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Abstract
Urban anomalies such as the abnormal flow of
crowds and traffic accidents could result in loss of
life or property if not handled properly. Detect-
ing urban anomalies at the early stage is impor-
tant to minimize the adverse effects. However, ur-
ban anomaly detection is difficult due to two chal-
lenges: a) the criteria of urban anomalies varies
with different locations and time; b) urban anoma-
lies of different types may show different signs. In
this paper, we propose a decomposing approach
to address these two challenges. Specifically, we
decompose urban dynamics into the normal com-
ponent and the abnormal component. The nor-
mal component is merely decided by spatiotem-
poral features, while the abnormal component is
caused by anomalous events. We then extract spa-
tiotemporal features and estimate the normal com-
ponent accordingly. At last, we derive the abnor-
mal component to identify anomalies. We evalu-
ate our method using both real-world and synthetic
datasets. The results show our method can detect
meaningful events and outperforms state-of-the-art
anomaly detecting methods by a large margin.

1 Introduction
Urban anomalies are typically unusual events occurring in ur-
ban environments, such as traffic congestion and unexpected
crowd gathering, which may pose tremendous threats to pub-
lic safety and stability if not timely handled [Zheng et al.,
2014]. For example, in July 2010, a music parade in Duis-
burg, German, lost control of order and led to nineteen death
and hundreds of injured. In December 2014, a similar tragedy
happened again in Shanghai, China. Over 300,000 people
crowded into the Bund of Shanghai for the New Year’s fire
show, which led to a severe stampede that caused 35 death
and 49 injured. However, these accidents could be prevented
if the urban anomalies, e.g., abnormal moving and gathering
of crowds, can be detected and traced at the early stage.

Traditional anomaly detection needs a lot of human efforts,
which is usually inefficient and delayed in time. In recent

∗Equal contribution.

years, urban big data bring new methods and perspectives for
urban anomaly detection. Compared with traditional meth-
ods, data-driven methods have advantages of real-time and
low-cost, which make this direction with huge potential.

Urban anomalous events usually happen with the abnor-
mal change of urban dynamics such as the sharp increase in
crowd flows or traffic volumes, which can be detected from
urban data. Urban data are produced by mobile devices or
distributed sensors in cities and usually of spatial and tem-
poral features [Gonzalez et al., 2008; Zhuang et al., 2017;
Fan et al., 2016]. For instance, when people access cellu-
lar networks via their smartphones, their trajectories will be
recorded. These spatiotemporal data reveal the activities of
urban residents and make it possible for us to monitor the ur-
ban dynamics in real time and further identify urban anoma-
lies by detecting abnormal fluctuations of urban dynamics.

Generally, as for the detection of urban anomalies based on
spatiotemporal data-driven methods, there are the following
critical challenges.

• Scarcity of anomalous events. Abnormal events rarely
happen in cities. Moreover, few of them are recorded.
The extreme scarcity of labeled dataset makes it difficult
to detect the happening of anomalous events directly.

• Complex influence factors. The impacts of anomalous
events are affected by many spatial and temporal factors.
Thus, the criteria of urban anomalies may vary with dif-
ferent regions and time, and all those influences need to
be taken into consideration when identifying anomalous
events.

• Multiple data sources fusion. Different events may
have impacts on different spatiotemporal data from mul-
tiple sources. Moreover, different data sources are
usually in different formats such as vehicle trajecto-
ries (structured dataset), and text messages (unstructured
dataset). Fusing different types of spatiotemporal data is
a challenging task as well.

Considering the above challenges, we propose a decompo-
sition framework for detecting urban anomalies across spa-
tiotemporal data. To overcome the scarcity of anomalous
events, we decompose urban data into two parts, normal com-
ponent, and abnormal component. In our case, we assume
the normal component is caused by regular events and can be
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Figure 1: An overview of proposed framework which is composed of three modules, feature extraction, normal urban dynamic estimating
and anomaly scoring.

estimated by essential spatiotemporal features, while anoma-
lous events cause the abnormal component. Unlike existing
works estimating anomalous events directly, we estimate the
normal component instead and derive the abnormal compo-
nent using real-time dynamics to deduct the estimated nor-
mal component. Moreover, to adapt to different regions and
time, we employ graph embedding technology to extract spa-
tial features and select essential temporal features. By tak-
ing them as inputs, we use a neural network consists of three
fully connected parts to fuse spatial and temporal features and
estimate the normal component of urban dynamics. Also,
our decomposition method is conducted on trip data of New
York city from both taxis and bikes. The experiment results
show that our method achieves 48.8% precision improvement
compared with the best performance of baseline algorithms,
which demonstrates that our framework is extendable to fuse
different data sources.

The rest of this paper is organized as follows. We first in-
troduce basic definitions and an overview of our framework
in Section 2. We then describe each step of our method in
details in Section 3. In Section 4, we show our datasets and
experimental results. In the end, we introduce related work
regarding urban anomaly detection in Section 5 and finally
conclude our paper in Section 6.

2 Overview
2.1 Preliminaries
The definitions of the essential terms used in our investigated
problem are shown as follows.

Definition 1 (Urban dynamics) Urban dynamics are the nu-
merical spatial and temporal features to describe the status
of an urban region during a time interval. For example, the
number of people entering a region and exiting the region in
one hour and the Twitter topic distribution in an area for one
day [Teng et al., 2017].

Definition 2 (Urban data) Urban data are of spatial and
temporal features and collected from urban sensors to de-
scribe urban dynamics. Denoting the set of urban regions as
R and the set of time slots as T , thus, each instance of urban
data can be denoted as a triple 〈r, t, v〉, where r ∈ R, t ∈ T ,
and v is a vector representing the urban dynamics in region r
during time interval t. In our work, the v may contain values

from more than one data resources, like the volume of traffic
flow and the density of crowds.

Definition 3 (Urban dynamic decomposition) Urban dy-
namics are represented by urban data. In practice, given an
urban dataset S, ∀s ∈ S, s = 〈r, t, v〉, we decompose v into
two parts: v = vm+va, where vm stands for the normal com-
ponent of urban dynamics and va represents the abnormal
component. As we assumed above, the normal component
is merely depended on the spatiotemporal features which we
denote as I . Therefore, vm = F (I), where F is a mapping
function from the vector representing spatiotemporal features
to the vector representing urban dynamics. Thus, the decom-
position can be formulated as follows,

v = F (I) + va. (1)

2.2 Framework
An overview of our proposed framework is shown in Figure 1.
The framework is composed of three modules, feature extrac-
tion, normal urban dynamic estimating, and anomaly scor-
ing. In the feature building module, given an urban dataset,
we aim to extract the spatial-temporal features for each data
point. Explicitly, we first compute region similarities based
on historical data and build spatial features using the graph
embedding technique. Then we select important temporal in-
formation such as time and weather to represent temporal fea-
tures and concatenate spatial and temporal features together
as the fused spatiotemporal feature. In the normal urban dy-
namic estimating module, we feed spatiotemporal features to
a fully connected neural network to estimate the normal urban
dynamics and obtain the anomalous urban dynamics by re-
moving the normal component from the real dynamics. In the
anomaly scoring module, the extracted abnormal component
is fed into a generic anomaly detector to score the anomaly
degree for a region in a time slot.

3 Methodology
In this section, we discuss our approach in detail. We first
introduce the geo-embedding method to build spatial features
and the strategy to select temporal features. We then present
the normal urban dynamic estimating process and our de-
signed training mechanism for the neural network. At last,
we state the approach to get the final anomaly scores.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

6044



3.1 Feature Building
Spatial Features
Urban regions that are geographically close to each other or
have the same city functions may have similar urban dy-
namics. Based on this fact, we propose a geo-embedding
method that applies the Graph embedding [Cui et al., 2018;
Perozzi et al., 2014] technique to extract spatial features of ur-
ban regions. We first construct a complete undirected graph,
whose nodes represent regions and the edge weights are the
similarity score of every two nodes. After building the graph,
we apply the random walk algorithm to generate a set of
trajectories for every node. Finally, we analogize nodes as
words and trajectories as sentences by employing Skip-Gram
model [Mikolov et al., 2013] to obtain the embedding vector
for each region and use the learned vectors as spatial features.
The detailed steps are illustrated as follows.

Step 1. Computing similarities of regions. Given an ur-
ban dataset S = {s0, s1, ..., sn}, where si = 〈ri, ti, vi〉.
For the sake of simplicity, we use si.r to represent the ri
in 〈ri, ti, vi〉. si.t and si.v are defined similarly. Denoting
the set of all regions as R, for a region rm ∈ R, we define
Srm = {si|si ∈ S, si.r = rm}. Then the average dynamics
of region rm is computed as

v̄rm =

∑
s∈Srm

s.v

#|Srm | , (2)

where #|S| is the size of set S. Given a pair of regions
rm, rn ∈ R, we define the similarity of these two regions
as

sim(rm, rn) =
1

‖v̄rm − v̄rn‖2
, (3)

where ‖v‖2 represents the l2 norm of vector v.

Step 2. Random walk. Based on the computed similarity
matrix, we construct a weighted undirected graph G(V,W ),
where |V | = |R|. For an arbitrary pair of nodes vi, vj ∈ V ,
wij ∈ W refers to the weight of the edge between vertices
vi and vj and is assigned as sim(ri, rj). With the graph
G(V,W ), we then employ the random walk method to gener-
ate a set of node trajectories T , where each trajectory is com-
posed of a series of regions. In practice, the process starts
from a random node each time and the probability moving
from node u to node v is wuv/

∑
v wuv .

Step 3. Region embedding. With the trajectory set T ob-
tained in step 2, we apply a commonly used word embed-
ding model Skip-Gram to get the embedding vector for each
region. In this process, we analogize regions as words and
trajectories as sentences.

By the geo-embedding process, we obtain the spatial fea-
tures that retain the similarity relations between regions.
There are two advantages. First, the spatial features learn-
ing by geo-embedding take the relations between different
regions into account. Hence, the knowledge from one region
can be migrated to similar areas, further, improving the per-
formance when doing the urban dynamics estimating. Sec-
ond, the size of spatial features is not necessarily as large
as the number of regions but can be reduced to a logarith-
mic length, which will significantly reduce the computational
complexity.

Temporal Features
Apart from spatial features, temporal information also has a
significant impact on urban dynamics. To illustrate what tem-
poral information should be considered, we show a typical ex-
ample in Figure 2 that shows the number of bikes entering a
region every hour for one week. It comes from the NYC Bike
dataset, which will be introduced in detail in Section 4.1.

Figure 2: The number of bikes entering one region every hour for
one week.

In Figure 2, there are three straightforward observations.
First, the number of entering bikes reaches zero at midnight
and peaks in commuting hours on weekdays. Second, the
volume of bike flow during weekends is lower than that on
weekdays and does not show significant peak hours. Third,
the part that we mark in dashed rectangle corresponds to rain-
ing hours, when the number of bikes drops a lot compared
with that on other days. According to these observations, the
temporal information should include three parts, i.e., the hour
in a day, the day in a week and weather. Hence, we represent
the temporal features as follows,

TF = [Ohour;Oweekday;Oweather], (4)

where Ohour is a one-hot vector of length 24 that shows
which hour it is in a day. Similarly, Oweekday is a one-hot
vector of length 7. Oweather is also a one-hot vector shows
the weather and its length depends on the weather dataset.

3.2 Normal Urban Dynamics Estimating
The main difficulty in estimating normal dynamics should be
the lack of ground truth, i.e., the real value of normal urban
dynamics. However, there is a simple fact that in consecu-
tive time slots or similar regions, the normal urban dynamics
should not change sharply. That is to say, the normal dynam-
ics vm is smooth in terms of similar spatiotemporal features
I . This simple fact makes it possible to learn F , i.e., the
mapping relation from spatiotemporal features to normal dy-
namics. Given the spatiotemporal feature I , the value of F (I)
should satisfy two conditions. First, since anomalous events
rarely happen, F (I) should be close to the real complete ur-
ban dynamics v. Second, if I changes slightly, F (I) should
not change a lot. With these two constraints, we use a neu-
ral network model with the customized loss to simulate the
function F .

Figure 3 shows our neural network model. The model con-
sists of two cascaded parts: the feature fusion part and normal
urban dynamics estimation part. The first part includes FC
(fully connected) network I and II, which respectively take
the original spatial and temporal features as inputs. We con-
catenate the outputs of network I and network II together as
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the fused spatiotemporal feature. The second part includes
FC network III, which takes the fused feature as input and
outputs the estimated normal urban dynamics.

To better illustrate the definition of our customized loss
function, we assume there is a pair of urban data points
〈r1, t1, v1〉 and 〈r2, t2, v2〉, and their corresponding fused
features and the outputs of FC network III are 〈I1, o1〉 and
〈I2, o2〉, then the loss function L is defined as,

L = Lp + λ · Ls, (5)

where Lp stands for the prediction loss, Ls refers to the
smooth loss and λ is the weight for the smooth loss. The
prediction loss, i.e., Lp, measures the error between network
output and the real complete urban dynamic value. Thus, by
reducing Lp, the network output will be pushed to be close to
the real urban dynamics. Mathematically, Lp is expressed as,

Lp = D(o1, v1) +D(o2, v2), (6)

where D(·) represents the mean square distance between two
vectors. The smooth loss, i.e., Ls, is the ratio between out-
put distance and input distance for the FC network III and is
formulated as,

Ls =
D(o1, o2)

D(I1, I2) + ε
, (7)

where ε is a small positive value. When the input features
are close to each other, the value of D(I1, I2) is small, and
if D(o1, o2) gets large, Ls will get large accordingly. There-
fore, by reducing Ls, the output (i.e., estimated urban dynam-
ics) is controlled to be similar when inputs (i.e., spatiotempo-
ral features) are similar.

3.3 Anomaly Scoring
Instead of just classifying an urban scene as anomalous or
not, we assign an anomaly score to each data point in the ur-
ban dataset to measure the anomaly degree of a region during
a time interval. The urban dynamics of more anomaly will get
higher scores. In practice, we use a general outlier detecting
algorithm to obtain the score for each data point. In our case,
an outlier is an observation point that is distant from other ob-
servations. Given an urban dataset S = {s0, s1, ..., sn}. For
each s ∈ S, s = 〈r, t, v〉, the estimated normal component
is vm and the derived abnormal component is va = v − vm.
Then, the anomaly score is assigned as OScore(va), where
OScore is a classical outlier detector. A lot of classical out-
lier detectors can be applied as OScore [Chandola et al.,

2009]. In this paper, we choose the Local Outlier Factor
(LOF) [Breunig et al., 2000] algorithm.

In summary, we develop a method to decompose urban
dynamics by estimating normal urban dynamics from spa-
tiotemporal features. We construct spatiotemporal features
considering the similarities among different urban regions
and temporal influencing factors, which makes our method
extendable to different urban datasets and complex urban en-
vironments.

4 Evaluation
4.1 Datasets and Preprocesses
To evaluate the effectiveness of our proposed framework, we
conduct extensive experiments on two real-world datasets.
The first dataset is the NYC taxi trip records and the sec-
ond one is the NYC bike trip records1. The statistics of these
two datasets are shown in Table 1. Besides, we crawled the
weather data of New York during the data collection period
from WunderGround2.

Datasets Properties Values

Taxi trips
number of regions 82

duration 14 months
number of taxi trips 194.4M

Bike trips

number of stations 750+
duration 14 months

number of bike trips 24.2M
number of bikes 16157

Table 1: Description of datasets.

To better represent the datasets, we process the raw data in
following steps. a) Divide the urban areas into small regions
based on the administrative division and road networks. In
Figure 4, we show the segmentation of regions in New York
by colors. The number of unique regions is 82. b) Map the
start and end positions into region granularity. c) Split the
dataset duration into time slots of one-hour. d) For each re-
gion, compute the number of leaving trips and arriving trips
during each time slot.

After the preprocesses, we can represent the NYC datasets
in the format as,

S, s = 〈r, t, v〉, ∀s ∈ S, (8)

where r is the region label, t stands for the time slot and v is
the vector representing the number of vehicles entering and
exiting the region. Each v is a 4 dimension vector [taxiin,
taxiout, bikein, bikeout].

4.2 Settings and Baselines
Refer to Figure 3, we set both FC network I and II as two-
layer networks and FC network III as a three-layer network.
λ in (5) is set to 10−3 in the experiments. To evaluate the ef-
fectiveness of our framework, we compare our methods with
four baselines:

1http://www.nyc.gov/html/tlc/html/about/trip record data.shtml
2https://www.wunderground.com
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Figure 4: The map of New York which is divided into 82 regions.

• Elliptic envelope (EE): EE algorithm [Rousseeuw and
Driessen, 1999] fits the data points with an elliptic en-
velope and uses Mahalanobis distances to measure the
outlyingness. For this method, we use the entire urban
dynamics as inputs.

• Isolation forest (IF): IF algorithm [Liu et al., 2008]

constructs binary trees based on the attributes of data
points, in which an outlier is closer to the root. It com-
putes the outlyingness based on the results from a num-
ber of trees.

• Local outlier factor (LOF): LOF algorithm [Breunig et
al., 2000] compares the local density of a data point to
the to the local densities of its neighbors. The points that
have a substantially lower density than their neighbors
are considered to be outliers. In experiments, we directly
feed the full urban dynamics data into the LOF algorithm
to get the anomaly score.

• Ours without geo-embedding (Ours No G.): In this
algorithm, we adopt our method without geo-embedding
and use one-hot vectors to encodes different regions as
the spatial features.

4.3 Synthetic Anomaly Detection
We first evaluate our proposed framework using synthetic
datasets. In this experiment, we generate synthetic datasets
based on the real-world datasets and then test our method with
injected anomalous events.

Synthetic Data Generation
We first generate a one-week standard data that does not have
anomalies and then extend the dataset by repeating along the
time axis and randomly inject anomalous events. In practice,
we compute the one-week average of the real urban dataset as
the standard data. For each data point 〈r, t, v〉, we aggregate
the dynamic value v into the mod(t, 168) time slot, 168 =
24(h)×7(day), for region r and then compute the mean value.

Next, we repeat the dataset along the timeline and add 10%
noises by multiplying the original value with a factor sam-
pled from a normal distribution with mean 1 and variance
0.1. To simulate the real world situations, we also add 10%
rainy and snowy weather, when the urban dynamics are re-
duced by 50%, where we determine the weather partition and
effects based on observations on real dataset. Finally, to in-
ject anomalous events, we multiply the urban dynamics by w
when assuming that there is an anomalous event. Here, w is
the weight parameter.

(a) Precision@K on synthetic dataset

(b) Recall@K on synthetic dataset

Figure 5: Top-k precision and recall on synthetic dataset.

Results for Synthetic Dataset
By the steps described above, we generate a synthetic dataset
of 20 weeks. We use the data of the first 19 weeks for train-
ing and the data of the last week for testing. We use Mean
Average Precision (MAP), precision at top-k positions (Pre-
cision@k), and recall at top-k positions (Recall@k) as evalu-
ation metrics.

The MAPs of our method and four baselines are shown in
Table 2. We set the weight of anomalous events w = {2, 3, 5}
and compute the average MAP of 5 independent experi-
ments for each algorithm under each setting. In all cases,
our method significantly outperforms baseline algorithms. In
average, the MAP of our method is 48.8% higher than the
best MAP scores of baselines. Notably, compared with LOF
which detects anomalies directly from undecomposed urban
dynamics, our method reaches 65.8% precision improvement.
The results demonstrate that the abnormal urban dynamics
obtained by our decomposition approach can act as direct ev-
idence to reveal abnormal events. Compared with ‘Ours (No
G.)’ merely using one-hot vectors as spatial features, adopt-
ing geo-embedding brings 52.9% MAP improvement, which
proves that similarity information among locations helps to
improve the detection performance.

We also show the top-k precision and top-k recall in Fig-
ure 5, where K varies from 1 to 500. When K is small, all
methods have precision close to 1. When K get larger, the
precision of baseline methods drops sharply while the preci-
sion of our method decays slowly and consistently keeps the
best. Similarly, our method also reaches a significantly better
recall with K getting larger.

We also study the sensitivity of our model to the parameter
λ. We set λ = {0, 10−4, 10−3, 10−2, 10−1, 1} and run our
model on the synthetic dataset. With fixing other experiment
settings, the MAP scores under different λ settings are shown
in Table 3. When λ changes from 0 (smooth loss is ignored)
to 10−4, there is an apparent increase of MAP score. When
λ gets larger than 10−3, the constraint of smooth loss is too
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Algorithms Weights
w=2 w=3 w=5

IF 0.090 0.162 0.254
EE 0.066 0.048 0.068

LOF 0.298 0.363 0.532
Ours (No G.) 0.278 0.417 0.656

Ours 0.506 0.663 0.772

Table 2: MAP of algorithms on synthetic dataset.

strong, and the MAP score drops again. The best performance
is achieved when λ = 10−3.

λ 0 0.0001 0.001 0.01 0.1 1
MAP 0.421 0.529 0.531 0.488 0.453 0.281

Table 3: MAP under different lambda values.

4.4 Real World Anomaly Detection
The real world event detection experiment is conducted on the
NYC datasets. We collect 20 events in New York with accu-
rate time and locations3 in two months from November 2017
to December 2017 as ground truth. For example, {Christmas
Tree Lighting, 2017/12/1 18:00-20:00, Bryant Park} are the
description, time and location of one recorded event. We
mark the 10% most anomalous data points reported by each
method as anomalies and check how many of the collected
events are hit. Here, we consider an anomalous event is hit if
the detected anomaly spatially and temporally overlaps with
the reported event.

The experiment results for the real world datasets are
shown in Table 4. With the anomalous component obtained
by our decomposition method, 14 out of the 20 events are de-
tected, while the LOF method merely hits three events. Mean-
while, the performance of other baselines is also worse than
ours.

Methods IF EE LOF Ours(No G.) Ours

Hits 8 8 3 8 14
Hit ratio 40% 40% 15% 40% 70%

Table 4: Real-world event detection results.

In conclusion, our method outperforms baselines on both
synthetic and real-world datasets. The results show that
our decomposition framework significantly improves the
anomaly detection accuracy and the geographic correlations
extracted by our geo-embedding method also improves the
performance.

5 Related Work
The general anomaly detection task aims to detect data points
that deviate significantly from the others in a dataset. Lots of
algorithms have been proposed towards this problem [Chan-
dola et al., 2009]. The existing works that specifically fo-
cus on urban anomaly detection can be categorized into three
groups: feature based, matrix based and statistical methods.

3www.nycinsiderguide.com

Feature-based methods extract human designed features
from urban datasets and then apply classical outlier detect-
ing algorithms to identify anomalies. Simple physical fea-
tures such as speed [Wang et al., 2016] and distance [Ge et
al., 2011] are widely used in traffic anomaly detection. Some
other works are based on high-level features. For example,
Zhang et al. [Zhang et al., 2018] computed the similarity of
urban dynamics of different regions within a time window
and detect anomalous regions based on the similarity chang-
ing rate. However, in these methods the features are con-
structed based on either spatial information or temporal infor-
mation while our method fuses spatial and temporal features
together.

By representing urban data as matrices or tensors, tech-
niques such as tensor decomposition are used to process ur-
ban data. For example, Lin et al. [Lin et al., 2018] applied
the tensor decomposition method to represent urban data with
combinations of basic patterns, then detect anomalies based
on pattern weights. Chen et al. [Chen et al., 2017] proposed
a similar method but design a co-factorization algorithm that
decomposes a mobility matrix and check-in tensor together.
[Yang and Zhou, 2011] combined the LLE and PCA algo-
rithms to detect anomalies from traffic flow matrix. In these
methods, the regions are considered independently, while our
method takes the spatial correlations among regions into con-
sideration.

Statistical models are also commonly used in urban
anomaly detection. For example, the Hidden Markov Model
is used to model the status transition of urban dynamics [Yang
and Zhou, 2011; Witayangkurn et al., 2013] and the change of
a low probability is considered caused by anomalous events.
Khezerlou et al. [Khezerlou et al., 2017] utilized the Like-
lihood Ratio Test (LRT) method to detect gathering events
based on traffic flow. Pang et al. [Pang et al., 2011] also ex-
tended the LRT method to discover traffic anomalies. How-
ever, the influence of some random factors such as weather is
not considered in statistical methods.

6 Conclusion
In this paper, we proposed a decomposition method to de-
tect urban anomalies based on urban big data. We first se-
lected information to build the temporal feature and designed
a geo-embedding method to learn the spatial feature of re-
gions. We then estimated the normal component using neural
networks based on spatiotemporal features and derived the
abnormal component accordingly. Finally, we employed the
LOF method to detect anomalies by assigning an anomaly
score to each data point. We conducted extensive experi-
ments on both real-world and synthetic datasets to evaluate
our method. The experiment results demonstrated the superi-
ority of our approach.
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