
GAT-MF: Graph Attention Mean Field for Very Large Scale
Multi-Agent Reinforcement Learning

Qianyue Hao

BNRist, Department of Electronic

Engineering, Tsinghua University

Beijing, China

Wenzhen Huang

BNRist, Department of Electronic

Engineering, Tsinghua University

Beijing, China

Tao Feng

BNRist, Department of Electronic

Engineering, Tsinghua University

Beijing, China

Jian Yuan

BNRist, Department of Electronic

Engineering, Tsinghua University

Beijing, China

Yong Li
∗

BNRist, Department of Electronic

Engineering, Tsinghua University

Beijing, China

ABSTRACT
Recent advancements in reinforcement learning have witnessed

remarkable achievements by intelligent agents ranging from game-

playing to industrial applications. Of particular interest is the area

of multi-agent reinforcement learning (MARL), which holds signif-

icant potential for real-world scenarios. However, typical MARL

methods are limited in their ability to handle tens of agents, leaving

scenarios with up to hundreds or even thousands of agents al-

most unexplored. The scaling up of the number of agents presents

two primary challenges: (1) agent-agent interactions are crucial

in multi-agent systems while the number of interactions grows

quadratically with the number of agents, resulting in substantial

computational complexity and difficulty in strategies-learning; (2)

the strengths of interactions among agents exhibit variations both

across agents and over time, making it difficult to precisely model

such interactions. In this paper, we propose a novel approach named

Graph Attention Mean Field (GAT-MF). By converting agent-agent

interactions into interactions between each agent and a weighted

mean field, we achieve a substantial reduction in computational

complexity. The proposed method offers a precise modeling of in-

teraction dynamics with mathematical proofs of its correctness.

Additionally, we design a graph attention mechanism to automat-

ically capture the diverse and time-varying strengths of interac-

tions, ensuring an accurate representation of agent interactions.

Through extensive experimentation conducted in both manual and

real-world scenarios involving over 3000 agents, we validate the

efficacy of our method. The results demonstrate that our method

outperforms the best baseline method with a remarkable improve-

ment of 42.7%. Furthermore, our method saves 86.4% training time

and 19.2% GPU memory compared to the best baseline method.

Corresponding author. Email: liyong07@tsinghua.edu.cn.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

KDD ’23, August 6–10, 2023, Long Beach, CA, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 979-8-4007-0103-0/23/08. . . $15.00

https://doi.org/10.1145/3580305.3599359

For reproducibility, our source codes and data are available at

https://github.com/tsinghua-fib-lab/Large-Scale-MARL-GATMF.

CCS CONCEPTS
• Computing methodologies→Multi-agent reinforcement
learning; Multi-agent systems.

KEYWORDS
Multi-agent reinforcement learning, large-scale decision problem,

mean field, graph attention.

ACM Reference Format:
Qianyue Hao, Wenzhen Huang, Tao Feng, Jian Yuan, and Yong Li

∗
. 2023.

GAT-MF: Graph Attention Mean Field for Very Large Scale Multi-Agent

Reinforcement Learning. In Proceedings of the 29th ACM SIGKDD Conference
on Knowledge Discovery and Data Mining (KDD ’23), August 6–10, 2023, Long
Beach, CA, USA. ACM, New York, NY, USA, 13 pages. https://doi.org/10.

1145/3580305.3599359

1 INTRODUCTION
In recent years, unprecedented achievements in reinforcement

learning (RL) have greatly enhanced human decision-making capa-

bilities in complex situations. RL techniques have found extensive

applications in various domains, such as game-playing [42, 54],

robotics [4, 43], public health [2, 15, 16], and even nuclear fusion

system [11]. The success of RL predominantly centers on single-

agent scenarios, while in the real world, systems often comprise

multiple agents, and interactions among these agents play a crucial

role. Consequently, multi-agent reinforcement learning (MARL) has

especially wide applications and developments in corresponding

methods are called for.

Previous researchers have done plentiful works on MARL. First,

MADDPG [22] outperforms single-agent DDPG in experimental

tasks with various goals. Second, in game-playing, a series of stud-

ies including QMIX [34], AlphaStar [49] and MAPPO [55] keep

surpassing human professional players and achieving remarkable

scores on the Starcraft game, a typical MARL benchmark. Further,

in social and industrial applications, numerous successful MARL

solutions have been proposed, addressing challenges in traffic sig-

nal controlling [51], power distribution management [50], cloud

computing [1], etc. However, existing studies typically only con-

sider tens of agents, while methods capable for scenarios with up

to hundreds or even thousands of agents are almost unexplored.

685

https://doi.org/10.1145/3580305.3599359
https://github.com/tsinghua-fib-lab/Large-Scale-MARL-GATMF
https://doi.org/10.1145/3580305.3599359
https://doi.org/10.1145/3580305.3599359
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3580305.3599359&domain=pdf&date_stamp=2023-08-04

KDD ’23, August 6–10, 2023, Long Beach, CA, USA Qianyue Hao, Wenzhen Huang, Tao Feng, Jian Yuan, & Yong Li

Despite the prevalence of scenarios involving hundreds or thou-

sands of agents in the real world, there exist two key challenges in

scaling up the number of agents in MARL. (1) Large number of
agent-agent interactions. In multi-agent systems, interactions

between agents play a crucial role in the overall system behavior.

Therefore, besides simple agent-environment interactions, MARL

methods must take the agent-agent interactions into considera-

tion to achieve satisfactory performance. However, in regular algo-

rithms, the number of agent-agent interactions increases following

𝑂 (𝑁 2) as the number of agents grows to 𝑁 . The quadratical growth

greatly adds to the computational complexity and hinders the agents

to learn efficient strategies. (2) Varying strengths of agent-agent
interactions. Due to the intrinsic dynamics of real-world systems,

the strengths of interactions vary not only among each pair of

agents but also over time, making it arduous to precisely model

these diverse and time-varying interactions. Though we can manu-

ally specify the interaction strength of each pair of agents according

to prior knowledge of a certain scenario, it requires repetitive man-

ual works when training models to solve problems in different

scenarios. On the other hand, it is almost impossible to accomplish

such manual works when the number of agents is large.

Facing these challenges, we propose the Graph Attention Mean

Field (GAT-MF) method to enable the scaling up of the number of

agents in MARL. Firstly, to solve the problem of the unaffordably

large number of agent-agent interactions, we develop the previ-

ous study of unweighted Mean Field [53] into a weighted version.

We mathematically prove the validity of transforming interactions

among the agents into the interactions between each agent and a

corresponding field, which is obtained through a weighted average

over the raw agent-agent interactions. By such conversion, the

number of agent-field interactions only scales linearly following

𝑂 (𝑁) with 𝑁 agents, alleviating the computational complexity and

enhancing the agents’ ability to learn effective strategies. Moreover,

such conversion preserves the information of different interaction

strengths among agents in the weights, which is discarded in the

unweighted mean field approach. Secondly, to automatically cap-

ture the varying strengths of the interactions, i.e., the weights in

calculating the equivalent field, we model the relations among the

agents into a graph where each node represents one agent. We

introduce a graph attention mechanism to dynamically learn and

compute the diverse and time-varying interaction strengths among

the agents, obviating the need for prior knowledge or manual efforts

in setting interaction strengths. Lastly, we evaluate our GAT-MF

method in (1) a grid-world manual scenario with 100 agents and

(2) two real-world metropolitan scenario each with more than 3000

agents, which are built according to real-world data (see Section 5).

The experimental results demonstrate that the proposed method

outperforms existing MARL methods in all scenarios with a perfor-

mance improvement up to 42.7%, showcasing its capability to scale

up to scenarios with a large number of agents. Additionally, our

method exhibits high computational efficiency, reducing training

time by 86.4% and GPU memory usage by 19.2% compared to the

best-performing baseline method.

In summary, the main contributions of this work include:

• We develop unweighted Mean Field method into a weighted

version and prove its mathematical correctness. This method

greatly alleviate the computational complexity in learning

efficient strategies and enable it to scale to scenarios with

up to thousands of agents.

• We design a graph attention mechanism to automatically

capture the varying strengths of the agent-agent interac-

tions, ensuring that our method can precisely model these

interactions without prior knowledge of the strengths of the

agent-agent interactions in the target scenario.

• We conduct extensive experiments in a manual grid-world

scenario and two real-world metropolitan scenarios with

more than 3000 agents. The results demonstrate that our

method achieves superior performance across scenarios and

obtains high computational efficiency comparing existing

MARL methods.

2 RELATEDWORKS
Large-scale task with RL. One common approach to addressing

large-scale task with RL is to aggregate the large number of natural

units into a relatively small number of clusters and control each

cluster with one agent [15, 32, 51]. Another category of methods de-

compose the original vast action space into a hierarchical structure

based on prior knowledge of the targeted scenario, simplifying the

decision-making process [16, 23, 35]. Additionally, some researchers

combine human experts’ solutions with RL methods to facilitate

more efficient strategy learning in large-scale scenarios [15, 19, 33].

Although these works achieve success in their targeted scenarios,

the manual techniques of unit aggregation, action space decompo-

sition, or experts’ solution collection are largely problem specific

and require strong prior knowledge of the scenarios. In contrast,

our method provides a direct MARL approach, eliminating the re-

quirement for problem-specific knowledge, thereby offering a more

adaptable framework for addressing large-scale RL tasks.

Multi-agent reinforcement learning. There exist abundant
works on MARL and here we illustrate the differences among var-

ious multi-agent reinforcement learning (MARL) methods with

an example in a metropolitan (Figure 1). The main approaches

of recently popular MARL solutions can be roughly summarized

into several categories, including decentralized training with de-

centralized execution (DTDE), CTDE, and CTCE. DTDE methods

simply trains the agents independently in the environment, such as

IQL and IPPO [10]. CTCE means both the training and execution

process requires every agent to access global observation, where

typical works include HATRPO, HAPPO [18], DGN [17], Mean Field

(MF) [53], and communication based methods [26, 26, 29, 37, 46].

On the other hand, CTDE is the most common category of MARL

methods. Typically, it includes a centralized critic, which takes

in the global observation to estimate the global return; and de-

centralized actors, which determine the local actions according to

local observations. The representations of CTDE methods include

MADDPG [22], MAPPO [55], COMA [12] and ATT-MADDPG [25].

Besides, value decomposition (VD) methods is a typical category of

CTDE method, which factorizes the joint Q-function into a certain

function of the local Q-function of each agent in order to reduce

the complexity. For example, VDN [47] uses an additive function,

QMIX [34] chooses a monotonic function and QTRAN [44] extends

it into a more general function. However, it is not easy to factorize

686

GAT-MF: Graph Attention Mean Field for Very Large Scale Multi-Agent Reinforcement Learning KDD ’23, August 6–10, 2023, Long Beach, CA, USA

Environment

Relation among Agents

Unweighted MF

Mean()=

GAT-MF

w1
w2

w3
w4w5

w6
w7

Weighted Average
Low Dimension, High Precision

wn
1 2 3 4 5 6 7

Concatenate
High Dimension, High Precision

CTDE

Keep Varying Strengths
Discard Varying Strengths

Agent-Agent Interaction
Action Vector
Mean Field VectorAgent

Block Critic Targeted Agent

Mean()=

(b) CTDE method (c) Unweighted MF method (d) Proposed GAT-MF method(a) A multi-agent scenario

Unweighted Average
Low Dimension, Low Precision

Figure 1: Comparison among existing MARL methods and our proposed method. (a) Example of a multi-agent scenario
in a metropolitan where each block corresponds to one agent and the relations among adjacent blocks lead to agent-agent
interactions. (b) Limitation of the CTDEmethods, i.e, high dimension of the concatenated input vector of the critic. (c) Limitation
of the unweighted MF, i.e., losing precision on modeling agent-agent interactions using unweighted average. (d) Key design of
our proposed GAT-MF method, reducing the dimension while keeping the precision.

the joint Q-function into hundreds or even thousands of terms, lim-

iting the scalability of such methods on a large number of agents.

On the other hand, the centralized critic (or value function) requires

concatenating the vectors of local states and actions from all agents

together as its input to obtain the information on agent-agent inter-

actions, it is obvious that when the number of agents is large, the

concatenated vector will be in extremely high dimension, making

the training process hard (Figure 1b). This limits these methods

to work in scenarios with at most hundreds of agents. In contrast,

due to our special design, our proposed method can scale up to sce-

narios with more than 3000 agents and keeps high computational

efficiency. Moreover, there exist works exploring novel paradigms

of MARL, such as centralized teacher with decentralized student

(CTDS) [56] and personalized training with distillated execution

(PTDE) [9].

Mean Field (MF) MARL. In order to reduce the unaffordable

high vector dimension in CTDE methods mentioned above and

scale up the number of agents, a special technique named Mean

Field (MF) [53] is proposed. It approximates the concatenation of

actions with the unweighted average of these actions, namely mean

field. RL algorithms with MF technique have been successfully ap-

plied in industrial scenarios with large number of agents, such as

ridesharing order dispatching [20], edge computing [40] and un-

manned aerial vehicles (UAVs) controlling [7]. Nevertheless, such

approximation regards interactions among all agents equally and

discards the varying strengths of these interactions, losing precision

in modeling the complex relations among the agents (Figure 1c).

In this paper, we develop the MF method into GAT-MF, in which

we design a variant of graph attention mechanism to automatically

capture the varying strengths of agent-agent interactions and calcu-

late a weighted average of the actions according to their strengths.

Therefore, we are able to reduce the vector dimensions, scale up

the number of agents, and keep precise modeling of the relations

among the agents at the same time (Figure 1d).

Graph model in MARL. There exist previous works modeling

the relations among the agents in MARL systems with graphs, in

which each agent is represented by a node and each pair of agent-

agent interaction is represented by an edge. With such graph, they

focus on the local relations among neighboring agents, distilling the

agent-agent interactions. One basic approach is considering a given

coordination graph from prior knowledge [13, 28] and the action

of each agent is obtained considering the influence of its neighbors.

Other researchers improve this approach by utilizing graph neural

networks (GNNs) to automatically learn the agent-agent interac-

tions rather than obtain them from a given coordination graph. For

example, G2ANet [21] combines hard and soft graph attention to

indicate whether there exists an interaction between two agents

and the importance of the interaction, HAMA [38] designs a hier-

archical graph attention network (GAT) to model the hierarchical

relationships among multiple agents and MAGIC [30] utilizes GATs

to deal with the communications among agents in agent-agent in-

teractions. Furthermore, one theoretical research mathematically

shows how compact the agent-agent interactions can be distilled,

guiding algorithm designing [31]. Although these works distill the

agent-agent interactions by considering neighbors on the graph and

simplify the decision-making process, the number of interactions

still increases following 𝑂 (𝑁 2) as the number of agents grows to

𝑁 , especially when the graph of agents approaches a dense graph.

In contrast, we combine GAT mechanism with MF technique and

therefore keep the number of interactions at 𝑂 (𝑁), making it able

to scale up to scenarios with a large number of agents.

3 PRELIMINARIES
3.1 Markov Decision Processes (MDPs)
We discuss our method considering amulti-agent version ofMarkov

Decision Processes (MDPs) defined by ⟨𝑛,S, 𝜌,A, 𝑃, 𝑅,𝛾⟩, where 𝑛
denotes the total number of agents. The global state 𝒔 = (𝑠1, ..., 𝑠𝑛) ∈

687

KDD ’23, August 6–10, 2023, Long Beach, CA, USA Qianyue Hao, Wenzhen Huang, Tao Feng, Jian Yuan, & Yong Li

S consists of local state of each agent. The probability distribution

of initial state is given by 𝜌 = D(S), where D(S) is a collection
of probability distribution over the state space S. The joint action
𝒂 = (𝑎1, ..., 𝑎𝑛) ∈ A consists of local action of each agent and is

produced by the policy 𝝅𝜽 : S ↦→ D(A), with D(A) being a

collection of probability distribution over the state space A. 𝝅𝜽 is

parameterized with 𝜽 = (𝜃1, .., 𝜃𝑛) and local action of each agent is

produced by 𝜋𝜃𝑖 (𝒔). The state transition probability and the one-

step reward given the current state and the joint action are defined

by 𝑃 : S × A ↦→ D(S) and 𝑅 : S × A ↦→ R correspondingly. The

global one-step reward is the sum of local one-step rewards from

each agent, i.e., 𝑅(𝒔, 𝒂) = ∑
𝑗 𝑟 𝑗 (𝒔, 𝒂), and the long-term discounted

reward from 𝑡0 is defined by discount factor 𝛾 following:

𝑹𝒕0 =
𝑇∑︁

𝑡=𝑡0

𝛾𝑡−𝑡0𝑅(𝒔𝑡 , 𝒂𝑡), (1)

where 𝑇 is the maximum length of an episode and 𝛾 ∈ [0, 1].

3.2 Q-Learning and Deep Q-Network (DQN)
Q-Learning [52] is one of the basic RL methods, which learns ef-

ficient policy in MDPs through an off-policy manner. It aims at

finding a value function 𝑄𝝅𝜽 (𝒔, 𝒂) for policy 𝝅𝜽 :

𝑄𝝅𝜽 (𝒔, 𝒂) = E[𝑹𝒕 |𝒔 = 𝒔𝒕 , 𝒂 = 𝒂𝒕]
= E𝒔′ [𝑅(𝒔, 𝒂) + 𝛾E𝒂′∼𝝅𝜽 [𝑄

𝝅𝜽 (𝒔′, 𝒂′)]],
(2)

where the recursive form is Bellman Equation. In practical training

algorithms, this value function is obtained by minimizing the loss

function, which is designed with greedy thinking:

L = E(𝒔,𝒂,𝑅,𝒔′)∼B [(𝑄 (𝒔, 𝒂) −𝑦)2], 𝑦 = 𝑅 +𝛾 max

𝒂′
𝑄 ′ (𝒔′, 𝒂′), (3)

where B is the replay buffer collecting experiences (𝒔, 𝒂, 𝑅, 𝒔′) from
agent-environment interactions and 𝑄 ′ is the target version of

𝑄 , whose parameters are synchronized from 𝑄 with delay. After

obtaining the optimal value function 𝑄∗ (𝒔, 𝒂), the optimal policy

𝝅∗ is obtained in a greedy way:

𝝅∗ (arg max

𝒂
𝑄∗ (𝒔, 𝒂) |𝒔) → 1. (4)

Deep Q-Network (DQN) [27] keeps the same mathematical essence

as Q-learning but approaches the optimal value function 𝑄∗ (𝒔, 𝒂)
with a deep neural network, representing more complex environ-

mental situations and thus can solve problems in more scenarios.

3.3 Policy Gradient (PG) and Deep Deterministic
Policy Gradient (DDPG) Algorithm

Since𝑎𝑟𝑔𝑚𝑎𝑥𝒂 is used in obtaining the optimal policy in Q-Learning

and DQN, they are only practical in scenarios with discrete action

space A. To solve problems with continuous action spaces, Policy

Gradient (PG) methods are proposed [48]. In a major group of deep

PG methods, besides the value function network, the policy 𝝅𝜽 is

also approached by a neural network and directly calculates the

action 𝒂 given 𝒔. These methods keep training the value network

in a similar way as Q-Learning but without greed:

L = E(𝒔,𝒂,𝑅,𝒔′)∼B [(𝑄 (𝒔, 𝒂) − 𝑦)2], 𝑦 = 𝑅 + 𝛾𝑄 ′ (𝒔′, 𝒂′), (5)

and optimize the policy network to maximize the episode return,

following the gradient:

∇𝜽 𝐽 = E𝒂∼𝝅𝜽 [∇𝜽 log𝝅𝜽 (𝒂 |𝒔)𝑄𝝅𝜽 (𝒔, 𝒂)] . (6)

In practice, similar to the value network 𝑄 , the policy network 𝝅𝜽
also has a target copy with delayed parameters synchronization.

Deep Deterministic Policy Gradient (DDPG) [41] is a special variant

of PG methods where the policy is converted from a probability

distribution over the action space to a deterministic action. In the

DDPG training process, a small random disturbance is added to

the deterministic action, helping the agent explore the potential

action space. In this work, we mainly combine our proposed GAT-

MF method with the original MADDPG algorithm [22], which is a

multi-agent version of DDPG.

3.4 Problem Overview
In this paper, we primarily focus on large-scale multi-agent prob-

lems, which typical comprise 10
2
to 10

3
agents. The goal is to find

the joint action of the agents at each time step, i.e., 𝒂𝑡 , and thus

to maximize the global return of a whole episode, i.e., 𝑹𝒕0 , where
the global return is decided by the form of the reward function and

depends on the specific problem. To achieve this goal, we consider

both agent-agent and agent-environment interactions in the system.

In these scenarios, the global value function is equal to the sum of

local value functions of each agent, i.e., 𝑄 (𝒔, 𝒂) = ∑
𝑗 𝑄 𝑗 (𝒔, 𝒂). The

local value function of agent 𝑗 , i.e.,𝑄 𝑗 (𝒔, 𝒂), can be split into the sum
of 𝑄 𝑗 (𝒔, 𝑎 𝑗 , 𝑎𝑘), 𝑘 ≠ 𝑗 , or the sum of 𝑄̃ 𝑗 (𝑠 𝑗 , 𝑠𝑘 , 𝑎 𝑗 , 𝑠𝑘), 𝑘 ≠ 𝑗 , which

represents the local value considering each pair of agent-agent

interaction.

4 METHODS
4.1 Overview
As we showed in Section 2 and Figure 1b & c, unweighted MF uses

the following approximation on the value function of CTDE when

considering agent 𝑗 :

𝑄 𝑗 (𝒔, 𝒂) ∼ 𝑄 𝑗 (𝒔, 𝑎 𝑗 , 𝑎 𝑗), 𝑎 𝑗 =
1

|N 𝑗 |
∑︁

𝑘∈N 𝑗

𝑎𝑘 , (7)

where N 𝑗
denotes the neighboring agents of agent 𝑗 . However,

such an unweighted average neglects the fact that the strengths of

agent-agent interactions vary among different agent pairs and over

time. Therefore, intuitively, we can improve the approximation into

a weighted average to maintain such varying strengths. Moreover,

besides reducing the dimension of 𝒂, we can reduce the dimension

of 𝒔 with a similar technique, further reducing the computational

complexity. Generally, we propose the following approximation of

the value function of CTDE when considering agent 𝑗 :

𝑄 𝑗 (𝒔, 𝒂) ∼ 𝑄̃ 𝑗 (𝑠 𝑗 , 𝑠 𝑗 , 𝑎 𝑗 , 𝑎 𝑗),

𝑎 𝑗 =
1

𝑊𝑗

∑︁
𝑘∈N 𝑗

𝑤 𝑗𝑘𝑎𝑘 , 𝑠 𝑗 =
1

𝑊𝑗

∑︁
𝑘∈N 𝑗

𝑤 𝑗𝑘𝑠𝑘 , 𝑊𝑗 =
∑︁

𝑘∈N 𝑗

𝑤 𝑗𝑘 ,
(8)

where 𝑤 𝑗𝑘
is the weight between agent 𝑗 and 𝑘 , reflecting the

strength of interaction between them. On the other hand, to apply

our method to PG algorithms with actor-critic structures, we design

688

GAT-MF: Graph Attention Mean Field for Very Large Scale Multi-Agent Reinforcement Learning KDD ’23, August 6–10, 2023, Long Beach, CA, USA

a similar weighted average approximation to reduce the computa-

tional complexity of policy function, i.e., the actor, as follow:

𝜋 𝑗 (𝒔) ∼ 𝜋 𝑗 (𝑠 𝑗 , 𝑠 𝑗), 𝑠 𝑗 =
1

𝑈 𝑗

∑︁
𝑘∈N 𝑗

𝑢 𝑗𝑘𝑠𝑘 , 𝑈 𝑗 =
∑︁

𝑘∈N 𝑗

𝑢 𝑗𝑘 , (9)

where 𝑢 𝑗𝑘
is the corresponding weight between agent 𝑗 and 𝑘 .

Next, we will mathematically prove why this approximation

holds in Section 4.2 and illustrate how we automatically capture

the weights [𝑤 𝑗𝑘] and [𝑢 𝑗𝑘] and implement such approximation

in a practical MARL training algorithm in Section 4.3.

4.2 Mathematical Proof
Here we prove why the intuitive approximation of the weighted

average on the value function holds.

Theorem 1 (Weighted MF Approximation). When considering
agent 𝑗 , the centralized value function 𝑄 𝑗 (𝒔, 𝒂) can be approximated
by 𝑄̃ 𝑗 (𝑠 𝑗 , 𝑠 𝑗 , 𝑎 𝑗 , 𝑎 𝑗).

Proof. Since

𝑎 𝑗 =
1

𝑊𝑗

∑︁
𝑘∈N 𝑗

𝑤 𝑗𝑘𝑎𝑘 , 𝑊𝑗 =
∑︁

𝑘∈N 𝑗

𝑤 𝑗𝑘 , (10)

we regard each 𝑎𝑘 , 𝑘 ∈ N 𝑗
as the sum of 𝑎 𝑗 and a small fluctuation:

𝑎𝑘 = 𝑎 𝑗 + 𝛿𝑎 𝑗𝑘 , (11)

therefore, we have:

1

𝑊𝑗

∑︁
𝑘∈N 𝑗

𝑤 𝑗𝑘𝛿𝑎 𝑗𝑘 =
1

𝑊𝑗

∑︁
𝑘∈N 𝑗

𝑤 𝑗𝑘 (𝑎𝑘 − 𝑎 𝑗) = 𝑎 𝑗 − 𝑎 𝑗 = 0. (12)

And similarly, we have:

𝑠𝑘 = 𝑠 𝑗 + 𝛿𝑠 𝑗𝑘 ,
1

𝑊𝑗

∑︁
𝑘∈N 𝑗

𝑤 𝑗𝑘𝛿𝑠 𝑗𝑘 = 0. (13)

We expand the centralized value function according to Section 3.4,

only considering the interactions among neighboring agents:

𝑄 𝑗 (𝒔, 𝒂) =
1

𝑊𝑗

∑︁
𝑘∈N 𝑗

𝑤 𝑗𝑘𝑄̃ 𝑗 (𝑠 𝑗 , 𝑠𝑘 , 𝑎 𝑗 , 𝑎𝑘)

=
1

𝑊𝑗

∑︁
𝑘∈N 𝑗

𝑤 𝑗𝑘𝑄̃ 𝑗 (𝑠 𝑗 , 𝑠 𝑗 + 𝛿𝑠 𝑗𝑘 , 𝑎 𝑗 , 𝑎 𝑗 + 𝛿𝑎 𝑗𝑘) .
(14)

We denote 𝑄̃ 𝑗 (𝑠 𝑗 , 𝑠 𝑗 , 𝑎 𝑗 , 𝑎 𝑗) as𝑄0 and expand each term in the sum

according to Taylor’s formula:

(14) = 1

𝑊𝑗

∑︁
𝑘∈N 𝑗

𝑤 𝑗𝑘 [𝑄0 + ∇𝑠 𝑗𝑄0 · 𝛿𝑠 𝑗𝑘 + ∇𝑎̃ 𝑗
𝑄0 · 𝛿𝑎 𝑗𝑘 + 𝑜 𝑗𝑘]

= 𝑄0 + ∇𝑠 𝑗𝑄0 ·
1

𝑊𝑗

∑︁
𝑘∈N 𝑗

𝑤 𝑗𝑘𝛿𝑠 𝑗𝑘

+ ∇𝑎̃ 𝑗
𝑄0 ·

1

𝑊𝑗

∑︁
𝑘∈N 𝑗

𝑤 𝑗𝑘𝛿𝑎 𝑗𝑘 +
1

𝑊𝑗

∑︁
𝑘∈N 𝑗

𝑤 𝑗𝑘𝑜 𝑗𝑘

= 𝑄0 + 0 + 0 + 1

𝑊𝑗

∑︁
𝑘∈N 𝑗

𝑤 𝑗𝑘𝑜 𝑗𝑘

≈ 𝑄0 ≜ 𝑄̃ 𝑗 (𝑠 𝑗 , 𝑠 𝑗 , 𝑎 𝑗 , 𝑎 𝑗) .
(15)

Hence, the centralized value function𝑄 𝑗 (𝒔, 𝒂) can be approximated

with 𝑄̃ 𝑗 (𝑠 𝑗 , 𝑠 𝑗 , 𝑎 𝑗 , 𝑎 𝑗) with second order small error. We further

proof in Appendix B that the error is bounded within a small

symmetric interval [−𝐶𝐿,𝐶𝐿] under the mild condition of the Q-

function being L-smooth, where 𝐶 is a constant. □

K Network

Q Network
Q Vector
K Vector Inner Product

State Vector

...

Neighbors of

u w

Mean(),
u

w

w

Weighted Average

Agent-Agent Interaction

Action Vector
Agent

State Vector

Actor Q/K NetworkActor Q/K Network
Actor Q/K Vector
Critic Q/K Network
Critic Q/K Vector

Actor
Critic
Targeted Agent

Mean(),

Mean(),

(a) Graph of the agents (b) Calculation of the weights (c) Calculation of the weighted MF

Figure 2: Implementation details of the GAT-MF method.
(a) Modelling the adjacency among the agents into a graph,
where each agent has its state vector and action vector. (b)
Process of calculating the weights [𝑤 𝑗𝑘], [𝑢 𝑗𝑘] through graph
attention. (c) Using the obtained weights to calculate the
weighted MF vectors to be the inputs of the actor and critic.

4.3 Algorithm Design
Given the correctness of the weighted MF approximation, we il-

lustrate how to implement it into a practical MARL algorithm in

Figure 2. We consider scenarios where the agents have fixed rel-

ative positions and therefore we can model the adjacency among

them into a graph G (Figure 2a) where each node corresponds to

an agent. We consider the neighboring agents of agent 𝑗 , i.e.N 𝑗
, to

be the neighbor nodes of agent 𝑗 . To obtain the weights [𝑤 𝑗𝑘] and
[𝑢 𝑗𝑘], which reflect the varying strengths of interactions among

each agent and its neighbors, we design a variant of graph attention

(GAT) mechanism to automatically learn them.

In detail, each agent has a pair of query (Q) networks Q 𝑗
𝑎,Q

𝑗
𝑐 and

key (K) networksK 𝑗
𝑎 ,K

𝑗
𝑐 with learnable parameters, corresponding

to the actor and critic, respectively. In each step, Q 𝑗
𝑎,Q

𝑗
𝑐 ,K

𝑗
𝑎 ,K

𝑗
𝑐

take in the current local state vector 𝑠 𝑗 and produce a pair of Q

vectors 𝑞
𝑗
𝑎, 𝑞

𝑗
𝑐 and a pair of K vectors 𝑘

𝑗
𝑎, 𝑘

𝑗
𝑐 , which all have the

same dimension. Then, we calculate the weights through the inner

product of the corresponding Q and K vectors (Figure 2b), as:

𝑢 𝑗𝑘 = (𝑞 𝑗𝑎)𝑇𝑘𝑘𝑎 , 𝑤 𝑗𝑘 = (𝑞 𝑗𝑐)𝑇𝑘𝑘𝑐 . (16)

By this mechanism, we obtain the agent-pair-specific and time-

varying weights, reflecting the strengths of agent-agent interac-

tions. Finally, we weigh the state and action vectors by the weights

and calculate the MF vectors, which are then used as the inputs of

the actor and critic (Figure 2c). The parameters of Q 𝑗
𝑎,Q

𝑗
𝑐 ,K

𝑗
𝑎 ,K

𝑗
𝑐

are updated along with the actor and critic networks using the re-

ward signal, and we also apply the technique of target network with

delayed parameters synchronization to them. In detail, the param-

eters of the target networks are updated from the corresponding

online network via soft replace with rate 𝜅 as:

𝜃𝑡 ← 𝜅𝜃𝑡 + (1 − 𝜅)𝜃𝑜 , (17)

689

KDD ’23, August 6–10, 2023, Long Beach, CA, USA Qianyue Hao, Wenzhen Huang, Tao Feng, Jian Yuan, & Yong Li

Algorithm 1 Multi-agent Training with GAT-MF

Require: Number of agents 𝑛, number of training episodes 𝑀 ,

model update interval 𝐼 , reward discount factor 𝛾

Ensure: The trained multi-agent model

1: Initialize actor networks 𝜋 , initialize query (Q) networksQ𝑎,Q𝑐
and key (K) networksK𝑎,K𝑐 , the parameters are shared among

the agents

2: Initialize the critic network 𝑄

3: Copy 𝜋,Q𝑎,Q𝑐 ,K𝑎,K𝑐 and get the corresponding target net-

works ¤𝜋, ¤Q𝑎, ¤Q𝑐 , ¤K𝑎, ¤K𝑐
4: Copy 𝑄 and get the corresponding target network ¤𝑄
5: Initialize the experience replay buffer B
6: for episode = 1 to𝑀 do
7: Initialize a random process P for action exploration

8: Initialize the environment and obtain the initial state

𝒔 = (𝑠1, ..., 𝑠𝑛) ∈ S
9: for 𝑡 = 1 to max-episode-length do
10: Calculate the Q vectors and K vectors of each agent:

𝑞
𝑗
𝑎 = Q𝑎 (𝑠 𝑗), 𝑞 𝑗𝑐 = Q𝑐 (𝑠 𝑗), 𝑘 𝑗𝑎 = K𝑎 (𝑠 𝑗), 𝑘 𝑗𝑐 = K𝑐 (𝑠 𝑗)

11: for 𝑗 = 1 to 𝑛 do
12: Calculate the GAT weights for agent 𝑗 through the Q

vectors and K vectors: 𝑢 𝑗𝑘 = (𝑞 𝑗𝑎)𝑇𝑘𝑘𝑎 , 𝑘 ∈ N 𝑗

13: Calculate the local action with noise through GAT-MF:
𝑎 𝑗 = 𝜋 (𝑠 𝑗 , 𝑠 𝑗) + P,
𝑠 𝑗 =

1

𝑈 𝑗

∑
𝑘∈N 𝑗 𝑢 𝑗𝑘𝑠𝑘 ,𝑈 𝑗 =

∑
𝑘∈N 𝑗 𝑢 𝑗𝑘

14: end for
15: Execute the joint action 𝒂 = (𝑎1, ..., 𝑎𝑛) ∈ A in the envi-

ronment, observe the next state 𝒔′ = (𝑠′
1
, ..., 𝑠′𝑛) ∈ S and

the local one-step rewards 𝒓 = (𝑟1, ..., 𝑟𝑛) ∈ R𝑛
16: Store (𝒔, 𝒂, 𝒓, 𝒔′) into B
17: if reach the update interval 𝐼 then
18: Sample a random experience (𝒔, 𝒂, 𝒓, 𝒔′) from B
19: Update the network parameters via Algorithm 2

20: end if
21: end for
22: end for
23: return The train models for execution 𝜋,Q𝑎,K𝑎

where 𝜃𝑜 denotes the parameters of an online network and 𝜃𝑡
denotes the corresponding target network.

We combine GAT-MF with the original MADDPG algorithm and

show the outline of the training algorithm in Algorithm 1. First,

we randomly initialize the parameters of online networks and copy

them to obtain the corresponding target networks. Considering

the homogeneity among the agents, the network parameters are

shared among the agents, reducing memory consumption. Second,

we perform rollouts in the environment and collect the experiences

into the replay buffer. In this step, we calculate the actions through

GAT-MF and add random disturbance to the actions for exploration.

Third, after collecting a certain number of experiences, we sample

experiences from the replay buffer and update the parameters of

online actor, critic, query and key networks altogether according

to the samples using the reward signal, and then we update the

parameters of the corresponding target networks via soft replace.

Algorithm 2 Network Parameters Updating with GAT-MF

Require: Number of agents 𝑛, actor networks 𝜋 , query networks

Q𝑎,Q𝑐 , key networks K𝑎,K𝑐 , critic network 𝑄 with the corre-

sponding target networks ¤𝜋, ¤Q𝑎, ¤Q𝑐 , ¤K𝑎, ¤K𝑐 , ¤𝑄 , a sampled ex-

perience (𝒔, 𝒂, 𝒓, 𝒔′) and soft replace rate 𝜅

Ensure: The updated networks parameters

1: for j = 1 to 𝑛 do
2: Set 𝑦 𝑗 = 𝑟 𝑗 + 𝛾 ¤𝑄 (𝑠′𝑗 , 𝑠

′
𝑗
, ¤𝑎𝑠′

𝑗
, ¤̃𝑎𝑠′

𝑗
)

where ¤𝑎𝑠′
𝑗
= ¤𝜋 (𝑠′

𝑗
, 𝑠′
𝑗
), ¤𝒂𝒔′ = (¤𝑎𝑠′

1
, ..., ¤𝑎𝑠′𝑛)

𝑠′
𝑗
is the GAT-MF vector of 𝒔′ with weights

¤𝑞′𝑗𝑎 = ¤Q𝑎 (𝑠′𝑗) and ¤𝑘
′N 𝑗

𝑎 = ¤K𝑎 (𝑠′N 𝑗)
𝑠′
𝑗
is the GAT-MF vector of 𝒔′ with weights

¤𝑞′𝑗𝑐 = ¤Q𝑐 (𝑠′𝑗) and ¤𝑘
′N 𝑗

𝑐 = ¤K𝑐 (𝑠′N 𝑗)
¤̃𝑎𝑠′
𝑗
is the GAT-MF vector of ¤𝒂𝒔

′

with weights ¤𝑞′𝑗𝑐 and
¤𝑘′N 𝑗

𝑐

3: Calculate 𝐿𝑗 = (𝑦 𝑗 −𝑄 (𝑠 𝑗 , 𝑠 𝑗 , 𝑎 𝑗 , 𝑎 𝑗))2
𝑠 𝑗 is the GAT-MF vector of 𝒔 with weights

𝑞
𝑗
𝑐 = Q𝑐 (𝑠 𝑗) and 𝑘N

𝑗

𝑐 = K𝑐 (𝑠N 𝑗)
𝑎 𝑗 is the GAT-MF vector of 𝒂 with weights 𝑞

𝑗
𝑐 and 𝑘

N 𝑗

𝑐

4: Calculate 𝐽 𝑗 = 𝑄 (𝑠 𝑗 , 𝑠 𝑗 , 𝑎𝑠𝑗 , 𝑎
𝑠
𝑗
) where

𝑎𝑠
𝑗
= 𝜋 (𝑠 𝑗 , 𝑠 𝑗), 𝒂𝒔 = (𝑎𝑠

1
, ..., 𝑎𝑠𝑛)

𝑠 𝑗 is the GAT-MF vector of 𝒔 with weights

𝑞
𝑗
𝑎 = Q𝑎 (𝑠 𝑗) and 𝑘N

𝑗

𝑎 = K𝑎 (𝑠N 𝑗)
𝑎𝑠
𝑗
is the GAT-MF vector of 𝒂𝒔 with weights

𝑞
𝑗
𝑐 = Q𝑐 (𝑠 𝑗) and 𝑘N

𝑗

𝑐 = K𝑐 (𝑠N 𝑗)
5: end for
6: Update parameters of 𝑄,Q𝑐 ,K𝑐 , minimizing 𝐿 =

∑
𝑗 𝐿𝑗

7: Update parameters of 𝜋,Q𝑎,K𝑎 , maximizing 𝐽 =
∑

𝑗 𝐽 𝑗

8: Update ¤𝜋, ¤Q𝑎, ¤Q𝑐 , ¤K𝑎, ¤K𝑐 from parameters of 𝜋,Q𝑎,Q𝑐 ,K𝑎,K𝑐
via soft replace with rate 𝜅

9: Update ¤𝑄 from parameters of 𝑄 via soft replace with rate 𝜅

10: return The updated networks parameters

We show the detailed algorithm for parameters updating in Algo-

rithm 2. We repeatedly execute the rollout-update process until

convergence and obtain the well-trained GAT-MF models.

We first evaluate our method in a manual grid-world task with

100 agents and provide some straightforward visualizations of the

learned policies. We then extend the experiment into real-world

metropolitan tasks with more than 3000 agents, fully verifying the

ability of our method to scale up to very large number of agents.

We show the experimental results in Section 5 and provide detailed

hyper-parameters settings used in the experiments in Appendix A.

Our experiments are implemented with PyTorch, and the source

codes and data for reproducibility are posted at https://github.com/

tsinghua-fib-lab/Large-Scale-MARL-GATMF.

5 EXPERIMENTS
5.1 Experimental Settings
Scenario 1:manual grid-world task. First, we start with a diamonds-

seeking task in a manual grid world consisting of 10×10 grids with
loop boundaries, i.e., going out from the left will loop into the right,

690

https://github.com/tsinghua-fib-lab/Large-Scale-MARL-GATMF
https://github.com/tsinghua-fib-lab/Large-Scale-MARL-GATMF

GAT-MF: Graph Attention Mean Field for Very Large Scale Multi-Agent Reinforcement Learning KDD ’23, August 6–10, 2023, Long Beach, CA, USA

(a) Random initialization (b) Random action, 10 steps (c) Training curves (d) Best episode returns

Figure 3: Experimental settings and results in the grid-world task. (a) An initialized example of the grid world with randomly
located diamonds and uniformly distributed miners where each grid corresponds to one agent. (b) The return after 10 steps of
random action. (c) Training curves of the proposed GAT-MF, the baselines, and the ablation study with 95%-CI over 5 different
random seeds. (d) Best performance of each method with 95%-CI over 5 different random seeds.

and each grid corresponds to one agent. We show a randomly ini-

tialized example of the grid world in Figure 3a. Initially, there are

two diamond veins buried in two random grids (blue markers in

the figure) and the density of diamonds over the world, which is de-

noted by the contour lines, follows Gaussian distributions centered

at the two grids. There are also miners uniformly distributed over

the grids, whose number is denoted by the background color. The

total number of obtained diamonds is calculated by summing up

the product of the number of diamonds and miners at each grid and

the return is defined by how many more diamonds are obtained

than initialization. In each time step, 10% of the miners from each

grid move to one of its neighbors, and the task of the agents is to

give the exact numbers of miners to each of the four neighbors to

efficiently redistribute the miners and get as many diamonds as

possible. We show the distribution of miners and the return after

10 steps of random movements in Figure 3b as an example.

Scenario 2: real-world metropolitan task. In order to verify

the ability of our method to scale up to scenarios with a larger num-

ber of agents, we conduct further experiment on the real-world task

of COVID-19 vaccine allocation. During the pandemic of COVID-

19, people in metropolis with high population density and frequent

population mobility suffer a high risk of infection [45]. However,

vaccines, one of the most important medical resources, are in short-

age during the early stage of COVID-19. Therefore, in order to

minimize the overall infections, finding an efficient strategy to al-

locate the limited vaccines to the key population group, e.g., the

elders or the health workers, in the metropolis is of vital importance.

Previous researchers have built a precise simulator with real-world

data to infer the total infections with different vaccine-allocation

strategies [8]. We conduct our experiments based on the simulator

in two different cities, Atlanta and Miami, ensuring the ability of

generalization of our method. In each city, there are thousands of

blocks, corresponding to thousands of agents (Figure 4a and 4e).

People in each block have different age structures and time-varying

patterns visiting points of interest (POI
1
s) in the city. The popu-

lation mobility leads to contacts among people and complex and

time-varying risks of infection. We show the details of the cities in

this experiment in Table 1.

1
Specific locations that someone may find useful or interesting.

Table 1: Details of the cities in experiments.

Name Atlanta Miami

Population 7191638 6635035

Number of blocks 3130 3555

Number of POIs 39411 40964

Length of data 1512 hours

The task of the agents is to find an efficient way to allocate the

limited vaccines among the blocks at each time step, reduce the

local risk of infection in certain key blocks, and thus minimize the

overall infections, which is opposite to the return. We show a more

detailed background of this experiment in Appendix C.

5.2 Overall Performance
As we mentioned in Section 4.3, we mainly combine our proposed

GAT-MF with the MADDPG algorithm and train the models. We

compare the performance of our method with various baseline RL

algorithms, which are listed as follows:

• Global agent methods: In this group of baselines, we apply

widely used single-agent RL methods including DDPG [41],

PPO [39] and SAC [14] to the task. We consider the single-

agent to be a global one, which takes in the global state 𝒔
from all grids and gives the joint action 𝒂 of all grids in the

form of a concatenated high dimensional vector.

• CTDEMARLmethods: In this group of baselines, we apply
original versions of MADDPG [22] andMAPPO [55], which

are popular CTDE methods.

Specially, we further design the following ablation study to verify

the vital role of our GAT design:

• Ablation study, w/o GAT: We substitute the proposed GAT-

MF with the unweighted MF method as we described in

Section 4.1 while keeping the other parts identical.

In the manual grid-world task, we set the local state 𝑠 𝑗 at grid 𝑗 to

be a five-dimensional vector consisting of the densities of diamonds

at the center and the four corners of the grid. The local one-step

reward 𝑟 is set to be the difference in the number of obtained

diamonds by the grid and its neighbors before and after the step.

691

KDD ’23, August 6–10, 2023, Long Beach, CA, USA Qianyue Hao, Wenzhen Huang, Tao Feng, Jian Yuan, & Yong Li

(a) Map of Atlanta (b) Training curves in Atlanta (c) Best episode returns in Atlanta (d) Computational efficiency in Atlanta

(e) Map of Miami () Training curves in Miami (g) Best episode returns in Miami (h) Computational efficiency in Miami

Figure 4: Experimental settings and results in the real-world task. (a) The map of Atlanta, where each block is one unit in
the vaccine-allocation task and corresponds to one agent. (b) Training curves of the proposed GAT-MF, the baselines, and the
ablation study in Atlanta. (c) Best performance of each method in Atlanta. (d) Training time and GPU memory consumption
comparison in Atlanta. (e)-(h) Results of another group of experiments in Miami.

We train the model repeatedly with 5 different random seeds to

ensure the robustness of our method. We set 10 steps to be one

episode and randomly reinitialize the grid world after each episode

during the training.

We show the training curves over 50M agent-environment in-

teractions in Figure 3c and extract the best performance of each

method in Figure 3d, both together with the 95%-CI over different

random seeds. The results illustrate the superior performance of

our method with a margin up to 271.9%. Though MAPPO, one of

the SOTA MARL methods, is the best baseline, all global agent

methods and CTDE MARL methods perform relatively bad due to

the high complexity caused by the high dimensional vectors. This

stresses the necessity of using the mean-field approximation to

reduce the dimension when the number of agents is large. On the

other hand, the ablation version of our method, i.e., the MF, suffers

sharp performance decay, proving the key role of our GAT design.

In the real-world metropolitan task, the local state 𝑠 𝑗 at block 𝑗

consists of the current number of susceptible, infected, and dead

people in this block and we set the one-step reward 𝑟 to be opposite

to the number of newly infected people in the step. We set 24 hours

as one step during the training and an episode consists of 63 steps

(9 weeks). We compare the performance of our method with the

same baselines and ablation study, setting the available number of

vaccines identical among our method and the baselines.

We show the training curves over more than 1 billion agent-

environment interactions in Figure 4b and 4f, and summarize the

best performance of each method in Figure 4c and 4g. The results

illustrate that in this larger scenario with thousands of agents, all

the baseline methods failed to learn useful strategies and some of

them are even worse than a randomly initialized model. In contrast,

our method reaches a good performance rapidly and converges

stably, showing superior performance comparing the best baseline

with the margin of 42.7% and 22.9% in Atlanta and Miami, respec-

tively. The unweighted MF method ranks second in both cities,

verifying the validity of the mean field approximation. On the other

hand, its performance decay comparing the full GAT-MF verifies

the key role of our GAT design. In addition, we compare the perfor-

mance of our GAT-MF method with some well-known graph-based

MARL method in Appendix D, again highlighting the superior of

out method in large-scale settings. For more precise quantitative

understanding, we also provide numerical results for barplots in

Figure 3 and Figure 4 in the GitHub repository.

5.3 Visualizations of the Learned Policy
To help understand what the agents learned through training with

our method, here we provide some visualizations of the learned

policies in the manual grid-world task. In Figure 5a and 5b, we

show the distribution of miners after applying the policy from a

trained GAT-MF model for 5 and 10 steps. From these we find the

agents have learned reasonable policy, quickly making the miners

gather at grids with the most diamonds, e.g., the left-upper and left-

lower corner in the shown example. On the other hand, we show

in Figure 5c-5f the distribution of miners after applying policies

from a trained DDPG model and a trained MAPPO model for 5

and 10 steps, which are respective representatives of global agent

and CTDE methods. The DDPG policy tends to be like random

movements and the MAPPO policy tends to only do very slight

movements. We show more visualizations of policies from models

692

GAT-MF: Graph Attention Mean Field for Very Large Scale Multi-Agent Reinforcement Learning KDD ’23, August 6–10, 2023, Long Beach, CA, USA

(a) GAT-MF, 5 steps

(b) GAT-MF, 10 steps

(c) DDPG, 5 steps (e) MAPPO, 5 steps

(d) DDPG, 10 steps () MAPPO, 10 steps

(g) Learned attention of selected agents in GAT-MF

(h) Learned attention of selected agents in GAT-MF

Figure 5: Visualizations of the learned policies in the grid-world task. (a) (b) The distribution of miners after applying the
policy from a trained GAT-MF model for 5 and 10 steps. (c) (d) The distribution of miners after applying the policy from a
trained DDPG model for 5 and 10 steps. (e) (f) The distribution of miners after applying the policy from a trained MAPPO
model for 5 and 10 steps. (g) (h) The learned attentions of some actors at the first step from a trained GAT-MF model. Since one
panel cannot hold the attentions of all the actors, we show the attentions of four actors in each panel.

trained via other baseline methods in the GitHub repository and

find none of them help the agents learn efficient policy. Once again,

we verify the advantage of our method over the existing ones.

We also visualize the learned attentions of some actors at the first

step from a trained GAT-MF model in Figure 5g and 5h. We find the

attentions vary among the agents and reasonably, the agents tend

to pay larger attention to the neighboring agents which are in grids

with more diamonds, verifying the validity of the GAT design in

capturing the varying strengths of agent-agent interactions.We also

show more visualizations of the attentions in the GitHub repository

and from the results, we again verify the validity of the GAT design.

5.4 Computational Efficiency
We compare the computational efficiency

2
of our method with the

two CTDE methods in the real-world metropolitan task, where

there are more than 3000 agents. We show the comparison on train-

ing time consumption and GPU memory consumption in Figure 4d

and 4h. The results indicate that with the GAT-MF design, which

greatly reduces the input dimension of the actor and critic, our

method saves 86.4% and 89.2% training time comparing MAPPO

when training over the same number of agent-environment inter-

actions in Atlanta and Miami, respectively. Besides, our method

saves 19.2% and 19.5% GPU memory comparing MAPPO in the two

cities, respectively. In a nutshell, our method works especially well

in this scenario where there is a much larger number of agents, not

only reaching superior performance but also greatly reducing the

training time and GPU memory consumption.

2
Test on NVIDIA A100 GPU

6 CONCLUSIONS
In this paper, we propose the GAT-MF method, which addresses the

challenge of scaling up the number of agents in MARL algorithms.

We first intuitively analyzed its advantages over the existing CTDE

methods and the unweighted MF method, and then we mathemati-

cally proved its correctness. By incorporating the graph attention

mechanism, we implemented the theoretical theorem into a practi-

cal MARL algorithm. We conducted extensive experiments with the

algorithm in both manual and real-world scenarios with more than

3000 agents. The results demonstrate the superior performance

and high computational efficiency of our method, showcasing its

potential for solving various real-world large-scale problems.

One main limitation of our method is that the GAT mechanism

requires the agents to have fixed relative positions and thus the

adjacency among them can be modeled as a static graph. However,

in some scenarios, the agents are constantly moving and thus do

not have fixed relative positions. One possible solution for this is

to extend the static graph in this paper into a dynamic one and

modify the GAT mechanism to work on dynamic graphs. We leave

this as a potential direction for future works.

ACKNOWLEDGMENTS
This work was supported in part by The National Key Research

and Development Program of China under grant 2020AAA0106000,

the National Natural Science Foundation of China under 61972223,

U1936217, 61971267, and Beijing National Research Center for In-

formation Science and Technology.

693

KDD ’23, August 6–10, 2023, Long Beach, CA, USA Qianyue Hao, Wenzhen Huang, Tao Feng, Jian Yuan, & Yong Li

REFERENCES
[1] Husamelddin AM Balla, Chen Guang Sheng, and Weipeng Jing. 2021. Reliability-

aware: task scheduling in cloud computing using multi-agent reinforcement

learning algorithm and neural fitted Q. Int. Arab J. Inf. Technol. 18, 1 (2021),

36–47.

[2] Hamsa Bastani, Kimon Drakopoulos, Vishal Gupta, Ioannis Vlachogiannis, Chris-

tos Hadjicristodoulou, Pagona Lagiou, Gkikas Magiorkinis, Dimitrios Paraskevis,

and Sotirios Tsiodras. 2021. Efficient and targeted COVID-19 border testing via

reinforcement learning. Nature 599, 7883 (2021), 108–113.
[3] Wendelin Böhmer, Vitaly Kurin, and Shimon Whiteson. 2020. Deep coordination

graphs. In International Conference on Machine Learning. PMLR, 980–991.

[4] Lukas Brunke, Melissa Greeff, Adam W Hall, Zhaocong Yuan, Siqi Zhou, Jacopo

Panerati, and Angela P Schoellig. 2022. Safe learning in robotics: From learning-

based control to safe reinforcement learning. Annual Review of Control, Robotics,
and Autonomous Systems 5 (2022), 411–444.

[5] Serina Chang, Emma Pierson, PangWei Koh, Jaline Gerardin, Beth Redbird, David

Grusky, and Jure Leskovec. 2021. Mobility network models of COVID-19 explain

inequities and inform reopening. Nature 589, 7840 (2021), 82–87.
[6] Serina Chang, Mandy LWilson, Bryan Lewis, ZakariaMehrab, Komal KDudakiya,

Emma Pierson, Pang Wei Koh, Jaline Gerardin, Beth Redbird, David Grusky,

et al. 2021. Supporting covid-19 policy response with large-scale mobility-based

modeling. In Proceedings of the 27th ACM SIGKDD Conference on Knowledge
Discovery & Data Mining. 2632–2642.

[7] Dezhi Chen, Qi Qi, Zirui Zhuang, Jingyu Wang, Jianxin Liao, and Zhu Han. 2020.

Mean field deep reinforcement learning for fair and efficient UAV control. IEEE
Internet of Things Journal 8, 2 (2020), 813–828.

[8] Lin Chen, Fengli Xu, Zhenyu Han, Kun Tang, Pan Hui, James Evans, and Yong

Li. 2022. Strategic COVID-19 vaccine distribution can simultaneously elevate

social utility and equity. Nature Human Behaviour (2022), 1–12.
[9] Yiqun Chen, Hangyu Mao, Tianle Zhang, Shiguang Wu, Bin Zhang, Jianye Hao,

Dong Li, Bin Wang, and Hongxing Chang. 2022. PTDE: Personalized Train-

ing with Distillated Execution for Multi-Agent Reinforcement Learning. arXiv
preprint arXiv:2210.08872 (2022).

[10] Christian Schroeder de Witt, Tarun Gupta, Denys Makoviichuk, Viktor Makoviy-

chuk, Philip HS Torr, Mingfei Sun, and Shimon Whiteson. 2020. Is independent

learning all you need in the starcraft multi-agent challenge? arXiv preprint
arXiv:2011.09533 (2020).

[11] Jonas Degrave, Federico Felici, Jonas Buchli, Michael Neunert, Brendan Tracey,

Francesco Carpanese, Timo Ewalds, Roland Hafner, Abbas Abdolmaleki, Diego

de Las Casas, et al. 2022. Magnetic control of tokamak plasmas through deep

reinforcement learning. Nature 602, 7897 (2022), 414–419.
[12] Jakob Foerster, Gregory Farquhar, Triantafyllos Afouras, Nantas Nardelli, and Shi-

mon Whiteson. 2018. Counterfactual multi-agent policy gradients. In Proceedings
of the AAAI conference on artificial intelligence, Vol. 32.

[13] Carlos Guestrin, Michail G. Lagoudakis, and Ronald Parr. 2002. Coordinated

Reinforcement Learning. In Machine Learning, Proceedings of the Nineteenth
International Conference (ICML 2002), University of New South Wales, Sydney,
Australia, July 8-12, 2002, Claude Sammut and Achim G. Hoffmann (Eds.). Morgan

Kaufmann, 227–234.

[14] Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon

Ha, Jie Tan, Vikash Kumar, Henry Zhu, Abhishek Gupta, Pieter Abbeel, et al. 2018.

Soft actor-critic algorithms and applications. arXiv preprint arXiv:1812.05905
(2018).

[15] Qianyue Hao, Wenzhen Huang, Fengli Xu, Kun Tang, and Yong Li. 2022. Re-

inforcement Learning Enhances the Experts: Large-scale COVID-19 Vaccine

Allocation with Multi-factor Contact Network. In Proceedings of the 28th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining. 4684–4694.

[16] Qianyue Hao, Fengli Xu, Lin Chen, Pan Hui, and Yong Li. 2021. Hierarchical

Reinforcement Learning for Scarce Medical Resource Allocation with Imperfect

Information. In Proceedings of the 27th ACM SIGKDD Conference on Knowledge
Discovery & Data Mining. 2955–2963.

[17] Jiechuan Jiang, Chen Dun, Tiejun Huang, and Zongqing Lu. 2018. Graph convo-

lutional reinforcement learning. arXiv preprint arXiv:1810.09202 (2018).
[18] Jakub Grudzien Kuba, Ruiqing Chen, Muning Wen, Ying Wen, Fanglei Sun, Jun

Wang, and Yaodong Yang. 2021. Trust region policy optimisation in multi-agent

reinforcement learning. arXiv preprint arXiv:2109.11251 (2021).
[19] Jingbo Li, Xingjun Zhang, Jia Wei, Zeyu Ji, and Zheng Wei. 2022. GARLSched:

Generative adversarial deep reinforcement learning task scheduling optimization

for large-scale high performance computing systems. Future Generation Computer
Systems (2022).

[20] Minne Li, Zhiwei Qin, Yan Jiao, Yaodong Yang, Jun Wang, Chenxi Wang, Guobin

Wu, and Jieping Ye. 2019. Efficient ridesharing order dispatching with mean field

multi-agent reinforcement learning. In The world wide web conference. 983–994.
[21] Yong Liu, Weixun Wang, Yujing Hu, Jianye Hao, Xingguo Chen, and Yang Gao.

2020. Multi-Agent Game Abstraction via Graph Attention Neural Network. In The
Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-
Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020,
The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence,

EAAI 2020, New York, NY, USA, February 7-12, 2020. AAAI Press, 7211–7218.
https://ojs.aaai.org/index.php/AAAI/article/view/6211

[22] Ryan Lowe, Yi I Wu, Aviv Tamar, Jean Harb, OpenAI Pieter Abbeel, and Igor

Mordatch. 2017. Multi-agent actor-critic for mixed cooperative-competitive

environments. Advances in neural information processing systems 30 (2017).
[23] Yi Ma, Xiaotian Hao, Jianye Hao, Jiawen Lu, Xing Liu, Tong Xialiang, Mingxuan

Yuan, Zhigang Li, Jie Tang, and Zhaopeng Meng. 2021. A hierarchical reinforce-

ment learning based optimization framework for large-scale dynamic pickup and

delivery problems. Advances in Neural Information Processing Systems 34 (2021),
23609–23620.

[24] Hangyu Mao, Wulong Liu, Jianye Hao, Jun Luo, Dong Li, Zhengchao Zhang,

Jun Wang, and Zhen Xiao. 2020. Neighborhood cognition consistent multi-

agent reinforcement learning. In Proceedings of the AAAI conference on artificial
intelligence, Vol. 34. 7219–7226.

[25] Hangyu Mao, Zhengchao Zhang, Zhen Xiao, and Zhibo Gong. 2018. Modelling

the dynamic joint policy of teammates with attention multi-agent DDPG. arXiv
preprint arXiv:1811.07029 (2018).

[26] Hangyu Mao, Zhengchao Zhang, Zhen Xiao, Zhibo Gong, and Yan Ni. 2020.

Learning agent communication under limited bandwidth by message pruning. In

Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 34. 5142–5149.
[27] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis

Antonoglou, Daan Wierstra, and Martin Riedmiller. 2013. Playing atari with deep

reinforcement learning. arXiv preprint arXiv:1312.5602 (2013).
[28] Ranjit Nair, Pradeep Varakantham, Milind Tambe, and Makoto Yokoo. 2005.

Networked Distributed POMDPs: A Synthesis of Distributed Constraint Opti-

mization and POMDPs. In Proceedings, The Twentieth National Conference on
Artificial Intelligence and the Seventeenth Innovative Applications of Artificial In-
telligence Conference, July 9-13, 2005, Pittsburgh, Pennsylvania, USA, Manuela M.

Veloso and Subbarao Kambhampati (Eds.). AAAI Press / The MIT Press, 133–139.

http://www.aaai.org/Library/AAAI/2005/aaai05-022.php

[29] Yaru Niu, Rohan R Paleja, and Matthew C Gombolay. 2021. Multi-Agent Graph-

Attention Communication and Teaming.. In AAMAS. 964–973.
[30] Yaru Niu, Rohan R. Paleja, and Matthew C. Gombolay. 2021. Multi-Agent Graph-

Attention Communication and Teaming. In AAMAS ’21: 20th International Con-
ference on Autonomous Agents and Multiagent Systems, Virtual Event, United
Kingdom, May 3-7, 2021, Frank Dignum, Alessio Lomuscio, Ulle Endriss, and Ann

Nowé (Eds.). ACM, 964–973. https://doi.org/10.5555/3463952.3464065

[31] Frans A. Oliehoek, Stefan J.Witwicki, and Leslie Pack Kaelbling. 2021. A Sufficient

Statistic for Influence in Structured Multiagent Environments. J. Artif. Intell. Res.
70 (2021), 789–870. https://doi.org/10.1613/jair.1.12136

[32] Dawei Qiu, Yujian Ye, Dimitrios Papadaskalopoulos, and Goran Strbac. 2021.

Scalable coordinated management of peer-to-peer energy trading: A multi-cluster

deep reinforcement learning approach. Applied Energy 292 (2021), 116940.

[33] Shuhui Qu, Jie Wang, and Juergen Jasperneite. 2019. Dynamic scheduling in mod-

ern processing systems using expert-guided distributed reinforcement learning.

In 2019 24th IEEE International Conference on Emerging Technologies and Factory
Automation (ETFA). IEEE, 459–466.

[34] Tabish Rashid, Mikayel Samvelyan, Christian Schroeder, Gregory Farquhar, Jakob

Foerster, and Shimon Whiteson. 2018. Qmix: Monotonic value function factori-

sation for deep multi-agent reinforcement learning. In International conference
on machine learning. PMLR, 4295–4304.

[35] Tao Ren, Jianwei Niu, Bin Dai, Xuefeng Liu, Zheyuan Hu, Mingliang Xu, and

Mohsen Guizani. 2021. Enabling Efficient Scheduling in Large-Scale UAV-Assisted

Mobile-Edge Computing via Hierarchical Reinforcement Learning. IEEE Internet
of Things Journal 9, 10 (2021), 7095–7109.

[36] Jingqing Ruan, Yali Du, XuantangXiong, DengpengXing, Xiyun Li, LinghuiMeng,

Haifeng Zhang, Jun Wang, and Bo Xu. 2022. GCS: Graph-Based Coordination

Strategy forMulti-Agent Reinforcement Learning. arXiv preprint arXiv:2201.06257
(2022).

[37] Heechang Ryu, Hayong Shin, and Jinkyoo Park. 2020. Multi-agent actor-critic

with hierarchical graph attention network. In Proceedings of the AAAI Conference
on Artificial Intelligence, Vol. 34. 7236–7243.

[38] Heechang Ryu, Hayong Shin, and Jinkyoo Park. 2020. Multi-Agent Actor-Critic

with Hierarchical Graph Attention Network. In The Thirty-Fourth AAAI Confer-
ence on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications
of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on
Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, Feb-
ruary 7-12, 2020. AAAI Press, 7236–7243. https://ojs.aaai.org/index.php/AAAI/

article/view/6214

[39] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.

2017. Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347
(2017).

[40] Dian Shi, Hao Gao, Li Wang, Miao Pan, Zhu Han, and H Vincent Poor. 2020. Mean

field game guided deep reinforcement learning for task placement in cooperative

multiaccess edge computing. IEEE Internet of Things Journal 7, 10 (2020), 9330–
9340.

[41] David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, and

Martin Riedmiller. 2014. Deterministic policy gradient algorithms. In International

694

https://ojs.aaai.org/index.php/AAAI/article/view/6211
http://www.aaai.org/Library/AAAI/2005/aaai05-022.php
https://doi.org/10.5555/3463952.3464065
https://doi.org/10.1613/jair.1.12136
https://ojs.aaai.org/index.php/AAAI/article/view/6214
https://ojs.aaai.org/index.php/AAAI/article/view/6214

GAT-MF: Graph Attention Mean Field for Very Large Scale Multi-Agent Reinforcement Learning KDD ’23, August 6–10, 2023, Long Beach, CA, USA

conference on machine learning. PMLR, 387–395.

[42] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja

Huang, Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton,

et al. 2017. Mastering the game of go without human knowledge. Nature 550,
7676 (2017), 354–359.

[43] Samarth Sinha, Ajay Mandlekar, and Animesh Garg. 2022. S4RL: Surprisingly sim-

ple self-supervision for offline reinforcement learning in robotics. In Conference
on Robot Learning. PMLR, 907–917.

[44] Kyunghwan Son, Daewoo Kim, Wan Ju Kang, David Earl Hostallero, and Yung

Yi. 2019. Qtran: Learning to factorize with transformation for cooperative multi-

agent reinforcement learning. In International conference on machine learning.
PMLR, 5887–5896.

[45] Andrew J Stier, Marc G Berman, and Luis Bettencourt. 2020. COVID-19 attack

rate increases with city size. arXiv preprint arXiv:2003.10376 (2020).
[46] Sainbayar Sukhbaatar, Rob Fergus, et al. 2016. Learning multiagent communica-

tion with backpropagation. Advances in neural information processing systems 29
(2016).

[47] Peter Sunehag, Guy Lever, Audrunas Gruslys, Wojciech Marian Czarnecki, Vini-

cius Zambaldi, Max Jaderberg, Marc Lanctot, Nicolas Sonnerat, Joel Z Leibo, Karl

Tuyls, et al. 2017. Value-decomposition networks for cooperative multi-agent

learning. arXiv preprint arXiv:1706.05296 (2017).
[48] Richard S Sutton, David McAllester, Satinder Singh, and Yishay Mansour. 1999.

Policy gradient methods for reinforcement learning with function approximation.

Advances in neural information processing systems 12 (1999).

[49] Oriol Vinyals, Igor Babuschkin, Wojciech M Czarnecki, Michaël Mathieu, An-

drew Dudzik, Junyoung Chung, David H Choi, Richard Powell, Timo Ewalds,

Petko Georgiev, et al. 2019. Grandmaster level in StarCraft II using multi-agent

reinforcement learning. Nature 575, 7782 (2019), 350–354.
[50] Jianhong Wang, Wangkun Xu, Yunjie Gu, Wenbin Song, and Tim C Green. 2021.

Multi-agent reinforcement learning for active voltage control on power distri-

bution networks. Advances in Neural Information Processing Systems 34 (2021),
3271–3284.

[51] TongWang, Jiahua Cao, and Azhar Hussain. 2021. Adaptive Traffic Signal Control

for large-scale scenario with Cooperative Group-basedMulti-agent reinforcement

learning. Transportation research part C: emerging technologies 125 (2021), 103046.
[52] Christopher JCH Watkins and Peter Dayan. 1992. Q-learning. Machine learning

8, 3 (1992), 279–292.

[53] Yaodong Yang, Rui Luo, Minne Li, Ming Zhou, Weinan Zhang, and Jun Wang.

2018. Mean field multi-agent reinforcement learning. In International conference
on machine learning. PMLR, 5571–5580.

[54] Weirui Ye, Shaohuai Liu, Thanard Kurutach, Pieter Abbeel, and Yang Gao. 2021.

Mastering atari games with limited data. Advances in Neural Information Process-
ing Systems 34 (2021), 25476–25488.

[55] Chao Yu, Akash Velu, Eugene Vinitsky, Yu Wang, Alexandre Bayen, and Yi Wu.

2021. The surprising effectiveness of ppo in cooperative, multi-agent games.

arXiv preprint arXiv:2103.01955 (2021).
[56] Jian Zhao, Xunhan Hu, Mingyu Yang, Wengang Zhou, Jiangcheng Zhu, and

Houqiang Li. 2022. CTDS: Centralized Teacher with Decentralized Student for

Multi-Agent Reinforcement Learning. IEEE Transactions on Games (2022).

695

KDD ’23, August 6–10, 2023, Long Beach, CA, USA Qianyue Hao, Wenzhen Huang, Tao Feng, Jian Yuan, & Yong Li

A IMPLEMENTATION DETAILS FOR
REPRODUCIBILITY

We perform experiments using Python 3.9 and Pytorch 1.11 with

NVIDIA GeForce RTX 3090 and NVIDIA A100 GPUs. Here we

provide detailed values of the hyper-parameters used in the ex-

periments for reproducibility in Table 2 and Table 3 for the the

grid-world task and the real-world task, respectively.

Table 2: Hyper-parameters in the grid-world task.

Hyper-parameter Value

Slope of the Leaky-ReLU function 0.01

Training episode 100000

Batch size 256

Replay buffer size 3000000

Soft replace rate 0.01

Optimizer Adam

Learning rate 1 × 10
−4

Weight of noise for exploration 0.1

Table 3: Hyper-parameters in the real-world task.

Hyper-parameter Value

Slope of the Leaky-ReLU function 0.01

Training episode 110

Batch size 24

Number of parallel rollout 64

Replay buffer size 64*64*1511

Soft replace rate 0.01

Optimizer Adam

Learning rate 1 × 10
−4

Weight of noise for exploration 0.002

The networks used in our implementations are mainly MLPs

and detailed information can be found in our source codes.

B EXTENDED MATHEMATICAL PROOF
Here, we further derive that the approximation error, i.e., the second

order remainder 𝑜 𝑗𝑘 in the Taylor’s polynomial, is bounded within

a small symmetric interval [−𝐶𝐿,𝐶𝐿] under the mild condition of

the Q-function being L-smooth, where 𝐶 is a constant.

Proof. From Taylor’s formula, we have

𝑜 𝑗𝑘 =
1

2

𝛿𝑎 𝑗𝑘∇2

𝑎̃_𝑗
𝑄̃_ 𝑗 (𝑠 𝑗 , 𝑠𝑘 , 𝑎 𝑗 , 𝑎_ 𝑗)𝛿𝑎 𝑗𝑘

+ 1

2

𝛿𝑠 𝑗𝑘∇2

𝑠_𝑗
𝑄̃_ 𝑗 (𝑠 𝑗 , 𝑠_ 𝑗, 𝑎 𝑗 , 𝑎𝑘)𝛿𝑠 𝑗𝑘 .

(18)

First, we consider the first itemwhere we approximate𝑎𝑘 with𝑎 𝑗 .

The following derivation is irrelevant to 𝑠 𝑗 , 𝑠𝑘 , 𝑎 𝑗 , and for simplicity

we denote

𝑄̃ 𝑗 (𝑠 𝑗 , 𝑠𝑘 , 𝑎 𝑗 , 𝑎𝑘) ≜ 𝑄 (𝑎𝑘), 𝑄̃ 𝑗 (𝑠 𝑗 , 𝑠𝑘 , 𝑎 𝑗 , 𝑎 𝑗) ≜ 𝑄 (𝑎 𝑗) . (19)

Suppose that the Q-function is L-smooth, we have

∥∇𝑄 (𝑎𝑘) − ∇𝑄 (𝑎 𝑗)∥2 ≤ 𝐿∥𝑎𝑘 − 𝑎 𝑗 ∥2, (20)

where ∥ · ∥2 denotes the 𝑙2-norm.

According to the Lagrange’s mean value theorem, we have

∇𝑄 (𝑎𝑘) − ∇𝑄 (𝑎 𝑗) = ∇𝑄 (𝑎 𝑗 + (𝑎𝑘 − 𝑎 𝑗)) − ∇𝑄 (𝑎 𝑗)
= ∇2𝑄 (𝑎 𝑗 + 𝜖 (𝑎𝑘 − 𝑎 𝑗)) (𝑎𝑘 − 𝑎 𝑗), 𝜖 ∈ [0, 1] .

(21)

Adding 𝑙2-norm on the both sides of the above equation, from

the smoothness condition, we have

∥∇𝑄 (𝑎𝑘) − ∇𝑄 (𝑎 𝑗)∥2 = ∥∇2𝑄 (𝑎 𝑗 + 𝜖 (𝑎𝑘 − 𝑎 𝑗)) (𝑎𝑘 − 𝑎 𝑗)∥2
≤ 𝐿∥𝑎𝑘 − 𝑎 𝑗 ∥2 .

(22)

We define 𝛿𝑎 𝑗𝑘 = 𝑎𝑘 − 𝑎 𝑗 ≜ 𝛿𝑎 and the normalized vector

𝛿𝑎 ≜ 𝛿𝑎
∥𝛿𝑎∥2 with ∥𝛿𝑎∥2 = 1 and can write the above inequality as

∥∇2𝑄 (𝑎 𝑗 + 𝜖𝛿𝑎)𝛿𝑎∥2 ≤ 𝐿. (23)

By arbitrary choice of 𝛿𝑎 such that the magnitude ∥𝛿𝑎∥2 → 0, it

follows from above that

∥∇2𝑄 (𝑎 𝑗)𝛿𝑎∥2 ≤ 𝐿. (24)

By aligning 𝛿𝑎 in the direction of the eigenvectors of the Hessian

matrix ∇2𝑄 , we obtain that for any eigenvalue 𝜆 of ∇2𝑄

∥∇2𝑄 (𝑎 𝑗)𝛿𝑎∥2 = ∥𝜆𝛿𝑎∥2 = |𝜆 | · ∥𝛿𝑎∥2 = |𝜆 | ≤ 𝐿. (25)

As the Hessian matrix ∇2𝑄 is real symmetric and thus diagonal-

izable, there exist a unit orthogonal matrix 𝑈 such that

𝑈𝑇 (∇2𝑄)𝑈 = Λ ≜ 𝑑𝑖𝑎𝑔(𝜆1, . . . , 𝜆𝐷) . (26)

Then we have

𝛿𝑎 · ∇2𝑄 · 𝛿𝑎 = (𝑈𝛿𝑎)𝑇Λ(𝑈𝛿𝑎) =
𝐷∑︁
𝑖=1

𝜆𝑖 (𝑈𝛿𝑎)2𝑖 , (27)

where

−𝐿∥𝑈𝛿𝑎∥2 = −𝐿
𝐷∑︁
𝑖=1

(𝑈𝛿𝑎)2𝑖 ≤
𝐷∑︁
𝑖=1

𝜆𝑖 (𝑈𝛿𝑎)2𝑖 ≤ 𝐿

𝐷∑︁
𝑖=1

(𝑈𝛿𝑎)2𝑖 = 𝐿∥𝑈𝛿𝑎∥2 .

(28)

Since𝑈 is unit orthogonal matrix, we have

∥𝑈𝛿𝑎∥2 = ∥𝛿𝑎∥2 = (𝑎𝑘−𝑎 𝑗)𝑇 (𝑎𝑘−𝑎 𝑗) = ∥𝑎𝑘 ∥2+∥𝑎 𝑗 ∥2−2𝑎𝑇
𝑘
𝑎 𝑗 ≤ 𝐶,

(29)

where 𝐶 is a constant bound related to the magnitude of action

vectors.

Put the above together, we have

−1

2

𝐶𝐿 ≤ 1

2

𝛿𝑎 · ∇2𝑄 · 𝛿𝑎 ≤ 1

2

𝐶𝐿. (30)

Similarly, we can prove that the second item in 𝑜 𝑗𝑘 also follows

−1

2

𝐶𝐿 ≤ 1

2

𝛿𝑠 · ∇2𝑄 · 𝛿𝑠 ≤ 1

2

𝐶𝐿. (31)

Therefore, we have proved that the approximation error, i.e., the

second order remainder, is bounded as

696

GAT-MF: Graph Attention Mean Field for Very Large Scale Multi-Agent Reinforcement Learning KDD ’23, August 6–10, 2023, Long Beach, CA, USA

−𝐶𝐿 ≤ 𝑜 𝑗𝑘 ≤ 𝐶𝐿. (32)

□

Specifically in the implementation, the constant 𝐶 can be con-

trolled to a relatively small number by normalization on the state

vector 𝑠 and action vector 𝑎. Also, Q-function tends to be smooth

in most scenarios, especially those with continuous state and ac-

tion spaces, and thus the constant 𝐿 can be considered small. Put

together, the approximation error in our paper is bounded within

a small symmetric interval, indicating that our GAT-MF approach

can approximate the exact Q-function precisely.

C BACKGROUND OF THE REAL-WORLD
METROPOLITAN TASK

In this section, we introduce more details of the background of the

real-world vaccines-allocation experiment. The long-lasting global

pandemic spreading of COVID-19 has caused countless damage to

the social economy and people’s daily life. With the aim of better

understanding the pandemic spreading dynamics, there exist many

works on modeling and simulating the COVID-19 pandemic spread-

ing with various mathematical models and data sources [5, 6, 8]. In

this paper, we mainly conduct our experiments based on the Be-

havior and Demography informed epidemic model (BD model) [8],

which is an improved version of the meta-population model [5].

In general, the BD model simulates the pandemic spreading in-

side the metropolitan statistical areas (MSA
3
s), with the smallest

unit of census block groups (CBG
4
s) and points of interest (POI

5
s).

Typically, there are thousands of CBGs and more than ten thou-

sand of POIs within one MSA. The BD model divides the pandemic

spreading process into two parts, i.e., Intra-CBG transmissions

Inter-CBG transmissions, and models them respectively. For the

Intra-CBG transmissions, it maintains a local Susceptible-Exposed-

Infected-Removed (SEIR) model in each CBG, where S denotes

susceptible, E denotes exposed, I denotes infected and R denotes

removed. There is a proportion of infected cases become reported

cases and the proportion is decided by the testing capability. Only

reported cases are observable while the rest of the infected cases

are not observable. There are a proportion of removed cases turn

out to be deaths according to the infection-fatality rate (IFR) in each

CBG while others turn out to recover. As is known to us, the death

rate is strongly related to age and thus the IFR is estimated by the

population age structure of each CBG and age-specified death risks.

On the other hand, the BD-model mainly models the Inter-CBG

transmissions part based on the population mobility and contact

network among CBGs and POIs. Inter-CBG transmissions happen

when susceptible individuals from a certain CBG encounter infected

individuals from another CBG when visiting a POI. The transmis-

sion probability varies among the POIs, which is positively related

to people’s average dwelling time at a certain POI and is inversely

proportional to the POI’s floor space, reflecting the population den-

sity in such POI. The effect of vaccines on the transmission process

is modeled as an equivalent reduction in the infection rate, which

3
Regions with a relatively high population density and close economic ties throughout

the area.

4
The smallest geographical unit for which the bureau publishes sample data.

5
Specific locations that someone may find useful or interesting.

means the probability for susceptible individuals in a certain CBG

to be infected and turn into an exposed case in contact with infected

individuals reduces proportionally to the percentage of vaccinated

individuals in such CBG. We assume that an individual will obtain

100% immunity after one dose of vaccine injection for simplifica-

tion in this paper while the real-world situations of two-injection

vaccines and < 100% immunity can be modeled with no essential

difference by simply changing the parameters.

The required data of population mobility, i.e., how people from

each CBG visit each POI and encounter people from other CBGs,

are originally captured by previous researchers from the SafeGraph

open data
6
and are available online

7
[5]. In the study of BD-model,

the researchers further process the data into a suitable form to

feed into the simulator. They have verified the accuracy of the BD

model by comparing the simulation results by computers with the

reported real-world situations. Results show that the model can

reflect the real-world pandemic spreading situations precisely and

thus we can conduct experiments based on it with confidence.

D EXTENDED BASELINE COMPARISONS
In table 4, we provide extended comparisons with some well-known

graph-based MARL method in our real-world metropolitan task

with thousands of agents to highlight that our GAT-MF is superior

for large-scale MARL settings.

• DGN [17]: This work applied GCNs to aggregate local ob-

servations of all agents and used the aggregated vector as

the input of Q-function.

• DCG [3]: This work factorized the Q-function according to

the coordination graph (CG), into the sum of "utility func-

tions" of each node (agent) and "payoff function" of each

edge (agent-agent interaction).

• GCS [36]: Thiswork generated directed acyclic graphs (DAGs)
with GAT encoders and used the DAGs as action coordina-

tion graph (ACG). Based on the ACG, they obtained coordi-

nated actions for agents.

• NCC [24]: This work obtained inspiration from psychol-

ogy and sociology and aimed to keep the ’cognition’ among

neighboring agents consistent to ensure better cooperation.

They designed GCNs and variational autoencoders to cap-

ture the ’cognition’ of each agent from the observations and

used KL-divergence to keep the neighborhood cognition

consistency.

Table 4: Best episode return in the real-world metropolitan
task

Atlanta Miami

DGN -8968.002 (-73.727%) -15398.495 (-38.969%)

DCG -6110.560 (-18.373%) -13040.075 (-17.684%)

GCS -7316.499 (-41.734%) -15654.693 (-41.281%)

NCC The complexity of NCC is too high to test

Ours -5162.126 -11080.564

6
https://www.safegraph.com/

7
https://covid-mobility.stanford.edu//datasets/

697

https://www.safegraph.com/
https://covid-mobility.stanford.edu//datasets/

	Abstract
	1 Introduction
	2 Related Works
	3 Preliminaries
	3.1 Markov Decision Processes (MDPs)
	3.2 Q-Learning and Deep Q-Network (DQN)
	3.3 Policy Gradient (PG) and Deep Deterministic Policy Gradient (DDPG) Algorithm
	3.4 Problem Overview

	4 Methods
	4.1 Overview
	4.2 Mathematical Proof
	4.3 Algorithm Design

	5 Experiments
	5.1 Experimental Settings
	5.2 Overall Performance
	5.3 Visualizations of the Learned Policy
	5.4 Computational Efficiency

	6 Conclusions
	Acknowledgments
	References
	A Implementation Details for Reproducibility
	B Extended Mathematical Proof
	C Background of The Real-World Metropolitan Task
	D Extended Baseline Comparisons

