows the key components of neighbor
discovery mechanism and higher-order aggregator are effective in
improving the prediction accuracy.

5.4 In-depth Model Analysis
To better understand AMCN, we take a series of in-depth analysis
based on higher-order aggregator and neighbors discovery as flows.

Attention Weight. Firstly, we visualize the attention heads in
higher-order aggregator in Table 2. The Table is divided into 3 parts
as there are 3 heads in the higher-order aggregator. For every head,
the number in a cell represents how important the embedding gen-
erated by corresponding graph contributes to the result. Specially,
different rows in the a head mean the corresponding graphs are
constructed by the migration data from different years while dif-
ferent columns represent different categories of the graphs(inflow
taxpayer, outflow taxpayer, inflow tax-exemptor and outflow tax-
exemptor).

Intuitively, the model indeed learns the various representation
with different significance of graphs in the three heads, as we can
observe that the first head and second head mostly focus on the
2015 while the third head take more attention on 2012 and 2013.
More interestingly, it seems that the first two columns in the third
head are much darker in 2012 and 2013 while the other two heads
are more attentive to the last two columns in 2014 and 2015, which
may indicates that the tax-exemptor migration have a immediate
effect to the regional economy when the influence of the taxpayer
migration exists some delays, where the delays may be caused by
the lag of tax effectiveness.
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(a) Candidate Counties (b) First Neighbor Detector (c) Second Neighbor Detector
Figure 7: Neighbor discovery algorithm’s performance on New York and Haskell.

Neighbor Discovery. Here we select two counties to visualize
the neighbor discovery. The inflowmigration data for New York and
Haskell has been shown in the Figure 2 (a) and (b), it indicates that
New York has many neighbors while Haskell has only one neighbor.
So what would happen after neighbor discovery? The process for
neighbor discovery in showed as Figure 7 where the upper row
corresponds to New York and the the bottom row correspond to
Haskell. Figure 7 (b) presents the recommended neighbors by the
gravity model with yellow and the selected county (New York or
Haskell) with green, Figure 7 (c) and (d) presents two neighbor
detectors of ultimately neighbors discovered where various color
symbolizes different weights or significance. Figure 7 (b) shows
that gravity model would recommend nearly the same number
of neighbors for different counties, but the following attention
mechanism would learn differences for counties. More interestingly,
Figure 7 (c) and (d) give us the feeling that there are few neighbors
would be added to the county which already has many neighbors
(New York) when the less connected county (Haskell) prefer to
discover more neighbors.

To validate its effect in addressing data sparsity issue, we research
on the correlation between the the number of migration neighbors
and discovered neighbors as shown in Figure 8. We can observe that
there is a general trend of negative correlation between them, which
can be fitted by a linear function with -0.2056 slope coefficient in
log-log scale. It indeed represents that neighbor discovery can help
less connected counties to discover more neighbors to some extent.

6 CONCLUSION
In this paper, we investigate the long-standing research question
of predicting regional economy with migration data. We propose a
novel attentional multi-graph convolutional network to effectively
aggregate feature from the heterogeneous migration behavior be-
tween regions. Extensive experiments on real-world migration data

Figure 8: Correlation between the number of empirical
neighbors and discovered neighbors.

among U.S. counties show our model can significantly outperform
all baseline methods in terms of reducing the relative mean square
error by 43.8% against the classic SVR model and by 12.7% against
the best deep learning baselines. Besides, in-depth model analysis
reveals insightful correlations, e.g., the migration of tax-extemptors
tends to impact on the regional economy immediately while the
migration of taxpayers has a two year delay to reach peak impact.
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