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ABSTRACT
Spatio-temporal point process (STPP) is a stochastic collection of
events accompanied with time and space. Due to computational
complexities, existing solutions for STPPs compromise with condi-
tional independence between time and space, which consider the
temporal and spatial distributions separately. The failure to model
the joint distribution leads to limited capacities in characterizing
the spatio-temporal entangled interactions given past events. In this
work, we propose a novel parameterization framework for STPPs,
which leverages diffusion models to learn complex spatio-temporal
joint distributions. We decompose the learning of the target joint
distribution into multiple steps, where each step can be faithfully de-
scribed by a Gaussian distribution. To enhance the learning of each
step, an elaborated spatio-temporal co-attentionmodule is proposed
to capture the interdependence between the event time and space
adaptively. For the first time, we break the restrictions on spatio-
temporal dependencies in existing solutions, and enable a flexible
and accurate modeling paradigm for STPPs. Extensive experiments
from awide range of fields, such as epidemiology, seismology, crime,
and urban mobility, demonstrate that our framework outperforms
the state-of-the-art baselines remarkably. Further in-depth anal-
yses validate its ability to capture spatio-temporal interactions,
which can learn adaptively for different scenarios. The datasets and
source code are available online: https://github.com/tsinghua-fib-
lab/Spatio-temporal-Diffusion-Point-Processes.
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1 INTRODUCTION
Spatio-temporal point process (STPP) is a stochastic collection of
points, where each point denotes an event 𝑥 = (𝑡, 𝑠) associated
with time 𝑡 and location 𝑠 . STPP is a principled framework for
modeling sequences consisting of spatio-temporal events, and has
been applied in a wide range of fields, such as earthquakes and
aftershocks [3, 36], disease spread [34, 40], urban mobility [29, 54,
61, 62], and emergencies [58, 66].

Spatio-temporal point processes have been widely studied in
the literature [2, 3, 7, 13, 45, 59, 67] with rich theoretical foun-
dations [5, 14, 23]. Due to computational complexities, a general
approach for STPPs is to characterize the event time and space
with distinct models. Conventional STPP models [7, 13, 45] mainly
capture relatively simple patterns of spatio-temporal dynamics,
where the temporal domain is modeled by temporal point process
models, such as Poisson process [23], Hawkes process [17], and
Self-correcting process [21], and the spatial domain is usually fit-
ted by kernel density estimators (KDE) [56]. With the advance of
neural networks, a series of neural architectures are proposed to
improve the fitting accuracy [3, 22, 65]. However, they still adopt
the approach of separate modeling. For example, Chen et al. [3]
use neural ODEs and continuous-time normalizing flows (CNFs) to
learn the temporal distribution and spatial distribution, respectively.
Zhou et al. [65] apply two independent kernel functions for time
and space, whose parameters are obtained from neural networks,
to build the density function.

However, for STPPs, the time and space where an event occurs
are highly dependent and entangled with each other. For example,
in seismology, earthquakes are spatio-temporal correlated due to
crust movements [55], which occur with a higher probability close
in time and space to previous earthquakes. Take urban mobility
as another example, people are more likely to go to work during
the day, while tend to go for entertainment at night. Therefore,
it is crucial to learn models that can address the spatio-temporal
joint distribution conditioned on the event history. However, it is
non-trivial due to the following two challenges:
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Figure 1: High-level comparison between our proposed
framework and conditionally independent solutions formod-
eling STPPs. Our framework can directly learn the spatio-
temporal joint distribution without any model restrictions.

(1) Spatio-temporal joint distributions for STPPs usually
have tremendous sample spaces, which are highly in-
tractable.Directly fitting requires huge training samples, which
is prohibitive in practice. The general approach is to decompose
the target distribution into conditionally dependent distribu-
tions [3, 5], fitting the temporal density 𝑝∗ (𝑡)1 and conditional
density 𝑝∗ (𝑠 |𝑡) separately. However, the characterization of
𝑝∗ (𝑠 |𝑡) is largely limited to certain model structures, such as
KDEs and CNFs, which are less expressive.

(2) The occurrence of events is usually associated with com-
plex coupling correlations between time and space.Driven
by different generation mechanisms, the occurrence of events
exhibits distinct spatio-temporal dependencies across various
fields. How to effectively capture the underlying dependence
for an event still remains an open problem.
Solving the above two challenges calls for a new modeling para-

digm for STPPs. In this paper, we propose a novel parameterization
framework, Spatio-Temporal Diffusion Point Processes (DSTPP),
which is capable of leaning spatio-temporal joint distributions ef-
fectively. By leveraging denoising diffusion probabilistic modeling,
we manage to decompose the original complex distribution into a
Markov chain ofmultiple steps, where each step corresponds to ami-
nor distribution change and can be modeled faithfully by a Gaussian
distribution [42, 49]. The target distribution is learned throughout
the combination of all steps, where the predicted joint distribution
obtained from the previous step acts as the condition for the next-
step learning. In this way, conditioned on the already predicted
results, the modeling of time and space becomes independent at
the current step, i.e., 𝑝∗ (𝑡current |𝑡last, 𝑠last) and 𝑝∗ (𝑠current |𝑡last, 𝑠last),
which successfully solves the intractable problem of the conditional
density 𝑝∗ (𝑠 |𝑡). This novel learning paradigm completely removes
the constraints of model structure parameterization in existing
solutions, allowing accurate and flexible modeling of STPPs.

The multi-step learning process simulates the generation of the
spatio-temporal joint distribution; however, the underlying mecha-
nism of each step is still unclear. To further facilitate the learning
at each step, we design a spatio-temporal co-attention module to
characterize spatio-temporal interactions that contribute to the tar-
get joint distribution. Specifically, we simultaneously learn spatial
1We use the common star superscript to denote conditional dependence on the history.

Table 1: Comparison of the proposed model with other point
process approaches regarding important properties.

Model No Asmp.(1) No Restr.(2) Flexible(3)
Closed-form
sampling(4)

Hawkes [17] ✗ ✗ ✗ ✗

Self-correcting [21] ✗ ✗ ✗ ✗

KDE [2] - - ✗ ✓

CNF [3] - - ✗ ✓

ST Hawkes [45] ✗ ✗ ✗ ✗

RMTPP [9] ✗ ✗ ✓ ✗

NHP [32] ✗ ✗ ✓ ✗

THP [68] ✗ ✗ ✓ ✗

SNAP [63] ✗ ✗ ✓ ✗

LogNormMix [47] ✗ ✗ ✗ ✓

NJSDE [22] ✗ ✗ ✓ ✗

Neural STPP [3] ✓ ✗ ✓ ✗

DeepSTPP [65] ✗ ✗ ✓ ✗

DSTPP (ours) ✓ ✓ ✓ ✓
(1) Without assumptions of conditional spatio-temporal independence.
(2) Without dependence restrictions between time and space.
(3) Any powerful network architecture can be employed during the calculation.
(4) Sampling without any approximation.

attention and temporal attention to capture their fine-grained inter-
actions adaptively, which characterizes underlying mechanisms of
the joint distribution. Table 1 compares the advantages of our frame-
work with existing solutions. DSTPP can learn spatio-temporal joint
distributions without any dependence restrictions. As no integrals
or Monte Carlo approximations are required, it is flexible and can
perform sampling in a closed form. It can also be utilized to model
a variety of STPPs, where events are accompanied with either a
vector of real-valued spatial location or a discrete value, e.g., a class
label of the location; thus it is broadly applicable in real-world
scenarios. We summarize our contributions as follows:
• To the best of our knowledge, we are the first to model STPPs
within the diffusion model paradigm. By removing integrals and
overcoming structural design limitations in existing solutions, it
achieves flexible and accurate modeling of STPPs.

• We propose a novel spatio-temporal point process model, DSTPP.
On the one hand, the diffusion-based approach decomposes the
complex spatio-temporal joint distribution into tractable distri-
butions. On the other hand, the elaborated co-attention module
captures the spatio-temporal interdependence adaptively.

• Extensive experiments demonstrate the superior performance of
our approach for modeling STPPs using both synthetic and real-
world datasets. Further in-depth analyses validate that our model
successfully captures spatio-temporal interactions for different
scenarios in an adaptive manner.

2 PRELIMINARIES
2.1 Spatio-temporal Point Process
A spatio-temporal point process is a stochastic process composed
of events with time and space that occur over a domain [35]. These
spatio-temporal events are described in continuous time with spa-
tial information. The spatial domain of the event can be recorded in
different ways. For example, in earthquakes, it is usually recorded
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as longitude-latitude coordinates in continuous space. It can also
be associated with discrete labels, such as the neighborhoods of
crime events. Let 𝑥𝑖 = (𝑡𝑖 , 𝑠𝑖 ) denotes the 𝑖𝑡ℎ spatio-temporal event
written as the pair of occurrence time 𝑡 ∈ T and location 𝑠 ∈ S,
where T × S ∈ R × R𝑑 . Then a spatio-temporal point process can
be defined as a sequence 𝑆 = {𝑥1, 𝑥2, ..., 𝑥𝐿}, and the number of
events 𝐿 is also stochastic. Let 𝐻𝑡 = {𝑥𝑖 |𝑡𝑖 < 𝑡, 𝑥𝑖 ∈ 𝑆} denote the
event history before time 𝑡 , modeling STPPs is concerned with pa-
rameterizing the conditional probability density function 𝑝 (𝑡, 𝑠 |𝐻𝑡 ),
which denotes the conditional probability density of the next event
happening at time 𝑡 and space 𝑠 given the history 𝐻𝑡 .

Discussion on shortcomings. In existing methods for STPPs,
given the event history, space and time are assumed to be condi-
tionally independent [9, 28, 32, 45, 65, 68] or unilaterally depen-
dent [3, 5] i.e., the space is dependent on the time by 𝑝 (𝑥 |𝑡). These
dependence restrictions destroy themodel’s predictive performance
on entangled space and time interactions conditioned on history.
Besides, most approaches require integration operations when cal-
culating the likelihood, or limit intensity functions to integrable
forms, leading to a trade-off between accuracy and efficiency. We
compare the shortcomings of existing approaches in Table 12, which
motivate us to design a more flexible and effective model.

2.2 Denoising Diffusion Probabilistic Models
Diffusion models [19] generate samples by learning a distribution
that approximates a data distribution. The distribution is learned by
a gradual reverse process of adding noise, which recovers the actual
value starting from Gaussian noise. At each step of the denoising
process, the model learns to predict a slightly less noisy value.

Let 𝑥0 ∼ 𝑞(𝑥0) denote a multivariate variable from specific input
space 𝑋 ∈ R𝐷 , and we consider a probability density function
𝑝𝜃 (𝑥0), which aims to approximate 𝑞(𝑥0). Diffusion models are
latent variable models, which are defined by two processes: the
forward diffusion process and the reverse denoising process. Let𝑋𝑘
for 𝑡 = 1, 2, ..., 𝐾 denote a sequence of latent variables of dimension
∈ R𝐷 , the forward diffusion process is defined by a Markov chain:

𝑞(𝑥1:𝐾 |𝑥0) =
𝐾∏
𝑘=1

𝑞(𝑥𝑘 |𝑥𝑘−1) , (1)

where𝑞(𝑥𝑘 |𝑥𝑘−1) B N(𝑥𝑘 ;
√︁
1 − 𝛽𝑘𝑥𝑘 and 𝛽𝑘 𝑰 ), 𝛽1, ..., 𝛽𝐾 ∈ (0, 1)

is a given increasing variance schedule, representing a particular
noise level. 𝑥𝑘 can be sampled in a closed form as 𝑞(𝑥𝑘 |𝑥0) =

(𝑥𝑘 ;
√︁
𝛼𝑘𝑥

0, (1−𝛼𝑘 )𝑰 ), where𝛼𝑘 B 1−𝛽𝑘 and𝛼𝑘 =
∏𝐾
𝑘=1 𝛼𝑘 . Then

a noisy observation at the𝑘𝑡ℎ step can be expressed as𝑥𝑘 =
√︁
𝛼𝑘𝑥

0+
(1 − 𝛼𝑘 )𝜖 , where 𝜖 ∼ N(0, 𝑰 ) and 𝑥0 is the clean observation.

On the contrary, the reverse denoising process recovers 𝑥0 start-
ing from 𝑥𝐾 , where 𝑥𝐾 ∼ N(𝑥𝐾 ; 0, 𝑰 ). It is defined by the following
Markov chain with learned Gaussian transitions:

𝑝𝜃 (𝑥0:𝐾 ) B 𝑝 (𝑥𝐾 )
𝐾∏
𝑘=1

𝑝𝜃 (𝑥𝑘−1 |𝑥𝑘 ) ,

𝑝𝜃 (𝑥𝑘−1 |𝑥𝑘 ) B N(𝑥𝑘−1; 𝜇𝜃 (𝑥𝑘 , 𝑘), 𝜎𝜃 (𝑥𝑘 , 𝑘)𝑰 ) ,

(2)

2TPP models can be used for STPPs where the space acts as the marker.
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Figure 2: The overview of the proposed DSTPP framework.

𝑝𝜃 (𝑥𝑘−1 |𝑥𝑘 ) aims to remove the Gaussian noise added in the for-
ward diffusion process. The parameter 𝜃 can be optimized by mini-
mizing the negative log-likelihood via a variational bound:

min
𝜃
E𝑞 (𝑥0 ) ≤ min

𝜃
E𝑞 (𝑥0:𝐾 ) [−log𝑝 (𝑥𝐾 ) −

𝐾∑︁
𝑘=1

log
𝑝𝜃 (𝑥𝑘−1 |𝑥𝑘 )
𝑞(𝑥𝑘 |𝑥𝑘−1)

] .

(3)
Ho et al. [19] show that the denoising parameterization can be
trained by the simplified objective:

E𝑥0∼𝑞 (𝑥0 ),𝜖∼N(0,𝑰 ) [∥𝜖 − 𝜖𝜃 (𝑥𝑘 , 𝑘)∥2] , (4)

where 𝑥𝑘 =
√︁
𝛼𝑘𝑥

0 + (1−𝛼𝑘 )𝜖 . 𝜖𝜃 needs to estimate Gaussian noise
added to the input 𝑥𝑘 , which is trained by MSE loss between the
real noise and predicted noise. Therefore, 𝜖𝜃 acts as the denoising
network to transform 𝑥𝑘 to 𝑥𝑘−1. Once trained, we can sample
𝑥𝑘−1 from 𝑝𝜃 (𝑥𝑘−1 |𝑥𝑘 ) and progressively obtain 𝑥0 according to
Equation (2).

3 SPATIO-TEMPORAL DIFFUSION POINT
PROCESSES

Figure 2 illustrates the overall framework of DSTPP, which consists
of two key modules, the spatio-temporal self-attention encoder, and
the spatio-temporal diffusion model. The spatio-temporal encoder
learns an effective representation of the event history, then it acts
as the condition to support the spatio-temporal denoising diffusion
process. We first present the spatio-temporal encoder in Section 3.1.
Then we formulate the learning of the spatio-temporal joint distri-
bution as a denoising diffusion process, and introduce the diffusion
process and inverse denoising process in Section 3.2. We describe
how to train this model and perform sampling in Section 3.3. Finally,
We demonstrate the detailed architecture of the denoising network
parametrization in Section 3.4.
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Algorithm 1 Training for each spatio-temporal event 𝑥𝑖 = (𝜏𝑖 , 𝑠𝑖 )
Input: ℎ𝑖−1
Repeat: 𝑥0

𝑖
∼ 𝑞(𝑥0

𝑖
),

𝑘 ∼ Uniform(1, 2, ..., 𝐾)
𝜖 ∼ N(0, 𝐼 )
Take gradient descent step on

∇𝜙,𝜃 ∥𝜖 − 𝜖𝜃 (
√︁
𝛼𝑘𝑥

0
𝑖 +

√︁
1 − 𝛼𝑘𝜖, ℎ𝑖−1, 𝑘)∥2

Until: Converged

3.1 Spatio-temporal Encoder
To model the spatio-temporal dynamics of events and obtain ef-
fective sequence representations, we design a self-attention-based
spatio-temporal encoder. The input of the encoder is made up of
events 𝑥 = (𝑡, 𝑠). To obtain a unique representation for each event,
we use two embedding layers for the time and space separately.
For the space 𝑠 ∈ R𝑛 , we utilize a linear embedding layer; for the
timestamp, we apply a positional encoding method following [68]:

[𝑒𝑡 ] 𝑗 =
{
𝑐𝑜𝑠 (𝑡/10000

𝑗−1
𝑀 ) if 𝑗 is odd

𝑠𝑖𝑛(𝑡/10000
𝑗−1
𝑀 ) if 𝑗 is even ,

(5)

where 𝑒𝑡 denotes the temporal embedding and𝑀 is the embedding
dimension. For the spatial domain, we use linear projection to
convert continuous or discrete space into embeddings as follows:

𝑒𝑠 =𝑊𝑒𝑠 (6)

where𝑊𝑒 contains learnable parameters.
We use𝑊𝑒 ∈ R𝑀×𝐷 if the space 𝑠 is defined in the continu-

ous domain R𝐷 , 𝐷 ∈ {1, 2, 3}. We use𝑊𝑒 ∈ R𝑀×𝑁 if the spatial
information is associated with discrete locations represented by
one-hot ID encoding 𝑠 ∈ R𝑁 , where 𝑁 is the number of discrete
locations. In this way, we obtain real-value vectors 𝑒𝑠 for both con-
tinuous and discrete spatial domains. For each event 𝑥 = (𝑡, 𝑠),
we obtain the spatio-temporal embedding 𝑒𝑠𝑡 by adding the posi-
tional encoding 𝑒𝑡 and spatial embedding 𝑒𝑠 . The embedding of the
𝑆 = {(𝑡𝑖 , 𝑠𝑖 )}𝐿𝑖=1 is then specified by 𝐸𝑠𝑡 = {𝑒𝑠𝑡,1, 𝑒𝑠𝑡,2, ..., 𝑒𝑠𝑡,𝐿} ∈
R𝐿×𝑀 , where 𝑒𝑠𝑡,𝑖 = 𝑒𝑠,𝑖 + 𝑒𝑡,𝑖 . In the meantime, we also keep the
temporal embedding 𝐸𝑡 = {𝑒𝑡,1, 𝑒𝑡,2, ..., 𝑒𝑡,𝐿} and spatial embedding
𝐸𝑠 = {𝑒𝑠,1, 𝑒𝑠,2, ..., 𝑒𝑠,𝐿}, respectively, with the goal of capturing
characteristics of different aspects. If only spatio-temporal repre-
sentation is available, the model may fail when dealing with cases
where the temporal and spatial domains are not entangled. With
learned representations from different aspects, we did not simply
sum them together. Instead, we concatenate them and enable the
model to leverage representations adaptively.

After the initial spatial embedding and temporal encoding lay-
ers, we pass 𝐸𝑠𝑡 , 𝐸𝑠 , and 𝐸𝑡 through three self-attention modules.
Specifically, the scaled dot-product attention [53] is defined as:

Attention(𝑄,𝐾,𝑉 ) = Softmax(𝑄𝐾
𝑇

√
𝑑

) ,

𝑆 = Attention(𝑄,𝐾,𝑉 )𝑉 ,

(7)

where 𝑄,𝐾, and 𝑉 represent queries, keys, and values. In our case,
the self-attention operation takes the embedding 𝐸 as input, and

Algorithm 2 Sampling 𝑠0
𝑖
and 𝜏0

𝑖

Input: Noise 𝑠𝐾
𝑖
∼ N(0, 𝐼 ), 𝜏𝐾

𝑖
∼ N(0, 𝐼 ) and ℎ𝑖−1

for k = K to 1 do
𝑧𝑠 ∼ N(0, 𝐼 ), 𝑧𝑡 ∼ N(0, 𝐼 ) if k>1 else 𝑧𝑠 = 0, 𝑧𝑡 = 0
𝑠𝑘−1
𝑖

= 1√
𝛼𝑘

(𝑠𝑘
𝑖
− 𝛽𝑘√

1−𝛼𝑘
𝜖𝜃 (𝑠𝑘𝑖 , 𝜏

𝑘
𝑖
, ℎ𝑖−1, 𝑘)) +

√︁
𝛽𝑘𝑧𝑠

𝜏𝑘−1
𝑖

= 1√
𝛼𝑘

(𝜏𝑘
𝑖
− 𝛽𝑘√

1−𝛼𝑘
𝜖𝜃 (𝑠𝑘𝑖 , 𝜏

𝑘
𝑖
, ℎ𝑖−1, 𝑘)) +

√︁
𝛽𝑘𝑧𝑡

end for
Return: 𝑠0

𝑖
, 𝜏0
𝑖

then converts it into three matrices by linear projections:

𝑄 = 𝐸𝑊𝑄 , 𝐾 = 𝐸𝑊𝐾 ,𝑉 = 𝐸𝑊𝑉 , (8)

where𝑊𝑄 ,𝑊𝐾 , and𝑊𝑉 are weights of linear projections. Finally,
we use a position-wise feed-forward network to transform the
attention output 𝑆 into the hidden representation ℎ(𝑡).

For three embeddings 𝐸𝑠 , 𝐸𝑡 and 𝐸𝑠𝑡 containing information of
different aspects, we all employ the above self-attentive operation
to generate hidden spatial representation ℎ𝑠 (𝑡), temporal represen-
tation ℎ𝑡 (𝑡), and spatial-temporal representation ℎ𝑠𝑡 (𝑡). As a result,
the hidden representation ℎ𝑖−1 in Figure 2 is a collection of the
three representations.

3.2 Spatio-temporal Diffusion and Denoising
Processes

Conditioned on the hidden representation ℎ𝑖−1 generated by the
encoder, we aim to learn a model of the spatio-temporal joint dis-
tribution of the future event. The learning of such distribution is
built on the diffusion model [19], and the values of space and time
are diffused and denoised at each event. Specifically, for each event
𝑥𝑖 = (𝜏𝑖 , 𝑠𝑖 ) in the sequence, where 𝜏𝑖 denotes the time interval
since the last event, we model the diffusion process as a Markov
process over the spatial and temporal domains as (𝑥0

𝑖
, 𝑥1
𝑖
, ..., 𝑥𝐾

𝑖
),

where 𝐾 is the number of diffusion steps. From 𝑥0
𝑖
to 𝑥𝐾

𝑖
, we add a

little Gaussian noise step by step to the space and time values until
they are corrupted into pure Gaussian noise. The process of adding
noise is similar to image scenarios, where the noise is applied inde-
pendently on each pixel [19]. We diffuse separately on the spatial
and temporal domains by the following probabilities:

𝑞𝑠𝑡 (𝒙𝑘𝑖 |𝒙
𝑘−1
𝑖 ) B (𝑞(𝜏𝑘𝑖 |𝜏

𝑘−1
𝑖 ), 𝑞(𝑠𝑘𝑖 |𝑠

𝑘−1
𝑖 )) ,

𝑞(𝑥𝑘 |𝑥𝑘−1) B N(𝑥𝑘 ;
√︁
1 − 𝛽𝑘𝑥𝑘 , 𝛽𝑘 𝑰 ) ,

(9)

where 𝛼𝑘 = 1 − 𝛽𝑘 and 𝛼𝑘 =
∏𝑘
𝑠=1 𝛼𝑘 .

On the contrary, we formulate the reconstruction of the point
𝑥𝑖 = (𝜏𝑖 , 𝑠𝑖 ) as reverse denoising iterations from 𝑥𝐾

𝑖
to 𝑥0

𝑖
given

the event history. In addition to the history representation ℎ𝑖−1,
the denoising processes of time and space are also dependent on
each other obtained in the previous step. The predicted values of
the next step are modeled in a conditionally independent manner,
which is formulated as follows:

𝑝𝜃 (𝑥𝑘−1𝑖 |𝑥𝑘𝑖 , ℎ𝑖−1) = 𝑝𝜃 (𝜏
𝑘−1
𝑖 |𝜏𝑘𝑖 , 𝑠

𝑘
𝑖 , ℎ𝑖−1)𝑝𝜃 (𝑠

𝑘−1
𝑖 |𝜏𝑘𝑖 , 𝑠

𝑘
𝑖 , ℎ𝑖−1) ,

(10)
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In this way, we manage to disentangle the modeling of spatio-
temporal joint distribution into conditionally independent model-
ing, which enables effective and efficient modeling of the observed
spatio-temporal distribution. The overall reverse denoising process
is formulated as follows:

𝑝𝜃 (𝑥0:𝐾𝑖 |ℎ𝑖−1) B 𝑝 (𝑥𝐾𝑖 )
𝐾∏
𝑘=1

𝑝𝜃 (𝑥𝑘−1𝑖 |𝑥𝑘𝑖 , ℎ𝑖−1) . (11)

For the continuous-space domain, the spatio-temporal distribution
can be predicted by Equation 11. For the discrete-space domain, we
add a rounding step at the end of the reverse process, 𝑝𝜃 (𝑠𝑖 |𝑠0𝑖 ), to
convert the real-valued embedding 𝑠0

𝑖
to discrete location ID 𝑠𝑖 .

3.3 Training and Inference
Training. For a spatio-temporal point process, the training should
optimize the parameters 𝜃 that maximize the log-likelihood:

𝐿∑︁
𝑖=1

log𝑝𝜃 (𝑥0𝑖 |ℎ𝑖−1) , (12)

where 𝐿 is the number of events in the sequence. Based on a similar
derivation in the preliminary section, we train the model by a
simplified loss function for the 𝑖𝑡ℎ event and diffusion step 𝑘 as
follows [19]:

L = E𝑥0
𝑖
,𝜖,𝑘 [∥𝜖 − 𝜖𝜃 (

√︁
𝛼𝑘𝑥

0
𝑖 +

√︁
1 − 𝛼𝑘𝜖, ℎ𝑖−1, 𝑘)∥2] , (13)

where 𝜖 ∼ N(0, 𝐼 ). Samples at each diffusion step k for each event
are included in the training set. We train the overall framework
consisting of ST encoder and ST diffusion in an end-to-end manner.
The pseudocode of the training procedure is shown in Algorithm 1.

Inference. To predict future spatio-temporal events with trained
DSTPP. We first obtain the hidden representation ℎ𝑖 by employing
the spatio-temporal self-attention encoder given past 𝑖 − 1 events.
Then, we can predict the next event starting from Gaussian noise
𝑠𝐾
𝑖
, 𝜏𝐾
𝑖
∼ N(0, 𝐼 ) conditioned on ℎ𝑖 . Specifically, the reconstruction

of 𝑥0
𝑖
from 𝑥𝐾

𝑖
= (𝑠𝐾

𝑖
, 𝜏𝐾
𝑖
) is formulated as follows:

𝑠𝑘−1𝑖 =
1

√
𝛼𝑘

(𝑠𝑘𝑖 − 𝛽𝑘√︁
1 − 𝛼𝑘

𝜖𝜃 (𝑥𝑘𝑖 , ℎ𝑖−1, 𝑘)) +
√︁
𝛽𝑘𝑧𝑠 ,

𝜏𝑘−1𝑖 =
1

√
𝛼𝑘

(𝜏𝑘𝑖 − 𝛽𝑘√︁
1 − 𝛼𝑘

𝜖𝜃 (𝑥𝑘𝑖 , ℎ𝑖−1, 𝑘)) +
√︁
𝛽𝑘𝑧𝑡 ,

(14)

where 𝑧𝑠 and 𝑧𝑡 are both stochastic variables sampled from a stan-
dard Gaussian distribution. 𝜖𝜃 is the trained reverse denoising net-
work, which takes in the previous denoising result 𝑥𝑘

𝑖
, the hidden

representation of the sequence history ℎ𝑖−1 and the diffusion step
𝑘 . Algorithm 2 presents the pseudocode of the sampling procedure.

3.4 Co-attention Denoising Network
We design a co-attention denoising network to capture the interde-
pendence between spatial and temporal domains, which facilitates
the learning of spatio-temporal joint distributions. Specifically, it
performs spatial and temporal attention simultaneously at each

Spatial Attention

Temporal Attention …

Denoising Step 𝑘

Positional Encoding

𝜖𝑠
𝐾−1

𝑠𝑖
𝐾

𝜏𝑖
𝐾

Spatio-temporal hidden 
representations

𝜖𝜏
𝐾−1

𝒌 = 𝑲

Gaussian Noise

𝑠𝑖
𝐾−1

𝜏𝑖
𝐾−1

Next step

Figure 3: Network architecture of the spatio-temporal co-
attention mechanism. Each step in the denoising process
shares the same network structure, with spatio-temporal
hidden representations as conditions.

denoising step to capture fine-grained interactions. Figure 3 illus-
trates the detailed network architecture. Each step of the denoising
process shares the same structure, which takes in the previously
predicted values 𝑠𝑘+1

𝑖
and 𝜏𝑘+1

𝑖
, and the denoising step 𝑘 with posi-

tional encoding. Meanwhile, the network also integrates the hidden
representation ℎ𝑖−1 to achieve conditional denoising.

Temporal attention aims to generate a context vector by attend-
ing to certain parts of the temporal input and certain parts of the
spatial input, and so does spatial attention. We calculate the mutual
attention weights, i.e., 𝛼𝑠 and 𝛼𝑡 , for space and time based on the
condition ℎ𝑖−1 and current denoising step 𝑘 as follows:

𝑒𝑘 = SinusoidalPosEmb(𝑘) ,
𝛼𝑠 = Softmax(𝑊𝑠𝑎Concat(ℎ𝑖−1, 𝑒𝑘 ) + 𝑏𝑠𝑎) ,
𝛼𝑡 = Softmax(𝑊𝑡𝑎Concat(ℎ𝑖−1, 𝑒𝑘 ) + 𝑏𝑡𝑎) ,

(15)

where𝑊𝑠𝑎,𝑊𝑡𝑎, 𝑏𝑠𝑎, 𝑏𝑡𝑎 are learnable parameters. 𝛼𝑠 and 𝛼𝑡 mea-
sure the mutual dependence between time and space, which are
influenced by the event history and current denoising step.

Then we integrate the spatio-temporal condition ℎ𝑖−1 = {ℎ𝑠,𝑖−1,
ℎ𝑡,𝑖−1} into previously predicted values 𝑠𝑘+1

𝑖
and 𝜏𝑘+1

𝑖
by feed-

forward neural networks, and each layer is formulated as follows:

𝑥𝑠,𝑖 = 𝜎 (𝑊𝑠𝑠𝑘+1𝑖 + 𝑏𝑠 +𝑊𝑠ℎℎ𝑠,𝑖−1 + 𝑏𝑠ℎ + 𝑒𝑘 ) ,

𝑥𝑡,𝑖 = 𝜎 (𝑊𝑡𝜏𝑘+1𝑖 + 𝑏𝑡 +𝑊𝑡ℎℎ𝑡,𝑖−1 + 𝑏𝑡ℎ + 𝑒𝑘 ) ,
(16)

where𝑊𝑠 ∈ R𝑀×𝐷 ,𝑊𝑡 ∈ R𝑀×1,𝑊𝑠ℎ,𝑊𝑡ℎ ∈ R𝑀×𝑀 , and 𝑏𝑠 , 𝑏𝑡 , 𝑏𝑠ℎ ,
𝑏𝑡ℎ ∈ R𝑀×1 are learnable parameters of the linear projection, and 𝜎
denotes the ReLU activation function. Finally, the outputs of spatial
attention and temporal attention are calculated as follows:

𝑥𝑖 = [𝑥𝑠,𝑖 , 𝑥𝑡,𝑖 ] ,

𝜖𝑘𝑠,𝑖 =
∑︁

𝛼𝑠𝑥𝑖 , 𝜖
𝑘
𝑡,𝑖 =

∑︁
𝛼𝑡𝑥𝑖 ,

(17)
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where 𝜖𝑘
𝑠,𝑖

and 𝜖𝑘
𝑡,𝑖

are the predicted noise at step 𝑘 for the 𝑖𝑡ℎ event.
We can obtain the predicted values 𝑠𝑘

𝑖
and 𝜏𝑘

𝑖
at step 𝑘 according to

Equation (14). Then the predicted values 𝑠𝑘
𝑖
and 𝜏𝑘

𝑖
are fed into the

denoising network again to iteratively predict the results towards
the clean values of space and time. In this way, the interdependence
between time and space is captured adaptively and dynamically,
facilitating the learning of the spatio-temporal joint distribution.

4 EXPERIMENTS
In this section, we perform experiments to answer the following
research questions:

• RQ1: How does the proposed model perform compared with
existing baseline approaches?

• RQ2: Is the joint modeling of spatial and temporal dimensions
effective for STPPs, and what’s the spatio-temporal interdepen-
dence like during the denoising process?

• RQ3: How does the total number of diffusion steps affect the
performance?

• RQ4: How to gain a deeper understanding of the reverse denois-
ing diffusion process?

4.1 Experimental Setup
4.1.1 Datasets. We perform extensive experiments on synthetic
datasets and real-world datasets in the STPP literature. All datasets
are obtained from open sources, which contain up to thousands of
spatio-temporal events. Varying across a wide range of fields, we
use one synthetic dataset and three real-world datasets, including
earthquakes in Japan, COVID-19 spread, bike sharing in New York
City, and simulated Hawkes Gaussian Mixture Model process [3].
Besides, we use a real-world dataset, Atlanta Crime Data, the spatial
locations of which are discrete neighborhoods. We briefly introduce
them here, and further details can be found in Appendix A.

(1) Earthquakes. Earthquakes in Japan with a magnitude of at
least 2.5 from 1990 to 2020 recorded by the U.S. Geological Survey3.
(2) COVID-19. Publicly released by The New York Times (2020),
which records daily infected cases of COVID-19 in New Jersey
state4. We aggregate the data at the county level. (3) Citibike. Bike
sharing in New York City collected by a bike sharing service. The
start of each trip is considered as an event. (4)HawkesGMM5. This
synthetic data uses Gaussian Mixture Model to generate spatial lo-
cations. Events are sampled from amultivariate Hawkes process. (6)
Crime 6. It is provided by the Atlanta Police Department, recording
robbery crime events. Each event is associated with the time and
the neighborhood.

4.1.2 Baselines. To evaluate the performance of our proposed
model, we compare it with commonly-used methods and state-of-
the-art models. The baselines can be divided into three groups:
spatial baselines, temporal baselines, and spatio-temporal baselines.
It is common for previous methods to model the spatial domain
and temporal domain separately, so spatial baselines and temporal

3https://earthquake.usgs.gov/earthquakes/search/
4https://github.com/nytimes/covid-19-data
5https://github.com/facebookresearch/neural_stpp/blob/main/toy_datasets.py
6http://www.atlantapd.org/i-want-to/crime-data-downloads

baselines can be combined freely for STPPs. We summarize the
three groups as follows7:
• Spatial baselines:We use conditional kernel density estimation
(Condition KDE) [4], Continuous normalizing flow (CNF), and
Time-varying CNF [4] (TVCNF) [4]. The three methods all model
continuous spatial distributions.

• Temporal baselines:We include commonly used TPP models.
Classical TPP models include the Poisson process [43], Hawkes
Process [18], and Self-correcting process [21]. We also incorpo-
rate neural TPP models, including Recurrent Marked Temporal
Point Process (RMTPP) [9], Neural Hawkes Process (NHP) [32],
Transformer Hawkes Process (THP) [68], Self-attentive Hawkes
Process (SAHP) [63]. Besides, we also compare with intensity-
free approaches: Log Normal Mixture model (LogNormMix) [47],
and Wasserstein GAN (WGAN) [57].

• Spatio-temporal baselines. We include state-of-the-art spatio-
temporal baselines, including Neural Jump Stochastic Differential
Equations (NJSDE) [47], Neural Spatio-temporal Point Process
(NSTPP) [3], and DeepSTPP [65].

4.1.3 Evaluation Metrics. We evaluate the performance of mod-
els from two perspectives: likelihood comparison and event pre-
diction comparison. We use negative log-loglikelihood (NLL) as
metrics, and the time and space are evaluated, respectively. Al-
though the exact likelihood cannot be obtained, we can write the
variational lower bound (VLB) according to Equation (3) and uti-
lize it as the NLL metric instead. Thus, the performance on exact
likelihood is even better than the reported variational lower bound.
The models’ predictive ability for time and space is also impor-
tant in practical applications [37]. Since time intervals are real
values, we use a common metric, Root Mean Square Error (RMSE),
to evaluate time prediction. The spatial location can be defined in
𝐷-dimensional space, so we use Euclidean distance to measure the
spatial prediction error. We refer the readers to Appendix C.1 for
more details of the used evaluation metrics.

4.2 Overall performance
Table 2 and Table 3 show the overall performance of models on
NLL and prediction, respectively. Figure 4 shows the prediction
performance of models in discrete-space scenarios. From these
results, we have the following observations:
• Unreasonable parametric assumptions for point processes
destroy the performance severely. The worst performance
of the self-correcting process indicates the assumption that the
occurrence of past events inhibits the occurrence of future events,
does not match realities. On the contrary, the Hawkes process,
which assumes the occurrence of an event increases the probabil-
ity of event occurrence in the future, outperforms other classical
models (Poisson and Self-correcting), with an obvious reduction
of temporal NLL. Nevertheless, the self-exciting assumption can
still fail when facedwith cases where previous events prevent sub-
sequent events. Therefore, classical models that require certain
assumptions, cannot cover all situations with different dynamics.

• It is necessary to capture the spatio-temporal interdepen-
dence. NSTPP models the dependence of space on time by 𝑝 (𝑠 |𝑡),

7Appendix B provides more details of the used baselines.
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Table 2: Performance evaluation for negative log-likelihood per event on test data. ↓means lower is better. Bold denotes the
best results and underline denotes the second-best results.

Earthquake COVID-19 Citibike HawkesGMM
Model Spatial ↓ Temporal ↓ Spatial ↓ Temporal ↓ Spatial ↓ Temporal ↓ Spatial ↓ Temporal ↓

Conditional KDE 2.21±0.105 -(1) 2.31±0.084 - 2.74±0.001 - 0.236±0.001 -
CNF 1.35±0.000 - 2.05±0.014 - 2.15±0.000 - 0.427±0.002 -

TVCNF 1.34±0.008 - 2.04±0.004 - 2.19±0.025 - 0.431±0.008 -
Possion - -0.146±0.000 - -0.876±0.021 - -0.626±0.000 - 1.34±0.000
Hawkes - -0.514±0.000 - -2.06±0.000 - -1.06±0.001 - 0.880±0.000

Self-correcting - 13.8±0.533 - 7.13±0.062 - 7.11±0.010 - 4.59±0.135
RMTPP - 0.0930±0.051 - -1.30±0.022 - 1.24±0.001 - 1.52±0.002
NHP - -0.676±0.001 - -2.30±0.001 - -1.14±0.001 - 0.580±0.000
THP - -0.976±0.011 - -2.12±0.002 - -1.49±0.003 - -0.402±0.001
SAHP - -0.229±0.007 - -1.37±0.118 - -1.02±0.067 - -1.25±0.136

LogNormMix - -0.341±0.071 - -2.01±0.025 - -1.06±0.005 - 0.630±0.004
NJSDE 1.65±0.012 0.0950±0.203 2.21±0.005 -1.82±0.002 2.63±0.001 -0.804±0.059 0.395±0.001 1.77±0.030
NSTPP 0.885±0.037 -0.623±0.004 1.90±0.017 -2.25±0.002 2.38±0.053 -1.09±0.004 0.285±0.011 0.824±0.005

DeepSTPP 4.92±0.007 -0.174±0.001 0.361±0.01 -1.09±0.01 -4.94±0.016 -1.13±0.002 0.519±0.001 0.322±0.002
DSTPP (ours) 0.413±0.006 -1.10±0.020 0.350±0.029 -2.66±0.003 0.529±0.011 -2.43±0.010 0.200±0.047 -1.63±0.002

(1) Spatial baselines and temporal baselines can be combined freely for modeling spatio-temporal domains.

Table 3: Performance evaluation for predicting both time and space of the next event. We use Euclidean distance to measure
the prediction error of the spatial domain and use RMSE between real intervals and predicted intervals for time prediction.

Earthquake COVID-19 Citibike HawkesGMM
Model Spatial ↓ Temporal ↓ Spatial ↓ Temporal ↓ Spatial ↓ Temporal ↓ Spatial ↓ Temporal ↓

Conditional KDE 11.3±0.658 - 0.688±0.047 - 0.718±0.001 - 1.54±0.006 -
CNF 8.48±0.054 - 0.559±0.000 - 0.722±0.000 - 71663±60516 -

TVCNF 8.11±0.001 - 0.560±0.000 - 0.705±0.000 - 2.03±0.000 -
Possion - 0.631±0.017 - 0.463±0.021 - 0.438±0.001 - 2.81±0.070
Hawkes - 0.544±0.010 - 0.672±0.088 - 0.534±0.011 - 2.63±0.002

Self-correcting - 11.2±0.486 - 2.83±0.141 - 10.7±0.169 - 9.72±0.159
RMTPP - 0.424±0.009 - 1.32±0.024 - 2.07±0.015 - 3.38±0.012
NHP - 1.86±0.023 - 2.13±0.100 - 2.36±0.056 - 2.82±0.028
THP - 2.44±0.021 - 0.611±0.008 - 1.46±0.009 - 5.35±0.002
SAHP - 0.409±0.002 - 0.184±0.024 - 0.203±0.010 - 2.75±0.049

LogNormMix - 0.593±0.005 - 0.168±0.011 - 0.350±0.013 - 2.79±0.021
WGAN - 0.481±0.007 - 0.124±0.002 - 0.238±0.003 - 2.83±0.048
NJSDE 9.98±0.024 0.465±0.009 0.641±0.009 0.137±0.001 0.707±0.001 0.264±0.005 1.62±0.003 2.25±0.007
NSTPP 8.11±0.000 0.547±0.010 0.560±0.000 0.145±0.002 0.705±0.000 0.355±0.013 2.02±0.000 3.30±0.201

DeepSTPP 9.20±0.000 0.341±0.000 0.687±0.000 0.197±0.000 0.044±0.000 0.234±0.000 1.38±0.000 1.46±0.000
DSTPP (ours) 6.77±0.193 0.375±0.001 0.419±0.001 0.093±0.000 0.031±0.000 0.200±0.002 1.28±0.013 1.07±0.009

Figure 4: The performance of models on discrete-space
datasets for both time and space of the next event.

and the performance regarding spatial metrics is improved com-
pared with independent modeling, including Conditional KDE,
CNF, and Time-varying CNF. However, it does not outperform
other TPP models in the temporal domain, suggesting that mod-
eling the distribution 𝑝 (𝑡 |𝐻𝑡 ) without conditioning on the space
𝑠 fails to learn the temporal domain sufficiently.

• DSTPP achieves the best performance acrossmultiple datasets.
In the continuous-space scenarios regarding NLL, our model
performs the best on both temporal and spatial domains. Com-
pared with the second-best model, our model reduces the spatial
NLL by over 20% on average. The performance on temporal NLL
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Figure 5: Ablation study on the joint spatio-temporal modeling. DSTPP-Ind denotes the degraded version of DSTPP, where
spatial and temporal domains are independent.

(a) Earthquakes

(b) Synthetic-Independent

Figure 6: Spatial and temporal attention weights in the de-
noising iterations for two datasets with different spatio-
temporal interdependence. Best viewed in color.

also achieves remarkably significant improvement across vari-
ous datasets. In terms of models’ predictive power, our model
also achieves optimal performance, with remarkable improve-
ments compared to the second-best model. In addition, as Figure 4
shows, DSTPP delivers better predictive performance compared
with other solutions in modeling discrete-space scenarios. The
flexible framework that requires no parameter assumptions and
MC estimations enables DSTPP to achieve superior performance.

4.3 Analysis of Spatio-temporal
Interdependence

To gain a deeper understanding of the spatio-temporal interdepen-
dence in the denoising process, we perform an in-depth analysis of
co-attention weights. Specifically, the analysis is conducted on two
representative datasets: Earthquake and Synthetic-Independent,
where the Earthquake dataset is highly spatio-temporal entangled,
and the Synthetic-Independent dataset is totally spatio-temporal
independent. Appendix A provides the generation details of the
synthetic dataset. We use these two datasets to validate whether
the designed co-attention mechanism can learn different interde-
pendence between time and space. At each step of the denoising

process, we calculate attention weights of the temporal and spatial
dimensions on themselves and each other. Figure 6 shows how
attention weights change as denoising proceeds.

As shown in Figure 6(a), at the early stage, temporal and spatial
domains do not assign attention weights to each other, and the
attention weights on themselves are close to one. At the final stage
(step ≥ 150), the two domains start to assign attention weights to
each other. At last, for the temporal domain, the attention weights
on time and space are approximately 0.83 and 0.17; for the spatial
domain, the attention weights are close to evenly divided (0.52 and
0.48), suggesting that the spatial domain is more dependent on
the temporal domain. In the later stage of the denoising iterations,
the model learns a distribution closer to the real case; thus, it is
reasonable that the spatial and temporal domains assign more at-
tention weights to each other. Figure 6(b) displays different results:
the two domains share almost no attention weights to each other,
indicating that the model has successfully learned the independent
relationship. Figure 6(a) and (b) together validate the effectiveness
of the co-attention mechanism, which can adaptively learn various
interaction mechanisms between time and space.

4.4 Ablation Studies
Co-attention Mechanism. In order to examine the effectiveness
of the co-attention mechanism, we degrade our DSTPP into a
base framework, DSTPP-Ind, which models the distributions of
space and time independently in the denoising process. To be
specific, we replace 𝑝𝜃 (𝑡𝑘−1𝑖

|𝑡𝑘
𝑖
, 𝑠𝑘
𝑖
, ℎ𝑖−1) and 𝑝𝜃 (𝑠𝑘−1𝑖

|𝑡𝑘
𝑖
, 𝑠𝑘
𝑖
, ℎ𝑖−1)

in Equation (10) with 𝑝𝜃 (𝑡𝑘−1𝑖
|𝑡𝑘
𝑖
, ℎ𝑖−1), 𝑝𝜃 (𝑠𝑘−1𝑖

|𝑠𝑘
𝑖
, ℎ𝑖−1), where

space and time are not conditionally dependent on each other. Fig-
ure 5 shows the performance comparison of DSTPP and DSTPP-Ind
in continuous-space settings. We can observe that DSTPP trained
by incorporating the joint modeling of time and space performs
consistently better than DSTPP-Ind with independent modeling.
These results indicate the necessity to capture the interdependence
between time and space, and meanwhile, validate the effectiveness
of the spatio-temporal co-attention design. Due to the space limit,
we leave other results in Appendix D.

4.5 Analysis of Reverse Diffusion Processes
To gain a deeper understanding of the denoising process, We visu-
alize the spatial distribution during the reverse denoising iterations
in Figure 7. As we can observe, at the beginning of the denoising
process, the spatial distribution displays a Gaussian noise. With
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Figure 7: Visualization of the spatial distribution at different stages in the denoising process (the first five columns in blue
color). The last column in red color presents the real distribution. Starting from Gaussian noise, our DSTPP model gradually
fits the spatial distribution of ground truth. Best viewed in color.

progressive denoising iterations, the data distribution deforms grad-
ually and becomes more concentrated. Finally, at the last step, the
spatial distribution fits perfectly with the ground truth distribution.
It indicates that our DSTPP is able to learn the generative process
of spatial distribution successfully. Besides, the denoising process is
not a linear change, where the distribution changes during the last
50 steps are more significant than the previous steps. Combined
with results in Section 4.3, where the interdependence between spa-
tial and temporal domains is effectively captured in the latter stage,
it is reasonable that the denoising effect is improved significantly
during this period.

5 RELATEDWORK
Spatio-temporal Point Processes. Temporal point process mod-
els [9, 28, 32, 63, 68] can be directly used for STPPs, where the
space is considered as the event marker. Kernel density estimation
methods are also used to model continuous-space distributions in
STPP models [2, 3, 22, 35, 45, 65]. Most existing solutions follow
an intensity-based paradigm, and their main challenge is how to
choose a good parametric form for the intensity function. There
exists a trade-off between the modeling capability of the intensity
function and the cost to compute the log-likelihood. Some intensity-
free models [38, 47] are proposed to tackle this problem; however,
the probability density function either is unavailable [38] or still
has certain model restrictions [47]. Another drawback of existing
models is that they can only model either the continuous-space
domain or the discrete-space domain, which largely limits their
usability in real-world scenarios.

Recently, a line of advances have been developed for the genera-
tive modeling of point processes. For example, generative adversar-
ial networks [8, 57] are used to learn to generate point processes in a
likelihood-free manner. Reinforcement learning [26, 52] approaches
and variational autoencoders [31, 39] are also included to explore

the generative performance of TPPs. Some works also use noise
contrastive learning [16, 33] instead of MLE.We are the first to learn
point processes within the paradigm of diffusion models, which
successfully address limitations in previous existing solutions.

Denoising Diffusion Probabilistic Models. Denoising diffu-
sion probabilistic models (DDPM) [19, 49, 50], are a class of deep
generative models, which are inspired by non-equilibrium ther-
modynamics. Due to their powerful generative capabilities, dif-
fusion models have been used in a wide range of applications
including image generation [1, 6, 46, 48], time series prediction
and imputation [44, 51], audio generation [11, 20, 24], text genera-
tion [10, 12, 27], 3D point cloud generation [30, 64], and trajectory
generation [15, 41]. In this paper, we first introduce the diffusion
model to the domain of spatio-temporal point processes.

6 CONCLUSION
In this paper, we propose a novel framework to directly learn spatio-
temporal joint distributions with no requirement for independence
assumption and Monte Carlo sampling, which has addressed the
structural shortcomings of existing solutions. The framework also
poses desired properties like easy training and closed-form sam-
pling. Extensive experiments on diverse datasets highlight the im-
pact of our framework against state-of-the-art STPP models. As
for future work, it is promising to apply our model in urban sys-
tem [25, 60] as well as large-scale natural systems, such as climate
changes and ocean currents, which are concerned with highly com-
plex spatio-temporal data.
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APPENDIX
A DATASET
Earthquakes: Earthquakes in Japan from 1990 to 2020 with a mag-
nitude of at least 2.5 are collected from the U.S. Geological Survey8.
Sequences are generated by sliding windows with a window size
of 30 days and a gap of seven days. Therefore, each sequence is
within the length of 30 days. The earthquakes from Nov. 2010 to
Dec. 2011 are removed because they are outliers compared with
data in other periods. We split the dataset into the training set,
validation set, and testing set and ensure that there is no overlap
between them. Finally, We have 950 sequences for the training set,
50 for the validation set, and 50 for the testing set. The sequence
lengths range from 22 to 554.

COVID-19:We construct this dataset by using publicly released
COVID19 cases by The New York Times (2020). It records daily
infected cases of COVID-19 in New Jersey state9 from March 2020
to July 2020. We aggregate the data at the county level. Sequences
are generated by sliding windows with a window size of 7 days and
a gap of three days. Therefore, each sequence is within the length
of 7 days. We split the dataset into the training set, validation set,
and testing set and ensure that there is no overlap between them.
Finally, We have 1450 sequences for the training set, 100 for the

8https://earthquake.usgs.gov/earthquakes/search/
9https://github.com/nytimes/covid-19-data

validation set, and 100 for the testing set. The sequence lengths
range between 5 to 287.

Citibike: This dataset is collected by a bike-sharing service,
which records the demand for bike sharing in New York City. We
use the records from April 2019 to August 2019. The start of each
trip is considered as an event. We split the record sequence of
each bike into one-day subsequences starting at 5:00 am in the
day. Therefore, each sequence is within the length of 19 hours. We
randomly split the dataset into the training set, validation set, and
testing set. Finally, We have 2440 sequences for the training set,
300 for the validation set, and 320 for the testing set. The sequence
lengths range from 14 to 204.

Crime 10: It is provided by the Atlanta Police Department,
recording robbery crime events from the end of 2015 to 2017. Each
robbery report is associated with the time and the neighborhood.
Each sequence is within the length of one day. We randomly split
the dataset into the training set, validation set, and testing set.
Finally, We have 2000 sequences for the training set, 200 for the
validation set, and 2000 for the testing set. The sequence lengths
range between 26 to 144.

Synthetic-Independent: The temporal domain is generated by
a Hawkes process, and the intensity function is defined as follows:

𝜆(𝑡, |𝐻𝑡 ) = 0.2 +
∑︁
𝑡<𝑡𝑖

(0.2𝑒−0.2(𝑡−𝑡−𝑡𝑖 ) + 4𝑒−10(𝑡𝑖−𝑡 ) ) (18)

the spatial distribution follows a Two-dimensional Gaussian distri-
bution:

𝑓 (𝑠1, 𝑠2) = (19)

1
2𝜋𝜎𝑠1𝜎𝑠2

√︁
(1 − 𝜌2)

𝑒
− 1

2(1−𝜌2 ) [ (
𝑠1−𝜇1
𝜎𝑠1

)2−2𝜌 ( 𝑠1−𝜇1
𝜎𝑠1

) ( 𝑠2−𝜇2
𝜎𝑠2

)+( 𝑠2−𝜇2
𝜎𝑠2

)2 ]

(20)

where 𝜌 =

√
2
4 , 𝜇1 = 4.0, 𝜇2 = 7.0, 𝜎𝑠1 =

√
2, 𝜎𝑠2 = 2.

B BASELINE
We provide detailed descriptions of used baselines as follows:
• Conditional KDE: Conditional kernel density estimations. We
utilize a history-dependent Gaussian mixture model to model
the spatial distribution.

• CNF and Time-varying CNF [4]: We use Continuous normalizing
flow for modeling spatial distribution. Time-varying CNF denotes
the dependence on the timestamps.

• Possion [43]: The homogeneous Poisson process is the simplest
point process, where the number of events occurring during time
intervals are independent, and the probability of a single event
occurrence is proportional to the length of the interval.

• Hawkes [18]: Its essential property is that the occurrence of any
event increases the probability of further events occurring by a
certain amount. The triggering kernel which captures temporal
dependencies can be chosen in advance or directly learned from
data.

10http://www.atlantapd.org/i-want-to/crime-data-downloads
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• Self-correcting [21]: In contrast to the Hawkes process, this point
process follows the pattern that the occurrence of past events
inhibits the occurrence of future events. Every time when a new
event appears, the intensity is decreased by multiplying a con-
stant less than 1.

• Recurrent Marked Temporal Point Process (RMTPP) [9]: This
neural temporal point process model applies a nonlinear function
of past events to model the intensity function and leverages RNNs
to learn a representation of the influence from event history,
where time intervals act as explicit inputs.

• Neural Hawkes Process (NHP) [32]: With the goal of capturing
the temporal evolution of event sequences, it uses continuous-
time LSTMs to model a marked TPP. The modeling of future
event intensities is conditioned on the RNN’s hidden state.

• Transformer Hawkes Process (THP) [68]: It is an extension to
the transformer by modeling the conditional intensity. The self-
attention mechanism is leveraged to capture long-term depen-
dencies.

• Self-attentive Hawkes Process (SAHP) [63]: It learns the temporal
dynamics by leveraging a self-attention mechanism to aggregate
historical events. In order to take the time intervals between
events into consideration, it modifies the conventional positional
encoding by converting time intervals into phase shifts of sinu-
soidal functions.

• LogNormalMixturemodel (LogNormMix) [47]: It adopts intensity-
free learning of TPPs, which models the PDF by a log-normal
mixture model. Additionally, a simple mixture model is proposed
to match the flexibility of flow-based models. The loglikelihood
for training and density for sampling are in closed form.

• Wasserstein GAN (WGAN) [57]: This intensity-free approach
transforms nuisance processes to target one. And theWasserstein
distance is used to train the model, which is a likelihood-free
method. Loglikelihood cannot be obtained for this approach.

• Neural Jump Stochastic Differential Equations (NJSDE) [47]: It
models TPPs with a piecewise-continuous latent representation,
where the discontinuities are brought by stochastic events. The
spatial distribution is modeled with a Gaussian mixture model.

• Neural Spatio-temporal Point Process (NSTPP) [3]: It applies
Neural ODEs as the backbone, which parameterizes the tempo-
ral intensity with Neural Jump SDEs and the spatial PDF with
continuous-time normalizing flows.

• Deep Spatiotemporal Point Process (DeepSTPP) [65]: It is the
state-of-the-art STPPmodel, which suggests using a non-parametric
space-time intensity function governed by a latent process. Amor-
tized variational inference is leveraged to deduce the latent pro-
cess.

C IMPLEMENTATION DETAILS
C.1 Evaluation Metrics
Suppose 𝒚 = 𝑦1, ..., 𝑦𝑀 represents the ground truth for real values,
�̂� = 𝑦1, ..., 𝑦𝑁 represents the predicted real values, 𝒌 = 𝑘1, ..., 𝑘𝑀
represents the ground truth for real values, �̂� = 𝑘1, ..., 𝑘𝑁 represents
the predicted discrete labels, and 𝑁 denotes the number of test
samples, we can formulate these metrics as follows:

Figure 8: Ablation studies on the total number of diffusion
steps for Earthquake and HawkesGMM data. We observe
similar results with other datasets.

RMSE(𝒚, �̂�) =

√√√
1
𝑁

𝑁∑︁
𝑖

(𝑦𝑖 − 𝑦𝑖 )2,

dEuclid (𝒚, �̂�) =
1
𝑁

𝑁∑︁
𝑖=1

∥𝑦𝑖 − 𝑦𝑖 ∥

Accuracy(𝒌, �̂�) = 𝑇𝑃 +𝑇𝑁
𝑇𝑃 +𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

(21)

where dEuclid denotes the Euclidean distance between two real-
valued vectors. TN, TP, FN, and FP are the number of true negative
samples, the number of true positive samples, the number of false
negative samples, and the number of false positive samples.

C.2 Parameter Settings
We all use three-layer MLPs with ReLU activations and hidden size
of 64. The training process is performed in batch. After training
the model for ten epochs ( all training instance), we examine the
model’s performance on validation set. The model that delivers the
best performance on the validation set will be used to validate the
performance on the test set. We set the learning rate as 3e-4 via
searching in a set of {1𝑒−4, 3𝑒−4, 1𝑒−3}. The proposed framework
is implemented with Pytorch. We train it on a Linux server with
eight GPUs (NVIDIA RTX 2080 Ti * 8). In practice, our framework
can be effectively trained within 6 hours on a single GPU.

D ADDITIONAL RESULTS
Diffusion Steps. The number of total steps 𝐾 in the diffusion
process is a crucial hyperparameter. With the increase of diffu-
sion steps, the denoising network approximates more minimal
changes between steps. A bigger 𝐾 allows the reverse denois-
ing process to be adequately approximated by Gaussian distribu-
tion [49]. However, too many diffusion steps will vastly reduce
the efficiency of training and sampling. Therefore, it is essential
to explore to what extent, a larger diffusion step 𝐾 improves the
model’s performance. Specifically, we perform ablation studies on
Earthquakes and HawkesGMM datasets with varying total diffu-
sion steps 𝐾 = {2, 5, 10, 20, 50, 100, 200, 500, 1000} and keep all other
hyperparameters fixed. The results of temporal NLL and spatial
NLL are plotted in Figure 8. We can observe that temporal NLL and
spatial NLL both achieve the best values at 𝐾 ≈ 200, suggesting
that the diffusion step 𝐾 can be reduced to 200 without significant
performance loss.
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