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ABSTRACT
To control the outbreak of COVID-19, efficient individual mobility
intervention for EPidemic Control (EPC) strategies are of great im-
portance, which cut off the contact among people at epidemic risks
and reduce infections by intervening the mobility of individuals.
Reinforcement Learning (RL) is powerful for decision making, how-
ever, there are two major challenges in developing an RL-based EPC
strategy: (1) the unobservable information about asymptomatic in-
fections in the incubation period makes it difficult for RL’s decision-
making, and (2) the delayed rewards for RL causes the deficiency
of RL learning. Since the results of EPC are reflected in both daily
infections (including unobservable asymptomatic infections) and
long-term cumulative cases of COVID-19, it is quite daunting to
design an RL model for precise mobility intervention. In this paper,
we propose a Variational hiErarcHICal reinforcement Learning
method for Epidemic control via individual-level mobility inter-
vention, namely Vehicle. To tackle the above challenges, Vehicle
first exploits an information rebuilding module that consists of a
contact-risk bipartite graph neural network and a variational LSTM
to restore the unobservable information. The contact-risk bipartite
graph neural network estimates the possibility of an individual
being an asymptomatic infection and the risk of this individual
spreading the epidemic, as the current state of RL. Then, the Varia-
tional LSTM further encodes the state sequence tomodel the latency
of epidemic spreading caused by unobservable asymptomatic infec-
tions. Finally, a Hierarchical Reinforcement Learning framework
is employed to train Vehicle, which contains dual-level agents to
solve the delayed reward problem. Extensive experimental results
demonstrate that Vehicle can effectively control the spread of the
epidemic. Vehicle outperforms the state-of-the-art baseline meth-
ods with remarkably high-precision mobility interventions on both
symptomatic and asymptomatic infections.
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1 INTRODUCTION
In the post-COVID-19 era, citywide lockdown and national mobil-
ity restrictions are not desirable EPidemic Control (EPC) strategies
anymore. To effectively control the epidemic spreading while main-
taining essential social functions and preserving major economic
activities, precise prevention through individual-level mobility in-
tervention, i.e., isolating infections in time, has become a key so-
lution. However, this is a challenging task due to the latency of
epidemic spreading caused by unobservable asymptomatic infec-
tions [21]. Relevant studies [16, 18] have shown that unobservable
asymptomatic infections are the main cause to the spread of the
epidemic, and the key to control the epidemic is to isolate possi-
ble asymptomatic infections. Therefore, in this paper, we consider
the latency of epidemic spreading and study to propose an effec-
tive individual-level EPC strategy for reducing infections, without
significantly compromising people’s daily lives.

Public health researchers have studied the problem of EPC for a
long time. Traditional rule-based strategies [7] and heuristic meth-
ods [13, 19] can control the spread of the epidemic to a certain
degree. Yet, they cannot handle the complex urban environment,
dynamic mobility patterns, and uncertain pandemic situations. Re-
cently, some deep reinforcement learning (DRL) methods have
shown promising results on optimizations for lockdown and re-
opening policy [6, 15]. For instance, DRL models can efficiently
extract information from the complex urban environment and give
a flexible and dynamic control that considers the current pandemic
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situation. Nevertheless, existing DRL-based methods still lack cus-
tomized modules to model the latency of epidemic spreading to
facilitate EPC decision making.

Inspired by the previous efforts of applying DRL to epidemic
control, in this study, we plan to deploy this technique to achieve
effective individual mobility intervention by modeling system dy-
namics and generating proactive strategies for COVID-19 epidemic
control. Nevertheless, there are two major challenges in exploiting
DRL in our investigated scenario. First, a DRL agent requires instant
and holistic observations from the urban environment for action
decision making [25]. Meanwhile, in the epidemic situation, the
incubation period is uncertain and the asymptomatic infections
can hardly be observed. Second, the effectiveness of mobility in-
tervention is not only reflected by the daily COVID-19 infections
(including unobservable asymptomatic infections), but also deter-
mined by the cumulative cases in a relatively long period. Therefore,
for the RL agent, both daily infections and cumulative cases should
be utilized as rewards to modify the current policy. However, daily
infections include many asymptomatic infections that cannot be
observed until the incubation period is over, which causes delayed
rewards to the DRL agent. Moreover, cumulative cases take a long
time to obtain, which causes sparse rewards to the DRL agent. The
delayed and sparse rewards make it difficult to optimize the EPC
policy on mobility intervention.

To tackle the above challenges, we proposeVehicle, aVariational
hiErarcHICal reinforcement Learning method for Epidemic control
via individual-level mobility intervention. Specifically, to address
the first challenge, Vehicle employs an unobservable information
rebuilding module that consists of a contact-risk bipartite graph
neural network (CRBGN) and a variational LSTM (VLSTM). First, it
extracts information about asymptomatic infections from current
observations through the CRBGN, which models the relationships
between individuals as the current state of RL and estimates the
risk of each individual spreading the epidemic [17]. Second, it re-
builds intact information of epidemic spreading from the state
sequence through the VLSTM, which encodes the state sequence
as a basis for the RL’s decision-making. In response to the second
challenge, Vehicle exploits a Hierarchical Reinforcement Learning
(HRL) training framework that includes dual-level agents, including
an Upper-level Agent and a Lower-level Agent to train the model.
The long-term reward given from the environment to the Upper-
level Agent can measure cumulative cases in epidemic control. Such
that, the overall reward will no longer be delayed, as most asymp-
tomatic infections will transform into symptomatic infections and
can be observed from the long-term reward. The Lower-level Agent
directly interacts with the environment by inputting imperfect in-
formation and outputting actions to the environment. Furthermore,
The Upper-level Agent module decomposes the final goal of EPC
into multiple short-term goals, and it guides the Lower-level Agent
to learn through these short-term goals for solving the delayed and
sparse reward challenge. HRL employs a Proximal Policy Optimiza-
tion (PPO) [20] algorithm for training both the Upper-level Agent
and the Lower-level Agent.

In summary, we make the following contributions in this study.

• We investigate individual-level mobility intervention for epi-
demic control and propose Vehicle, a hierarchical reinforcement
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Figure 1: Mobility intervention for epidemic control by the
CDC.

learning method that exploits unobservable information for more
precise EPC strategy optimization.

• We propose an individual contact-risk bipartite graph neural net-
work and a variational LSTM to model the latency of epidemic
spreading, which supports the RL agent to rebuild the intact in-
formation for mobility intervention from the observation history.

• We exploit a Hierarchical Reinforcement Learning framework
to train our DRL model and solve the delayed reward challenge
with the goal of improving the training efficiency.

• We conduct extensive multi-scenario experiments and the sim-
ulation results show that Vehicle has outstanding performance
in epidemic control and it significantly outperforms the state-of-
the-art baseline methods.

2 PROBLEM FORMULATION
We consider an epidemic control for T days within a city, which is
composed ofN areas andM people. The health status of each indi-
vidual includes: Susceptible, Asymptomatic, Symptomatic, and
Removed. Individuals in Asymptomatic or Symptomatic statuses
are infected. Susceptible individuals may become Asymptomatic
through contact with the infected. The Symptomatic individuals
sent to the hospital or isolated at home will transit to Removed sta-
tus (including recovered and dead) after a period of time. The above
four health status transitions are based on the SEIR model [27].

As shown in Figure 1, the Center for Disease Control and Pre-
vention (CDC) acts as the policy maker for epidemic control. The
CDC models both the epidemic transmission and the human mo-
bility to select a mobility intervention action for each individual
per day. Meanwhile, the policy makers cannot: (1) distinguish be-
tween Susceptible individuals and Asymptomatic individuals via
non-pharmaceutical methods, and (2) observe the asymptomatic
infections. Specifically, we define four kinds of mobility interven-
tion actions: No Intervention, Confine (no contact with people
living outside his/her community), Quarantine (no contact with
people living outside his/her home), and Isolate (no contact at all).
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We aim to provide a DRL-based EPC strategy for policy makers
to reduce infections and minimize the mobility intervention simul-
taneously. However, the above two goals are decoupled and even
conflicting in strategy optimization, as fewer infections typically
require a higher degree of mobility intervention. From the perspec-
tive of economic cost 𝐶𝐸 [22], we define the Infection-spread-cost
as 𝐶𝐼 and the Mobility-intervention-cost as 𝐶𝑀 to represent the
impacts of infections and mobility interventions on economic cost,
respectively. In addition, when the number of infections exceeds a
certain threshold, the medical system will be infiltrated, resulting
in a rapid increase in 𝐶𝐸 . Similarly, when mobile intervention is
greater than a certain threshold, the social production system will
be paralyzed, leading to a sharp rise in 𝐶𝐸 . To this end, we use
exponential forms by referencing the work of [22] to express the
above costs as follows.

𝑄 = 𝜆ℎ ∗ 𝑛ℎ + 𝜆𝑖 ∗ 𝑛𝑖 + 𝜆𝑞 ∗ 𝑛𝑞 + 𝜆𝑐 ∗ 𝑛𝑐 ,

𝐶𝐼 = 𝑒𝑥𝑝 {𝐼/𝜃𝐼 } ,𝐶𝑀 = 𝑒𝑥𝑝
{
𝑄/𝜃𝑄

}
,

𝐶𝐸 = 𝐶𝐼 +𝐶𝑀 ,

where 𝜆ℎ , 𝜆𝑖 , 𝜆𝑞 and 𝜆𝑐 denote scale factors,𝑛ℎ ,𝑛𝑖 ,𝑛𝑞 and𝑛𝑐 denote
accumulated numbers of hospitalized, isolated, quarantined, and
confined people for𝑇 simulation days, 𝐼 denotes the total number of
infected people within 𝑇 days, 𝑄 denotes the aggregate of mobility
interventions, 𝜃𝐼 and 𝜃𝑄 refer to the soft thresholds for the medical
system’s capacity and economic system’s endurance, respectively.

EPC Problem Statement: Based on the above notations, we for-
mulate the EPC problem via individual-level mobility intervention
as follows.

Definition 1 (EPC problem via Individual-Level Mobility
Intervention). Given a city with N areas, M people, the people’s
historical mobility {𝐿𝑚}𝑚∈M and the people’s health status, the
goal of this problem is to train an effective individual-based EPC
agent to select a mobility intervention action for each individual per
day, thus to minimize the economic cost 𝐶𝐸 and make a desirable
trade-off between reducing the infections and minimizing the mobility
intervention.

3 METHODOLOGY
3.1 System Overview
An overview of Vehicle’s architecture is presented in Figure 2. Ve-
hicle first obtains the observation of individual features as well as
the relationships from the environment, and then it selects a mobil-
ity intervention action for each individual per day to control the
epidemic spreading in the environment. To learn a smart individual-
based EPC strategy, Vehicle has two fundamental modules, i.e., an
unobservable information rebuilding module and a hierarchical
reinforcement learning module.

Unobservable InformationRebuildingModule: This module
aims to rebuild the information for RL’s decision-making. Its inputs
include individual features and relationships, which are imperfect
information obtained from the environment due to the latency of
epidemic spreading caused by unobservable asymptomatic infec-
tions. Through this module, the rebuilt information is then used
as the basis for RL’s decision-making. This module consists of an
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Figure 2: Overview of Vehicle. It first obtains the observation
of individual features as well as relationships from the en-
vironment. Then, an unobservable information rebuilding
module rebuilds the information of asymptomatic infections
from the observation, thus to facilitate RL’s decision-making.

individual contact-risk bipartite Graph Neural Network (GNN) and
Variational LSTM. The details will be discussed in the following
sections.

HRL Module: This module is to solve the delayed and sparse
reward challenge, which contains an Upper-level Agent module
and a Lower-level Agent module. It aims to search for a smart
individual-based EPC strategy based on the rebuilt information
from the unobservable information rebuilding module.

3.2 Unobservable Information Rebuilding
The unobservable information rebuildingmodule ofVehicle includes
individual contact-risk bipartite GNN and a variational LSTM, as
illustrated in Figure 3. The Individual CRBGN inputs individual
features as node information and the relationships as edges. Then,
it outputs embedded individual features to VLSTM at each time
step. The specific details will be introduced as below.

3.2.1 Individual Contact-Risk Bipartite GNN. The imperfect
information obtained from the environment consists of raw in-
dividual features 𝑠𝑑 and relationships 𝐴 in each time slot, which
is also the input of CRBGN. Since the Vehicle plays the role of a
policy maker, it observes the features of all individuals and gives
corresponding control measures for each individual. Here, the raw
individual features 𝑠𝑑 are the integration of each individual’s in-
formation. For the 𝑘-th individual, the feature 𝑠 (𝑘)

𝑑
is defined as

𝑠
(𝑘)
𝑑

= (𝑙 (𝑘) , 𝑣 (𝑘) , 𝑢 (𝑘) , 𝑒 (𝑘) ), where 𝑙 (𝑘) represents the health sta-
tus, 𝑣𝑘 represents the intervention state, 𝑢 (𝑘) represents the esti-
mated number of acquaintances and 𝑒 (𝑘) represents the probability
of infection. Correspondingly, the global raw individual features are
denoted by 𝑠𝑑 = (𝑠 (1)

𝑑
, 𝑠

(2)
𝑑

. . . 𝑠
(𝑀)
𝑑

). In particular, the probability
of infection 𝑒 measures the risk of epidemic transmission caused
by either random movement or contact of asymptomatic infections.
Besides, 𝑒 is estimated based on the historical contacts between
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Figure 3: The Unobservable information rebuilding module
is composed of an individual contact-risk bipartite GNN and
a variational LSTM.

Figure 4: The construction process of CRBGN.

the susceptible and the infected (see Appendix A.2 for details). The
estimated number of acquaintances 𝑢 reflects the risk of the asymp-
tomatic infections spreading the epidemic to others, which can be
inferred from individual historical trajectories with the community
detection and friendship prediction methods [26]. The unobserv-
able asymptomatic infections and the latent spreading of epidemic
together make the raw individual features obtained from the envi-
ronment not absolutely accurate, and the imperfect information will
impact the precision of RL’s decision for EPC policy. In addition, the
relationships 𝐴 consists of individual-individual relationship 𝐴𝑑 ,
area-area commute 𝐴𝑚 and individual-area commute 𝐴𝑟 . Note that
𝐴𝑑 is an estimation relationship inferred from historical contacts
between individuals (see Appendix A.5 for details).

The CRBGN of Vehicle extracts information about asymptomatic
infections through individuals’ regular commute and social relation-
ships, which can help estimate each individual’s infection risk [17].
Moreover, CRBGN regards individuals and city areas as two kinds
of nodes, thus enabling us to model individual-individual contact
risk by individual-area-individual relationship. In addition, individ-
uals’ regular commute and social relationships can also be modeled
with the help of the CRBGN module.

Specifically, Individual Contact-Risk bipartite GNN is designed
on the basis of GCN [14] and GraphsSAGE [9]. We use 𝑠𝑘𝑟 , 𝑠𝑘𝑑 to

Figure 5: The structure of Variational LSTM.

denote the area-nodes’ features and individual-nodes’ features out-
putted by the 𝑘-th GNN layer, respectively. The detailed layer-
calculation of Individual Contact-Risk GNN is as follows:

𝑠𝑘−1
𝑑′ = 𝜎 (𝐴𝑑𝑠𝑘−1𝑑

𝑊 𝑘−1
1 + 𝐵𝑘−11 ), (1)

𝑠𝑐 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝐴𝑚), (2)

𝑠𝑘−1𝑟 = 𝜎 (𝑊 𝑘−1
2 (𝑠𝑇𝑐 𝑠𝑘𝑑′ + 𝐵𝑘−12 ), (3)

𝑠𝑘𝑟 = 𝜎 (𝐴𝑟 𝑠𝑘−1𝑟 𝑊 𝑘−1
3 + 𝐵𝑘−13 ), (4)

𝑠𝑘
𝑑
= 𝜎 (𝑊 𝑘𝑠𝑇𝑐 𝑠

𝑘
𝑟 + 𝐵𝑘 ), (5)

where 𝑠𝑘−1
𝑑′

denotes graph embedding of individuals through the
social relationships of the individual nodes, 𝑊 𝑘−1

1 , 𝐵𝑘−11 , 𝑊 𝑘−1
2 ,

𝐵𝑘−12 ,𝑊 𝑘−1
3 , 𝐵𝑘−13 ,𝑊 𝑘 and 𝐵𝑘 are trainable parameters.

The construction process of GNN is shown in Figure 4. In step
1, individual-individual relationships are used as edge weights to
calculate the individual-node features, as in Eq. (1). In step 2, related
commuting individual characteristics are aggregated to calculate
the area-node features, as in Eqs. (2-3). In step 3, area-area com-
mute is used as edge weights to calculate the area-node embedded
features, as in Eq. (4). In step 4, it aggregates the features of areas
where an individual has commuted regularly to calculate the final
individual-node embedded feature, as in Eq. (5).

3.2.2 Variational LSTM. Making decisions solely based on 𝑠𝑘
𝑑

is not enough and will cause biased results, as the asymptomatic
infections information cannot be fully modeled with features in
a single time slot. Indeed, the historical sequences of individual
features also contain the information of susceptible people transit-
ing into the symptomatic infections in the environment. Modeling
such transition can assist Vehicle in estimating the possibility of
the individual transforming into symptomatic in the future, so as
to better estimate the possibility that the individual is an asymp-
tomatic infection with the currently observed features. Therefore,
we exploit LSTM-based method to encode historical sequences of
individual features (𝑠𝑘

𝑑,𝑡=0, 𝑠
𝑘
𝑑,𝑡=1, . . . 𝑠

𝑘
𝑑,𝑡=𝜏

) embedded by individual
contact-risk GNN to model such transitions [25] and rebuild intact
information for RL’s decision-making. Since the performance of
LSTM is not stable when dealing with a dynamic environment (e.g.,
epidemic spreading) [10], we combine the Variational Autoencoder
(VAE) with LSTM to enhance its robustness [1]. The integrated
recurrent latent variable model contains an inference model and a
generative model, and it can learn to encode complicated sequential
features of 𝑠𝑑,𝑡 with a stochastic latent variable 𝑧𝑡 .

The inference model of VLSTM approximates the latent variable
𝑧𝑡 given 𝑡-th embedded observation 𝑠𝑑,𝑡 and 𝑑𝑡−1. Note that 𝑑𝑡
models historical feature sequence information with asymptomatic
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infections through LSTM. On the basis of 𝑑𝑡−1 and 𝑠𝑑,𝑡 , the latent
variable 𝑧𝑡 further models the dynamic epidemic spreading into the
feature sequence information with asymptomatic infections. The
overall structure of VLSTM is shown in Figure 5. By denoting the
inference model as 𝜙 , we present the detailed process of modeling
𝑧𝑡 and 𝑑𝑡−1 as follows.

[𝜇𝜙,𝑡 , 𝑑𝑖𝑎𝑔(𝜎2𝜙,𝑡 )] = 𝜙𝑒𝑛𝑐𝑜𝑑𝑒𝑟 (𝑠𝑘
𝑑,𝑡

, 𝑑𝑡−1), (6)

𝑧𝑡 | 𝑠𝑘𝑑,𝑡 ∼ 𝑁 (𝜇𝜙,𝑡 , 𝑑𝑖𝑎𝑔(𝜎2𝜙,𝑡 )) . (7)

Then, 𝑑𝑡 can be obtained by
𝑑𝑡 = 𝑓 𝐿𝑆𝑇𝑀 (𝑑𝑡−1; 𝑧𝑡 , 𝑠𝑘𝑑,𝑡 ) . (8)

We denote the generative model of VLSTM by 𝜃 . We leverage 𝜃 to
predict the next state variable distribution of VLSTM and calculate
its loss by

[𝜇𝜃,𝑡 , 𝑑𝑖𝑎𝑔(𝜎2𝜃,𝑡 )] = 𝜃𝑝𝑟𝑖𝑜𝑟 (𝑑𝑡−1), (9)

where 𝜃𝑝𝑟𝑖𝑜𝑟 and 𝜙𝑒𝑛𝑐𝑜𝑑𝑒𝑟 are parameterized mappings of neural
networks and 𝑑𝑡 is the state variable of VLSTM.

Unlike the variational recurrent model [10] that uses LSTM as an
independent prediction model, the proposed VLSTM acts as the en-
coder for the entire model, as it reveals in Figure 3. Correspondingly,
the variational loss of VLSTM is calculated by

𝐿𝑉𝐿𝑆𝑇𝑀 = 𝐷𝐾𝐿 [𝑞𝜙 (𝑧𝑡 ) | |𝑝𝜃𝜙 (𝑧𝑡 )]

= 𝑙𝑜𝑔
𝜎𝜙,𝑡

𝜎𝜃,𝑡
+
(𝜇𝜙,𝑡 − 𝜇𝜃,𝑡 )2 + 𝜎2

𝜙,𝑡

2𝜎2
𝜃,𝑡

− 1
2
. (10)

The VLSTM is trained together with the HRL framework, and the
process is discussed in detail in the following subsection.

3.3 Hierarchical Reinforcement Learning
We devise a hierarchical reinforcement learning framework to train
our model and solve the delayed and sparse reward challenge. The
HRL framework contains dual-level agents, including an Upper-
level Agent module and a Lower-level Agent module. The Upper-
level Agent module decomposes the final goal of EPC into multiple
short-term goals, and it guides the Lower-level Agent to learn
through these short-term goals, thus solving the delayed and sparse
reward challenge. Specifically, the HRL model is designed based on
FeUdal Networks (FuN) [23], a novel architecture that formulates
sub-goals of reinforcement learning as directions in latent state
space. Compared with FuN, our HRL adds an Individual Contact-
Risk GNN module and a VLSTM module as unobservable informa-
tion rebuilding modules. A schematic illustration of HRL is shown
in Figure 6, and we introduce its details as follows.

Upper-level Agent: Recall the architecture of Vehicle in Figure
2, the Upper-level Agent does not directly interact with the envi-
ronment. The long-term reward given from the environment to
the Upper-level Agent can measure cumulative cases of epidemic
control. Such that, the overall reward will no longer be delayed,
as most asymptomatic infections will transform into symptomatic
infections and can be observed from the long-term reward. The
settings of the Upper-level Agent are as follows.
• State: At each time step 𝑡 , the state of Upper-level Agent 𝑠𝑑,𝑡 is
defined as the individual features 𝑠𝑑,𝑡 as discussed in Sec 3.2.

Figure 6: The schematic illustration of HRL.

• Action: In our HRL setting, the Upper-level Agent’s action 𝑎𝑚𝑡
is to decompose the long-term epidemic control into intrinsic
short-term goals to guide the Lower-level Agent,

𝑎𝑚𝑡 = 𝑓𝑢 (𝑠𝑑,𝑡 , 𝑠𝑑,𝑡−1 · · · 𝑠𝑑,0), (11)

where 𝑓𝑢 denotes unobservable information rebuilding module.
• Reward: The reward of the Upper-level Agent 𝑟𝑚𝑡 is to evaluate
the final result of the EPC strategy. Therefore, we set our reward
as negative 𝐶𝐸 as follows.

𝑟𝑚𝑡 =

{
−𝑒𝑥𝑝

{
𝐼
𝜃𝐼

}
− 𝑒𝑥𝑝

{
𝑄

𝜃𝑄

}
, 𝑡 = 𝑇

0, 𝑒𝑙𝑠𝑒
(12)

where 𝑇 denotes total number of EPC days.
Lower-level Agent: The Lower-level Agent directly interacts

with the environment by inputting imperfect information and out-
putting actions to the environment. The intrinsic reward used to
train the Lower-level Agent is given by the Upper-level Agent and
it can be consecutively obtained at each time step. In this way, the
dual-level agents together solve the sparse reward challenge. The
settings of the Lower-level Agent are as follows.
• State: The state of Lower-level Agent 𝑠𝑑,𝑡 is the same as the state
of Upper-level Agent.

• Action: The action of the Lower-level Agent 𝑎𝑤𝑡 is determined
by 𝑢𝑤𝑡 and 𝑎𝑚𝑡 . As shown in Figure 6, the 𝑎𝑤𝑡 can be calculated by

𝑢𝑤𝑡 = 𝑓𝑢 (𝑠𝑑,𝑡 , 𝑠𝑑,𝑡−1 · · · 𝑠𝑑,0), (13)
𝑎𝑤𝑡 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑢𝑤𝑡 𝐿𝑖𝑛𝑒𝑎𝑟 (𝑎𝑚𝑡 )), (14)

where 𝑎𝑤𝑡 denotes the probability of a joint intervention action
for all individuals. For the 𝑘-th individual, the space for 𝑎𝑤

𝑘,𝑡

contains four actions, e.g., no intervention, confine, isolate and
quarantine.

• Reward: The goal given by the Upper-level Agent each day
composes the intrinsic reward of the Lower-level Agent and
encourages it to output intervention actions to the environment.
As such, Vehicle can achieve desirable EPC results by making the
reward no longer sparse. The detailed calculation is shown in
Eq. (15).

𝑟𝑤𝑡 =
1
𝑐

𝑐∑︁
𝑖=1

𝑑𝑐𝑜𝑠 (𝑠𝑤𝑑,𝑡 − 𝑠𝑤
𝑑,𝑡−𝑖 , 𝑎

𝑚
𝑡−𝑖 ), (15)

where 𝑑𝑐𝑜𝑠 (𝛼, 𝛽) = 𝛼𝑇 𝛽 ( |𝛼 | · |𝛽 |) is the cosine similarity between
two vectors and it guides the Lower Level agent’s policy toward
the goal. Here, 𝑐 is hyperparameter.
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Based on the HRL framework, we introduce how to utilize it
to train Vehicle. HRL employs a Proximal Policy Optimization
(PPO) [20] algorithm for both Upper-level Agent and Lower-level
Agent modules. PPO is an actor-critic method, which includes two
estimators: (1) an actor that plays the role of our RL agent and
generates actions according to the current policy, and (2) a critic to
estimate the value of the current state-action pair during training
and assists with the training of actor. The loss contains the loss of
RL and the variational loss of VLSTM. We denote 𝐿𝑎𝑚 , 𝐿𝑐𝑚 , 𝐿𝑎𝑤 ,
𝐿𝑐𝑤 and ℎ𝑡 as the actor loss of the Upper-level Agent, the critic loss
of the Upper-level Agent, the actor loss of the Lower-level Agent,
the critic loss of the Lower-level Agent and the feature history,
respectively. The actor and critic losses of Upper-level Agent are
calculated by

𝐿𝑎𝑚 = 𝐴𝑚𝑡 𝑑
𝑤𝑚𝑖𝑛[𝑞𝑚𝑡 , 𝑐𝑙𝑖𝑝 (𝑞𝑚𝑡 , 1 − 𝜖, 1 + 𝜖)] + 𝐿𝑚𝑉𝐿𝑆𝑇𝑀 , (16)

𝑞𝑚𝑡 =
𝑝 (𝑔𝑡 |ℎ𝑚𝑡 )

𝑝𝑜𝑙𝑑 (𝑔𝑡 |ℎ𝑚𝑡 )
, (17)

𝑟𝑤𝑡 = 𝑑𝑐𝑜𝑠 (𝑠𝑚𝑡+𝑐 − 𝑠𝑚𝑡 , 𝑔𝑡 ), (18)
𝐴𝑚𝑡 = 𝑟𝑚𝑡 + 𝛾𝑉𝑚𝑡 (ℎ𝑚𝑡+1) −𝑉𝑚𝑡 (ℎ𝑚𝑡 ), (19)

𝐿𝑐𝑚 = (𝑟𝑚𝑡 + 𝛾𝑉𝑚𝑡 (ℎ𝑚𝑡+1) −𝑉𝑚𝑡 (ℎ𝑚𝑡 ))2 . (20)

The actor and critic losses of Lower-level Agent are calculated
by

𝐿𝑎𝑤 = 𝐴𝑤𝑡 𝑚𝑖𝑛[𝑞𝑤𝑡 , 𝑐𝑙𝑖𝑝 (𝑞𝑤𝑡 , 1 − 𝜖, 1 + 𝜖)] + 𝐿𝑤
𝑉𝐿𝑆𝑇𝑀

, (21)

𝑞𝑤𝑡 =
𝑝 (𝑎𝑡 |ℎ𝑤𝑡 )

𝑝𝑜𝑙𝑑 (𝑎𝑡 |ℎ𝑤𝑡 )
, (22)

𝐴𝑤𝑡 = 𝑟𝑤𝑡 + 𝛾𝑉𝑤𝑡 (ℎ𝑤𝑡+1) −𝑉𝑤𝑡 (ℎ𝑤𝑡 ), (23)

𝐿𝑐𝑤 = (𝑟𝑤𝑡 + 𝛾𝑉𝑤𝑡 (ℎ𝑤𝑡+1) −𝑉𝑤𝑡 (ℎ𝑤𝑡 ))2, (24)

where 𝑝 is the probability value of the strategy output action, 𝑉 is
the value function of critic, 𝛾 is hyperparameter. We summarize the
details of the training process of our proposed model in Algorithm
1. As we can observe, firstly, Vehicle interacts with the environment
and collects a series of transitions by storing them in the set of
transition𝐷 in preparation for training (lines 3-11). Then, it samples
some transitions batches from 𝐷 and trains them through the PPO
method with batch gradient updating (lines 12-21). This process
will be repeated for𝑀 episodes until both the Upper-level Agent
and the Lower-level Agent converge.

Specially, in order to improve the exploration efficiency of the
Vehicle, we use the individual infection probability 𝑒 to constrain
the agent’s action space exploration. We assume that individuals
with greater infection probability will be subject to more stringent
control actions, which ensures individuals with high probability of
infection to be identified as high risks. In addition, we summarize
the commonly used notations in Table 5 (see Appendix A.1).

4 PERFORMANCE EVALUATION
To fully evaluate the performance of Vehicle, in this section, we
conduct extensive trace-driven experiments on mobility interven-
tion for epidemic control by applying Vehicle and state-of-the-art
baseline methods in multiple scenarios.

Algorithm 1 The training algorithm of Vehicle
1: Initialize critic and actor parameters for Upper-level Agent and

Lower-level Agent with 𝜗 , 𝜔 , 𝜑 and𝜓 ;
2: for 𝑒𝑝𝑖𝑠𝑜𝑑𝑒𝑠 = 0, 1, 2, ...𝑀 do
3: Initialize a set of transitions 𝐷 =

{
𝜏𝑖
}

4: Receive an initial state 𝑠0 (or history trajectory ℎ0)
5: for 𝑡 = 0, 1, 2, ...𝑇 do
6: Obtain goal 𝑎𝑚𝑡 using Eq. (11)
7: Obtain action 𝑎𝑤𝑡 using Eqs. (13) and (14)
8: Execute action 𝑎𝑤𝑡 , obtain 𝑟𝑚𝑡 and state 𝑠𝑡 from the en-

vironment
9: Obtain reward 𝑟𝑤𝑡 using Eq. (15)
10: Store transition (𝑠𝑡−1, ℎ𝑡−1, 𝑎𝑚𝑡 , 𝑎𝑤𝑡 , 𝑟𝑚𝑡 , 𝑟𝑤𝑡 ) into 𝐷
11: Update history trajectory ℎ𝑡 = [ℎ𝑡−1, 𝑠𝑡 ]
12: Using set of trajectories 𝐷 for batch gradient updating.
13: Update critic of Upper-level Agent by minimizing Eq. (20):
14: 𝜗𝑘+1 = 𝑎𝑟𝑔𝑚𝑖𝑛

𝜗

1
|𝐷 |𝐿𝑐

𝑚 ∑
𝜏𝑖 ∈𝐷 𝐿𝑐𝑚

𝜗𝑘

15: Update actor of Upper-level Agent by maximizing Eq. (16):
16: 𝜔𝑘+1 = 𝑎𝑟𝑔𝑚𝑎𝑥

𝜔

1
|𝐷 |𝐿𝑎

𝑚 ∑
𝜏𝑖 ∈𝐷 𝐿𝑎𝑚𝜔𝑘

17: Update critic of Lower-level Agent by minimizing Eq. (24):
18: 𝜑𝑘+1 = 𝑎𝑟𝑔𝑚𝑖𝑛

𝜑

1
|𝐷 |𝐿𝑐

𝑤 ∑
𝜏𝑖 ∈𝐷 𝐿𝑐𝑤𝜑𝑘

19: Update actor of Lower-level Agent by maximizing Eq. (21):
20: 𝜓𝑘+1 = 𝑎𝑟𝑔𝑚𝑎𝑥

𝜓

1
|𝐷 |𝐿𝑎

𝑤 ∑
𝜏𝑖 ∈𝐷 𝐿𝑎𝑤

𝜓𝑘

21: Update critics and actors for Upper-level Agent and Lower-
level Agent via the PPO method

4.1 Experiment Setups
4.1.1 Simulation Environment. We build a simulation environment
based on the Prescriptive Analytics for the Physical World (PAPW)
Challenge [6] for pandemic mobile intervention competition. The
simulator can accurately simulates EPC scenarios based on indi-
vidual mobility and has been widely used by existing research
studies [2, 6, 13, 19]. According to epidemiological research, the
Basic Reproductive Rate 𝑅0 denotes the average number of peo-
ple infected by one person in a susceptible population. The 𝑅0 of
our simulated disease ranges from 2 to 4, which is consistent with
COVID-19 (estimated between 2 and 4). The number of epidemic
simulation days 𝑇 is set as 60. Due to the page limit, details of the
simulator and experimental settings are provided in Appendixes
A.3 and A.4.
4.1.2 Experimental Scenarios. We consider a citywide epidemic
control scenario composed of 𝑁 areas with a population of 10,000.
We set 𝑡𝑠 as the days to start mobility intervention after discovering
the first patient, 𝐼𝑛 as the number of external daily contacted infec-
tions for the first 20 days, 𝐼𝑎 as the number of initial infections and
𝑡𝑐 as the back-to-work time of individuals. In addition, we set up
five experimental scenarios, including Basic, Larger, Changeable,
Larger-Initial-Infections and Late. Detailed introductions to the
above scenarios can be referred from Table 6 in Appendix A.3. To
make the scenarios more realistic, we follow a basic assumption
that all symptomatic patients should be sent to the hospital.
4.1.3 Evaluation Metrics. We select three evaluation metrics from
different perspectives as follows: I, the total number of infected
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Table 1: Performance comparison over all baselines in five scenarios (best results in bold).

Scenario Basic Larger Changeable Larger-Initial-Infections Late
Method I Q E I Q E I Q E I Q E I Q E

No Intervention 6254 82012 >10000 5822 74958 >10000 6198 78203 >10000 7787 116786 >10000 6179 70264 >10000
Lockdown [8] 45 300231 >10000 45 300225 >10000 49 300253 >10000 461 301475 >10000 106 275523 >10000
Expert(0.01) 255 6197 3.52 213 5423 3.25 239 6351 3.50 899 35728 41.65 245 6119 3.48
Expert(0.015) 246 6487 3.55 225 5993 3.39 283 7188 3.81 1197 29187 29.47 296 7492 3.93

Degree-Sample [24] 1489 103363 >10000 1164 103298 >10000 992 96564 >10000 3866 198892 >10000 1793 101058 >10000
Degree-Order [3] 1256 92397 >10000 1248 90546 >10000 1551 94128 >10000 3472 133198 >10000 1664 95247 >10000

GBM [19] 191 3887 2.94 206 4548 3.09 227 5033 3.23 529 26766 17.43 235 4671 3.19
EITL [13] 217 4239 3.10 261 5433 3.41 261 5315 3.39 801 22743 14.68 272 5428 3.44
HRLI [2] 207 4107 3.02 199 4455 3.05 210 4279 3.06 1200 24734 22.89 230 4775 3.20

IDRLECA [6] 188 3818 2.92 190 4288 2.99 188 3938 2.94 1017 20408 15.34 219 4396 3.1
Vehicle (Ours) 160 3418 2.78 163 3486 2.80 169 3770 2.86 898 18170 12.18 172 3560 2.84

Table 2: Performance comparison with perfect information (best results in bold).

Scenario Basic Larger Changeable Larger-Initial-Infections Late
Method I Q E I Q E I Q E I Q E I Q E
IDRLECA 137 3749 2.77 170 4132 2.91 153 4069 2.86 983 20103 14.61 193 4178 2.99

Vehicle (Ours) 110 2566 2.54 144 3262 2.72 119 2719 2.58 840 17210 10.95 143 3144 2.70
Perfect 88 1571 2.36 69 1197 2.28 93 1630 2.38 463 8404 4.84 124 2175 2.52

people in all simulation days, which measures the effectiveness
of EPC strategies in epidemic control; Q, the aggregated mobility
interventions as defined in Section II, which measures the effec-
tiveness of EPC strategies in minimizing mobility interventions;
and E, the economic cost of the EPC strategy, which measures the
impact of EPC strategies on economy. To make a fair comparison
with baseline methods, the settings of 𝑄 are the same with the
PAPW Challenge [6], where 𝜆ℎ = 1, 𝜆𝑖 = 0.5, 𝜆𝑞 = 0.3 and 𝜆𝑐 = 0.2.
Similarly, we set 𝜃𝐼 = 500 and 𝜃𝑄 = 10, 000 for 𝐸 by referring to the
PAPW Challenge [6].
4.1.4 Baseline Methods. To make a comprehensive comparison,
nine baseline methods are adopted in performance evaluation. First,
we set up three rule-based baseline methods, including: (1) No In-
tervention, an EPC strategy with no intervention at all; (2) Lock-
down [8], an EPC strategy that conducts lockdown in a city during
the mobility intervention period; (3) Expert (0.01) and Expert
(0.015), the same-type EPC strategies that isolate individuals based
on an infection probability model and a given probability thresh-
old. Second, we adopt two empirical epidemic control methods,
including: (4) Degree-Sample [24], which sets the number of each
individual’s acquaintances as 𝑛 and isolates them by an empirical
probability of (𝑛 − 4)/𝑛 (𝑛 ≥ 5); and (5) Degree-Order [3], which
counts the number of contacts by an individual in the last five days
and selects individuals with the top 30% of contacts for isolation.
Third, we utilize two winning solutions in the PAPW challenge for
comparison, including (6) GBM [19], a baseline for epidemic inter-
vention by predicting each individual’s health status and strikes
a balance between precision and recall; (7) EITL [13], which ad-
justs the epidemic strategy through a heuristic algorithm. At last,
two representative reinforcement learning baselines are adopted,
including: (8) HRLI [2], which combines individual prevention
with regional control in the EPC strategy; and (9) IDRLECA [6], a
state-of-the-art baseline method that exploits GNN as the encoder
to extract features from individuals for EPC strategy optimization.
In particular, we do not compare the methods of the 1st [11] and
2nd [28] winners in the PAPW challenge, because they assume that

the asymptomatics are observable to policy makers. However, this
is not feasible in practical applications.

4.2 Results Analysis
Overall Epidemic Control Results. To verify that Vehicle can
effectively make a trade-off between metrics 𝐼 and 𝑄 while simul-
taneously minimize 𝐸, we conduct epidemic control experiments
across five scenarios. Each experimental result is derived from
the average of ten simulations under the same setting. Table 1
summarizes the overall performance comparison, where Vehicle
significantly outperforms all baseline methods in terms of 𝐼 , 𝑄 and
𝐸. In comparison with expert baselines, Vehicle can trade off be-
tween reducing the infections and minimizing the economic costs.
In comparison with the empirical epidemic control methods, Vehicle
exploits deep neural networks to extract high-level representations
from each individual’s raw features to make more accurate deci-
sions. Compared to the baselines of PAPWwinners, Vehicle achieves
significantly lower economic costs and successfully reduces the
number of infections with fewer mobility interventions. Compared
to the state-of-the-art RL-based methods, Vehicle outperforms them
in all metrics by exploiting VLSTM and HRL to solve the partially-
observable problems in epidemic observations. The above results
also validate that daily reward would effectively enhance Vehicle’s
decision-making with imperfect information.

Spatio-temporal Comparison with the IDRLECA [6]. We
draw the spatial distribution and histogram of infections (the symp-
tomatic and asymptomatic) given by Vehicle and IDRLECA for two
periods in Figure 7. It can observed that Vehicle has fewer infections
in most residential areas than IDRLECA in the first twenty days
with imported infections. In the next forty days, our method can
still play a more effective role in epidemic control.

Performance Comparison with the Optimum. To demon-
strate that Vehicle can compensate for the decision bias caused by
unobservable information, we set up an optimal epidemic control
method called Perfect. Perfect has full knowledge of asymptomatic
infections and is able to isolate all types of infections immediately.
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Figure 7: A visualized spatio-temporal comparison of epi-
demic control results by Vehicle and IDRLECA [6] during
days 0-20 and days 21-60. The 27 grids represent the spatial
infections of symptomatic and asymptomatic in the most
significant regions out of 98 areas in scenario-Larger. The
histogram shows the temporal distributions of infections
during the same period.
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Figure 8: Performance of isolating asymptomatic infections.

We compare the best performances of Vehicle and IDRLECA (state-
of-the-art baseline) with Perfect in Table 2. The results verify that
in most scenarios, Vehicle can almost approach the optimal epi-
demic control results by exploiting the unobservable information
via hierarchical reinforcement learning.

Isolation Effectiveness. To verify the effectiveness of Vehi-
cle in isolating asymptomatic infections, we further compare it
with Perfect and IDRLECA on the asymptomatic-effect rate. The
asymptomatic-effect rate indicates the ratio of asymptomatic in-
fections being quarantined to asymptomatic infections along with
time. From Figure 8, we can find that the line curve of Vehicle in
asymptomatic-effect rate is more and more close to that of Perfect,
showing that our method can effectively isolate a larger proportion
of asymptomatic infections than IDRLECA.

4.3 Generalization Ability
To verify the generalization ability of Vehicle, we conduct exper-
iments under different infection settings. Specifically, we change
the situation of asymptomatic infections by varying the values of
𝐼𝑛 (the number of external daily contacted infections) and 𝐼𝑎 (the
number of initial infections). The results in Table 3 demonstrate

Table 3: Performance comparison with different 𝐼𝑛 and 𝐼𝑎 .

Vehicle Best Baseline
𝐼𝑛 𝐼𝑎 I Q E I Q E
7 0 160 3418 2.78 207 4107 3.02
10 0 190 4286 2.99 260 5672 3.45
13 0 323 7273 3.96 368 7578 4.22
0 300 898 18170 12.18 801 22743 14.68
0 400 1190 23783 21.59 1044 27627 23.92
0 500 1234 28780 29.58 1210 29931 31.19

that under different settings of 𝐼𝑛 and 𝐼𝑎 , Vehicle can always strike
a balance between reducing infections and minimizing mobility
intervention, thus achieving a better result than the best baseline on
all evaluation metrics. The results also demonstrate the scalability
of Vehicle, as it finds out effective policies to response variations in
infection settings.

4.4 Ablation Study
To evaluate the effectiveness of each component of Vehicle, includ-
ing Individual Contact-Risk GNN, VLSTM and HRL, we further
conduct an ablation study. Under Scenario-Basic, we evaluate 4
variant models of Vehicle as follows. First, the RL-No-GNN denotes
a variant of Vehicle without the GNN module, which is designed
to verify that the relationship between individuals and the regular
commuting of individuals are effective on estimating asymptomatic
infections’ impact. Second, the RL-No-HRL denotes a variant of
Vehicle without the HRL module, which is designed to verify the
importance of dense and fully observable rewards to epidemic con-
trol. Third, the RL-No-VLSTM denotes a variant of Vehicle without
the VLSTM module, which is designed to verify the effectiveness of
using historical observation information with imperfect informa-
tion. At last, the RL-LSTM denotes a variant of Vehicle employing
ordinary LSTM, which is designed to verify the robustness of the
VAE structure to dynamic environment noises.

The comparison results between Vehicle and the above variants
are shown in Table 4. Particularly, removing the GNN network
structure makes it difficult for RL-No-GNN to capture the con-
nections and contacts among individuals. As a result, the cost of
infection prevention and epidemic control both increase to a large
extent. Removing VLSTM or HRL will make it hard for RL to es-
timate the impact of asymptomatic infections and isolate them,
thus leading to decision bias. By comparing RL-LSTM with Vehi-
cle, we can find that the VAE can make the model more robust to
noises and help it reduce unnecessary mobility interventions in
a dynamic environment. Compared with all the variants, Vehicle
can find asymptomatic infections more precisely with the help of
VLSTM and HRL. By measuring the risk of contact among indi-
viduals with the individual contact-risk GNN module, Vehicle can
achieve more desirable epidemic control results with the fewest
infections and lowest economic cost, under a minimum level of
mobility intervention.

5 RELATEDWORKS
Individual-level Epidemic Intervention.Conventional epidemic
control methods model people as graph nodes and use the graph’s
connectivity to determine the intervention measurement for each
individual [2, 6, 12]. Methods based on epidemic prediction further
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Table 4: Results of ablation study.

Scenario Basic
Method I Q E

RL-No-GNN 209 4625 3.11
RL-LSTM 185 4388 2.98
RL-No-HRL 184 3859 2.92

RL-No-VLSTM 165 3697 2.84
Vehicle 160 3418 2.78

consider the impact of short-term intervention based on the indi-
vidual’s state, yielding better performance than traditional heuris-
tics but still insufficient [13, 19]. Recently, RL-based methods that
can capture long-term intervention effects have been explored to
achieve more effective epidemic control with flexibility [2, 6, 12, 15].
However, there still lacks a framework to address the observable
asymptomatic spread of virus between individuals. To bridge this
gap, we propose an information rebuilding module to model the
latency of epidemic spreading and capture the observable contact
for RL’s decision-making.

Asymptomatic Modeling. Existing works have developed SIR
and SEIR models to study the potential spread of epidemiological
disease [5]. Some researchers have also considered possible hidden
infections to improve the prediction accuracy on epidemics [16,
18, 21]. Inspired by the existing achievements in asymptomatic
modeling, in this study, we have included a plural of features related
to the hidden infections in designing the state space of Vehicle’s RL
agent, with the goal to achieve more effective decisions on epidemic
control.

6 CONCLUSION
In this paper, we study the problem of individual mobility inter-
vention for epidemic control and propose an effective framework
namedVehicle. In this framework, we devise an observable informa-
tion rebuilding module to model the latency of epidemic spreading.
We also exploit hierarchical reinforcement learning to train Vehicle,
which can tackle the delayed and sparse reward challenge. Extensive
experiments are conducted on different scenarios, demonstrating
that our method can effectively estimate the impact of the asymp-
tomatic and achieve superior epidemic control compared with other
baselines. Our in-depth analysis provides valuable intuitions for
practical applications, including mobility intervention and POI re-
opening, and the proposed Vehicle can support decision-making in
epidemic control.
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A APPENDIX
A.1 Notation Summary

Table 5: A list of commonly used notations.

Notation Description
𝜆ℎ Scale factor of accumulated numbers of hospitalized people.
𝜆𝑖 Scale factor of accumulated numbers of isolated people.
𝜆𝑞 Scale factor of accumulated numbers of quarantined people.
𝜆𝑐 Scale factor of accumulated numbers of confined people.
𝑛ℎ Accumulated numbers of hospitalized people.
𝑛𝑖 Accumulated numbers of isolated people.
𝑛𝑞 Accumulated numbers of quarantined people.
𝑛𝑐 Accumulated numbers of confined people.
𝐼 Total number of infections.
𝑄 The aggregate of mobility interventions.
𝐶𝐸 Economic cost of EPC strategy.
𝐶𝐼 Infection- spread-cost of EPC strategy .
𝐶𝑀 Mobility-intervention-cost of EPC strategy.
𝑠
(𝑘)
𝑑

The feature of the 𝑘-th individual.
𝑙 (𝑘) The health status of the 𝑘-th individual.
𝑣 (𝑘) The intervention state of the 𝑘-th individual.
𝑢 (𝑘) The estimated number of acquaintances of the 𝑘-th individual.
𝑒 (𝑘) The probability of infection of the 𝑘-th individual.
𝑠𝑑 The global raw individual features.
𝑠𝑘−1
𝑑′

Graph embedding of individuals through the social relationships.
𝑠𝑐 The weights of area-area commute.
𝑠𝑟 Area-node features.
𝑠𝑟 Area-node embedded features.
𝑠𝑘
𝑑

Final individual-node embedded features.
𝐴𝑑 Individual-individual relationship.
𝐴𝑚 Area-area commute.
𝐴𝑟 Individual-area commute.
𝜃𝐼 Medical system’s capacity.
𝜃𝑄 Economic system’s endurance.
𝑊 .𝐵 Learnable parameters.

A.2 Infection Probability Model
The difficulty of epidemic prevention and control lies in finding
asymptomatic infections and taking effective measures in time.
To help Vehicle efficiently make use of effective information, we
design an infection probability model to estimate the probability of
an individual being infected. We define the probability of infection
and health of the 𝑖-th person as 𝑝𝑖𝑛𝑓 𝑒

𝑖
and 𝑝ℎ𝑒𝑙

𝑖
, respectively. The

simulation environment also calculates the infection probabilities
of contact with strangers and acquaintances, which are denoted as
𝑝𝑠 and 𝑝𝑐 , respectively. The infection probability model works as
follows:

Step 1: Trace back all individuals’ area-visit history in the past
𝑇 time steps.

Step 2: For individual 𝑖, 𝑖 = 1, 2, ..., 𝑀 , define his/her probability
of being healthy as 𝑝ℎ𝑒𝑙

𝑖,𝑡
at time step 𝑡 . 𝑝ℎ𝑒𝑙

𝑖,0 is initialized to be 1
if individual 𝑖 is not infected. we have the following equation to
update 𝑝ℎ𝑒𝑙

𝑖,𝑡
:

𝑝ℎ𝑒𝑙𝑖,𝑡 = 𝑝ℎ𝑒𝑙𝑖,𝑡−1 ∗ (1 − 𝑝𝑠
𝑁
𝑖𝑛𝑓 𝑒

𝑡−1
𝑁𝑎𝑟𝑒𝑎
𝑡−1

), 𝑡 = 1, 2, ...,𝑇 ,

where 𝑁
𝑖𝑛𝑓 𝑒

𝑡−1 and 𝑁𝑎𝑟𝑒𝑎 refer to the number of discovered infec-
tions and total number of visitors to the same area as individual 𝑖 ,
respectively.

Step 3: Update 𝑝ℎ𝑒𝑙
𝑖,𝑇

for acquaintances’ contacts:

𝑝ℎ𝑒𝑙𝑖,𝑇 = 𝑝ℎ𝑒𝑙𝑖,𝑇 ∗ (1 − 𝑝𝑐 ) .

Step 4: Acquire infection probability:

𝑝
𝑖𝑛𝑓 𝑒

𝑖
= 1 − 𝑝ℎ𝑒𝑙𝑖,𝑇 .

After the above steps, we can obtain the estimated probability
of an individual being infected. We will use it as auxiliary infor-
mation and add it to each individual’s state. Also, the estimated
probabilities are used as prior knowledge for each agent’s action
space exploration.

Specially, regarding the personal privacy issues that exist in
the use of individual trajectory information for epidemic preven-
tion and control, we tend to solve them from two aspects. On the
one hand, the implementers of the strategy are normally credible
government and social institutions (e.g., CDC), which reduces the
privacy risk to a certain extent. On the other hand, the problem can
be solved by some encryption methods such as differential privacy
or federated learning [4], thus to reduce the possibility of privacy
leakage.

A.3 Introduction of Simulator
Here we present the details of the simulator1 and experiment set-
tings to help reproduce the results. The simulator is mainly com-
posed of two parts: human movement and epidemic spread. Our
simulator simulates the individual mobility in a city of 𝑁 areas
with𝑀 people. We consider three kinds of POI: working, residen-
tial, and commercial. Each individual’s mobility is determined by
pre-defined rules. An individual will move from the residential area
to working area. After working, the individual may visit a nearby
commercial area and then will return to the residential area. The
time individuals start to depart or stay at each place meets a certain
distribution. The mobility of individuals between the two areas
satisfies a certain probability distribution. We have also designated
corresponding acquaintances for each individual. The infection
probabilities of contact with acquaintances and strangers are 𝑃𝑐
and 𝑃𝑠 , respectively. 𝑃𝑐 is much higher than 𝑃𝑠 because the contact
distance between acquaintances is much closer. We divided the city
into grids and consider that individuals in the same grid at the same
time have contact possibilities. The process that contact possibilities
lead to new infections is characterized by a SEIR model [27].

As shown in Table 6, we setup five experimental scenarios as
follows. (1) Basic scenario is to verify the EPC performance of
Vehicle in an ordinary epidemic scenario, (2) Larger scenario is to
verify whether Vehicle is adaptive for scenarios with larger areas,
(3) Changeable scenario is to verify whether Vehicle is applicable
when there are greater differences in individuals’ commuting fea-
tures, (4) Larger-Initial-Infections scenario is to verify whether
Vehicle is effective when there are much more initial asymptomatic
infections, and (5) Late scenario is to verify the EPC performance
of Vehicle with a late intervention.
1PAPW 2020: https://prescriptive-analytics.github.io/. Simulator: https://hzw77-
demo.readthedocs.io/en/round2/.
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Table 6: Configurations for multiple experimental scenarios
(𝑈 denotes the uniform distribution).

Scenario 𝑁 𝑡𝑠 𝐼𝑛 𝐼𝑎 𝑡𝑐

Basic 11 1 7 0 𝑈 (1, 5)
Larger 98 1 7 0 𝑈 (1, 5)

Changeable 11 1 7 0 𝑈 (1, 8)
Larger-Initial-Infections 11 1 0 300 𝑈 (1, 5)

Late 11 5 7 0 𝑈 (1, 5)

A.4 Experiment Setting
The estimated 𝑅0 is between 2 to 4. For the aggregated mobility
interventions, we set 𝜆ℎ = 1, 𝜆𝑖 = 0.5, 𝜆𝑞 = 0.3 and 𝜆𝑐 = 0.2 ,
which are the same with the setting in the PAPW Challenge. For
the reward and 𝑟 , we set 𝜃𝐼 = 500 and 𝜃𝑄 = 10000. For 𝑟𝑤𝑡 , we set
𝑐=60 and 𝛾=0.99.

The initial state of an episode is random every time in the training
process. We train Vehicle for 40,000 steps and the optimizer for
training is Adam with a learning rate of 0.00001. To cope with the
randomness of the simulator, we take the average results of ten runs.
Due to the commercial use of the simulator, we only release the
source code of the model: at: https://github.com/tsinghua-fib-lab.

A.5 Estimation Relationship Inferred from
Historical Contacts

In existing research studies, the estimation and inference of acquain-
tance relationships are often inferred from the travel trajectory of
individuals. In this work, we exploit an existing method [26] to
infer acquaintance relationships via modeling the similarity of in-
dividual trajectories. Then, we apply the obtained acquaintance
relationship to the Infection Probability Model and Contact-Risk
GNN of Vehicle.
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