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Over a century ago, urban scientists envisioned that the city 
of tomorrow would have symmetric and regular morpholo-
gies as a result of tight top-down city planning rules that 

aim to optimize the accessibility of city function and space use in 
city development1,2. However, the increasingly available urban data 
suggest that cities grow in a bottom-up manner, calling for under-
standings of its micro-foundation2–4. Three fundamental empirical 
laws were later discovered2,5,6: first, the size distribution of the city 
follows a scaling law with an exponent of around –2.0, which implies 
that large cities are much rarer than small towns5. Second, urban 
population grows super-linearly with its area due to the intense 
competition for spaces7,8. Finally, the density of occupied urban 
areas decreases exponentially with the radial distance (r) to city cen-
ters9–11. A computational physics model (that is, diffusion-limited 
aggregation) was applied to model urban growth as an aggregation 
of physical particles7,12. Further works showed that correlated perco-
lation is a better alternative to explain the emergence of the afore-
mentioned laws5. A key finding of the correlated percolation model 
is the requirement for strong spatial correlation in urban growth to 
reproduce the scaling relations13. As a result, researchers proposed to 
model city growth as two processes: the emergence of new clusters 
and the growth of existing clusters14. A more recent work proposed a 
diffusion-limited gravitation model that combines diffusion-limited 
aggregation with the stochastic gravitation model15 to capture spatial 
correlation; the model assigned the aggregating particles a stopping 
probability when it is closed to the developed urban sites16.

Although these models successfully explain urban morphology, 
they all model city growth as the stochastic processes of physical 
particles, which leaves the micro-foundation that roots in human 
behavior largely unknown. Here we develop a computational urban 
growth model based on human movements; the model suggests that 
strong social interaction and long-term memory effects in human 
movements are two fundamental principles governing urban growth.

Results
Human movement models. Our understanding of human move-
ments has been revolutionized over the past decade thanks to the 

availability of large-scale human mobility datasets17,18. Existing 
human movement models can be classified into a paradigm of 
four categories based on the mechanisms of social interaction 
and long-term memory (see Fig. 1a). Specifically, a human mobil-
ity model is considered socially interactive if one individual’s 
movement affects the others; a human mobility model is consid-
ered memory-aware if an individual’s future mobility behavior 
is affected by his/her historic movements. Category-1 models 
treat human movements as randomly moving particles without 
interactions. Brownian movement is one of such models where 
an individual’s displacements are normally distributed19. Unlike 
physical particles, empirical data suggest human movements are 
characterized by a fat-tailed jump-size distribution, satisfying  
a power law,

P(−→v |−→v 0) ≈
1

|−→v −−→v 0|(d+α)
, (1)

where P(−→v |−→v 0) is the transition probability from location −→v 0 
to −→v , and d = 2 for two-dimensional space17,20. The exponent α is 
observed at around 0.55 ± 0.05 (ref. 21). The fact that the transition 
probability decreases with distance characterizes the cost of travel 
distance of human movements, that is, most of the time people 
travel only over short distances, whereas occasionally people take 
longer trips. Neglecting social interactions and long-term memory 
effects, equation (1) suggests human movements follow the Lévy-
flight model, in which the evolution of population density ρ(−→v , t) 
follows the fractional diffusion equation,

∂ρ(−→v , t)
∂t = −D(−Δ)α/2

ρ(−→v , t), (2)

where (−Δ)α/2 is a fractional Laplacian and D is a diffusion con-
stant (see the Methods for details). Nevertheless, both the Brownian 
movement and Lévy-flight models predict a uniform population 
distribution when time t approaches infinity, in contrast to empiri-
cal observations9.
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Category-2 models such as Gravity8 and Radiation22 originate 
from the study of migrations, where the mobility flow between two 
locations depends on their populations. For instance, the Gravity 
model suggests the transition probability,

P(−→v |−→v 0) ≈
ρ(−→v ) + ρ0

|−→v −−→v 0|
(d+α)

, (3)

where ρ0 is the (inverse) coupling constant. In addition to the 
fat-tailed jump-size distribution equation (1), the Gravity model 
equation (3) also requires that the transition probability increases 
linearly with the population at the destination −→v  (ref. 23). This 
mechanism accounts for a mean-field background attractiveness 
rooted in social interaction, for example, highly populated locations 
often offer more social opportunities8. The social attractiveness pro-
vides a potential mechanism to reproduce the spatial correlation in 
the correlated percolation model. Unfortunately, we find that the 
diffusion process of the Gravity model follows the same fractional 
diffusion equation (2) for the Lévy-flight model (see the Methods 
for details), that is, it predicts a uniformly distributed urban pop-
ulation at a large value of t. More recently, research explored the 
correlation between human mobility and social network, finding 
that human movements are largely determined by underlying social 
ties24–26; however, these models often require inputs of social net-
work data measured from experiments, leaving the origin of these 
correlations unexplained.

Unlike Category-1 and Category-2, in which individuals move 
freely, empirical data found notable recurrent visitation patterns in 
human movements21. To explain these observations, the individual 
mobility model (IMM) re-treats human movements as a two-stage 
return–exploration process to account for long-term memory 
effects21. In particular, a preferential return mechanism is imposed, 
that is, the probability of returning to a previous location −→v i,

P(−→v i) ∝ f(−→v i), (4)

which is proportional to its historic visitation frequency, f(−→v i). 
Such a long-term memory return process slows human diffusion  

drastically. In particular, IMM predicts that the typical traveling dis-
tance lt follows a logarithmic growth as

lt ≈ logA, (5)

where A is the total number of visited locations21,27. Logarithmic 
growth is a key feature of human movements, characterizing the 
anomalous ultra-slow diffusion and home range effect28. More 
recently, the d-EPR model generalizes the IMM by introducing a 
background field where an individual explores a new location with 
a probability proportional to its population density29,30. Although 
IMM and d-EPR successfully capture individual movements on a 
daily basis, individuals move independently and do not interact with 
each other. Moreover, the background field in the d-EPR model is 
static and does not evolve with time. These models therefore can-
not capture the dynamic interactions among individuals and, conse-
quently, are not capable of reproducing urban growth patterns (see 
Supplementary Section 1 for more details).

Neither social interactions (Category-2) nor long-term mem-
ory effects (Category-3) alone reproduces the spatial correlation 
proposed in the correlated percolation model; thus, a natural 
question is whether the remaining Category-4 models (mobility 
models that integrate social interaction and long-term memory 
effects) can predict urban growth patterns. Although Category-4 
models are largely unexplored, there are few exceptions. A recently 
developed GeoSim model integrates the memory-aware IMM with 
a social network where each individual is more likely to explore a 
new location visited by their friends31; however, the social network 
is predetermined from the inputs of empirical data and does not 
evolve with time. It is therefore not able to track urban growth on 
a long timescale.

The collective mobility model. To integrate long-term memory 
effects with dynamic interactions, we propose the collective mobility 
model (CMM), which offers a minimal set of principals connecting 
human movements to urban growth (see Fig. 1b). We consider that 
individuals move according to a return–exploration process simi-
lar to IMM. Specifically, the probability that an individual decides 
to return to visited locations can be computed as Pret = 1 − δS−γ, 
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Fig. 1 | The paradigm of human movement models and illustration of the proposed collective mobility model. a, Existing human movement models can 
be classified into four categories based on whether they account for social interactions and the memory of historic movements: the Brownian movement 
and Lévy-flight models belong to the first category, where movements are socially independent and memoryless. Gravity and Radiation models are 
typical models of the second category, where movements are socially interactive and memoryless. IMM and d-EPR belong to the third category, where 
movements are socially independent and memory-aware. The fourth category is both memory-aware and social interactive, including the GeoSim model 
and the proposed CMM. b, An illustration of the proposed CMM. At time t1, an individual is located at site v0 (green node) and have previously visited 
S = 4 sites (left panel). Here, a larger node size represents a larger population size at that site, whereas a more intense node color represents a higher past 
visitation frequency. With Pexp = δS−γ probability, the individual will explore a new site (white circle) based on equation (3). Otherwise, with Pret = 1 − δS−γ 
probability, the individual will return to a previously visited site (orange circle) based on equation (4).
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where S is the number of previously visited locations, δ controls the 
initial return probability and γ controls how the return probabil-
ity changes with S. During the return, the probability to choose a 
specific visited location is proportional to his/her previous visita-
tion frequency to that location, that is, equation (4). The individual 
also has a complementary probability Pexp = δS−γ to explore a new 
location. During exploration, the individual will choose previously 
unvisited locations on the basis of distance and population, satisfy-
ing the gravity law of equation (3). The population ρ(−→v ) in equa-
tion (3) is calculated instantaneously on the basis of all individuals’s 
locations at time t. The coupling constant, ρ−1

0 , can be considered 
as a smoothing parameter that controls the strength of population 
attraction, that is, increasing ρ−1

0  reduces the probability of explor-
ing unpopulated locations and, consequently, increases the strength 
of social interactions.

Inspired by the strong spatial correlation in correlated percola-
tion models5, we are interested in a CMM with the strong coupling 
limit ρ−1

0 → ∞, describing a unique human mobility model with 
both dynamic social interaction and long-term memory effects, 
which has not been explored by previous research. As a result, the 
proposed CMM can simulate urban growth to arbitrary timescales 
in a self-organized manner and does not rely on any external input. 
It is also worth pointing out that IMM can be considered as a special 
case of CMM, with ρ−1

0 → 0.

Experimental settings. We collect three public available urban 
development datasets, including the population and urban area of 
cities in (1) the United States of America (US) in 2000, (2) Great 
Britain (GB) in 1991 and (3) the distribution of urban area in the 
Berlin region in 1910, 1920 and 1945. For comparison, we simulate 
human mobility with four typical movement models belonging to 
categories 1–4, namely the Lévy-flight model, Gravity model, IMM 
and the proposed CMM, respectively (see Supplementary Section 1 
for the details of model parameter settings). The simulations are run 
on a l × l two-dimensional simulation space, where l is the number of 
sites in each dimension. The simulated citizens are initially located 
at the city center, that is, the central location (l/2, l/2) in simulation 
space; we then iteratively sample their next locations according to 
the mobility models at each time step until the simulation converges. 
A simple simulation of large urban systems is impractical due to 
high time complexity, which is O(MA) for each step, with M and  

A denoting the number of citizens and the size of the urban area, 
respectively. We address this problem by designing an improved 
sampling technique to effectively reduce the complexity to O(M) 
(see the Methods for details).

Urban morphology. To compare the morphologies of the simulated 
urban systems with empirical observations, we plot the obtained 
population distributions in Fig. 2a–d, together with the empirical 
distributions of the city of London in Fig. 2e. Although real-world 
geometry is affected by geographical features such as lakes and riv-
ers, the city of London still exhibits prominent features of the com-
pact city center and fractal perimeters. These observations echo 
previous studies on the fractal geometry of urban area32–34.

The urban population distributions for the Lévy-flight and 
Gravity models follow the fractional diffusion process (equation 
(2)), implying that individuals will gradually diffuse away from 
their initial position over time. The simulation results verify the 
theoretical prediction that these two models cannot reproduce a 
compact and stable city center, as the simulated urban population 
is distributed uniformly in the urban space when the systems con-
verge (see Fig. 2a,b). On the other hand, IMM predicts that urban 
systems grow homogeneously in the perimeter. The simulation 
result shows the perimeter of the urban area is a standard circle, 
and the urban areas that have a similar radial distance to the city 
center have a similar population density (see Fig. 2c), which is 
consistent with the theoretical prediction and shows IMM cannot 
reproduce the fractal morphology of the urban area. By contrast, 
CMM successfully reproduces the compact city center in an urban 
system, where the population density is substantially higher than 
the peripheral urban area (see Fig. 2d). Besides, the perimeter of the 
city center demonstrates prominent fractal geometry and numer-
ous subclusters are formed around it (see Supplementary Section 4 
for details). These observations are in agreement with the empiri-
cal observation of the city of London, which indicates CMM can 
reproduce the morphology of the urban area. We also evaluate the 
proposed CMM on predicting the future morphology change when 
given the initial urban area distribution. Experiments show CMM 
considerably outperforms baselines in terms of the reproduced 
urban morphology and the prediction accuracy on whether a spe-
cific location will be developed in the future (see Supplementary 
Section 3 for more details).
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Fig. 2 | The morphologies of urban area generated by four different human movement models and in real-world city. a–e, Data generated by the Lévy-
flight model (a), Gravity model (b), IMM (c) and CMM (d), as well as empirical data from the city of London (e). The population distribution of each urban 
system is visualized as a heatmap on a logarithmic scale, where blue and red colors represent underpopulated and high-population regions, respectively. 
The urban systems are simulated with 30,000 individuals initially situated in urban centers, which is defined as the central site of simulation space. The 
individuals are then simulated to move according to the mobility models until the population distribution reaches a stable state.
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Urban growth patterns. To examine the model’s capability to 
reproduce urban growth patterns, we focus on three fundamental 
empirical laws, each of which has been validated on multiple cities 
around the globe2,5,6.

(i) City size distribution: the number of cities N(A) decreases 
with their areas A, following a scaling law,

N(A) ≈ A−τ , (6)

where the exponent τ has been reported5 to be around 2.0. 
Specifically, the scaling law of city size is equivalent to Zipf ’s law, 
with an exponent of τ − 1 (ref. 35). The scaling law with an exponent 
of 2.0 is therefore consistent with the previous observations on 
Zipf ’s law of city size distribution35. Percolation theory is the prev-
alent framework to characterize this observation, which can gen-
erate a probability that a certain location is occupied as an urban 
area13. It predicts the scaling law of equation (6) with exponents 
ranging between 2.0 and 2.5, where τ = 2 corresponds to a strong 
correlation between different locations and τ = 2.5 corresponds to 
a mean-field theory13. The empirical data shows that city size dis-
tributions are well approximated by equation (6) (see Fig. 3a), with 

τ = 1.94 ± 0.11, 2.01 ± 0.08 and 2.08 ± 0.18 for the US, the GB and 
Berlin, respectively. These findings echo the theoretical predictions 
of site percolation theory and empirical observations in the previ-
ous research 5,13.

The Lévy-flight model characterizes movement as an individual 
diffusion process. The urban population distributes uniformly in 
the urban space as the urban system reaches to a stationary state. 
Similarly, although the Gravity model introduces social interactions 
among individuals, the population density satisfies fractional dif-
fusion equation (2). When time t → ∞, the population will distrib-
ute uniformly in the urban space ρ(r) = c, which is independent of 
the coupling constant ρ−1

0 . The Lévy-flight and Gravity models are 
therefore expected to generate the scaling law with an exponent of 
around 2.5 in an uncorrelated percolation13. To test this hypothesis, 
we identify the isolated connecting components in the simulation as 
cities and measure the area of each city5. Figure 3d shows that both 
the Lévy-flight and Gravity models reproduce a power-law city size 
distribution with τ = 2.55 ± 0.15 and τ = 2.58 ± 0.17, which is con-
sistent with the theoretical prediction. The simulation also shows 
IMM satisfies the scaling law with τ = 2.98 ± 0.51. This large expo-
nent implies the fact that individuals are localized within their own 
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patterns. a, The empirical city size distributions. The estimated exponents are τ = 1.94 (US), τ = 2.01 (GB) and τ = 2.08 (Berlin). The 95% confidence 
intervals based on Theil–Sen estimator are [1.83, 2.05] (US), [1.93, 2.09] (GB) and [1.90, 2.26] (Berlin). b, The empirical relation between ρA and A. c, The 
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0.3 (US), 0.3 (GB) and 0.4 (Berlin). d, The simulated city size distributions by different human movement models. The estimated exponents are τ = 2.55 
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(P-value < 0.05, n = 17), Gravity (P-value < 0.05, n = 18), IMM (P-value < 0.05, n = 11) and CMM (P-value < 0.05, n = 16). e, The simulated relations between 
urban population density and city size by different human movement models: Lévy-flight (P-value = 1.0, n = 14), Gravity (P-value = 1.0, n = 14) and IMM 
(P-value = 1.0, n = 3) cannot reject the zero exponent null hypothesis via a two-sided Wald Test with t-distribution, whereas CMM (P-value < 0.05, n = 10) 
rejects the null hypothesis with statistical significance. f, The simulated urban occupation profiles by different human movement models: Lévy-flight 
(P-value = 1.0, n = 25) and Gravity (P-value = 1.0, n = 25) cannot reject the zero exponent null hypothesis via a two-sided Wald Test with t-distribution, 
whereas IMM (P-value < 0.05, n = 22) and CMM (P-value < 0.05, n = 25) reject the null hypothesis with statistical significance.
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home range, as the IMM is equivalent to the non-interactive limit 
of CMM with ρ−1

0 → 0. By contrast, when the coupling constant 
ρ−1
0 → ∞, the CMM becomes strongly correlated. As a result, it 

reproduces the scaling law with τ = 2.02 ± 0.13, which agrees with 
the theoretical predictions and empirical patterns observed in real-
world data. All reported exponents range within a 95% confidence 
interval based on the Theil–Sen estimator36 (see Supplementary 
Section 6 for details); however, we find that the proposed CMM 
is the only model that contains the empirically observed universal 
exponent of 2.0 in its 95% confidence interval. These results sug-
gest combining the principals of social interaction and long-term 
memory effects in human mobility can reproduce the empirical city 
size distribution, which is successfully achieved by CMM.

(ii) Super-linear relation between population and city size: 
the positive allometric population growth with city size is widely 
observed in cities around the globe37,38. Larger cities tend to have 
a higher urban population density defined as, ρA ≡ N(A)/A. 
Researchers believe that is because the competition for space is 
more intense in big cities and there are more high-rise buildings to 
handle denser populations32,39,40. Recent research suggested that the 
balance between the cost and gain of concentrating population in 
urban areas would explain the observed super-linear growth6. This 
socio-economic hypothesis consists of two assumptions: (1) the 
average gain from the intense social interaction is proportional to 
the population density ρA, (2) the average living cost is proportional 
to the typical travel distance lt to explore the city. Their balance leads 
to ρA ≈ lt (ref. 6). Substituting equation (5), we have

ρA ≈ logA. (7)

The first assumption agrees with the social interaction in equation 
(3), whereas the second is rooted in the long-term memory effect 
in equation (4).

Figure 3b plots ρA with A across different cities in both US and 
GB, finding that the empirical observation agrees precisely with the 
predicted logarithmic law of equation (7). It is worth noting that 
previous studies reported most cities follow scaling laws (that is, 
ρA ≈ Aδ) with tiny exponents δ ≈ 0.04 ~ 0.3 (ref. 6); however, within 
the range of magnitude of the empirical data, the logarithmic rela-
tion is indistinguishable with a small-exponent scaling law. The 
logarithmic relation we identified in equation (7) therefore provides 
an alternative explanation to the origins of population growth pat-
terns, which is derived from human mobility behavior. Figure 3e 
compares the simulation results for the four models, finding that 

the proposed CMM accurately reproduces the logarithmic law; 
however, the simulation results of the other three models are fitted 
by lines with a coefficient of zero, which indicates that they predict 
ρA to be independent from the city size. This result demonstrates 
our model can outperform baselines in reproducing the empirically 
observed super-linear population growth.

(iii) Exponential occupation profile: the urban occupation pro-
file ϕ(r) is defined as the probability of finding an populated area at 
the distance r from the city center, where an exponential profile is 
observed in previous study41,

ϕ(r) ≈ e−λr. (8)

where λ is the exponent of the exponential occupation profile. 
Empirical measurements of the exponential urban occupation pro-
files have been made in several past works5,41. Figure 3c rechecks 
this pattern on all three empirical datasets, demonstrating that the 
city center attracts most of the population, whereas the occupation 
probability decreases rapidly with r.

However, such a rapid decline somehow contradicts the fat-
tailed nature of equation (1), which suggests humans are able to 
reach areas far away from the initial location20,32. Indeed, simulation 
results in Fig. 3f show that the Lévy-flight and Gravity models fail 
to reproduce a city center and predict ϕ(r) do not change with with 
different r. The lack of social interaction makes IMM unable to pro-
duce large subclusters on the peripheral area of city, which results 
in dramatic occupation density drop at the edge of city area. On the 
contrary, by jointly modelling the social interaction and long-term 
memory effects, the occupation profile reproduced by CMM agrees 
well with the exponential law of equation (8).

Moreover, it has been suggested that the declining rate λ shall 
decrease as the city evolves due to the constantly expanding fron-
tiers of cities5, which is in line with the observations in the Berlin 
dataset where ϕ(r) has been measured at three different time. Figure 
4a shows that λ decreases gradually from 0.050 to 0.031. The simula-
tion results of CMM precisely reproduce the evolution of the occu-
pation profile during urban development (see Fig. 4b). Specifically, 
as more population transit from the initially located city center to 
the peripheral area, the peripheral area will become more attrac-
tive for incoming movement based on the social interaction mecha-
nism. On the other hand, the long-term memory mechanism will 
maintain a dense area in the city center. The combination of social 
interaction and long-term memory mechanisms will therefore lead 
to the gradually flattened occupation profile; such a combination 
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demonstrated that CMM can simulate the gradually increased 
attractiveness of the peripheral area in a self-organizing manner. We 
also measure the time-varying occupation profiles of Lévy-flight, 
Gravity and IMM, finding that they do not capture the time evolu-
tion of ϕ(r) (see Supplementary Section 7 for details). Moreover, we 
find the more sophisticated d-EPR model with a static social inter-
action network29,30 also fails to reproduce the occupation profile 
evolution (see Supplementary Section 1 for details). These results 
demonstrate that the dynamic interactions in CMM are critical for 
reproducing the dynamics of the urban growth.

Impact of simulation parameters. There are three important 
parameters that might influence the simulation of urban systems: 
α, ρ0 and the average population density ω; α is the main parameter 
that characterizes the principal of cost of travel distance, which con-
trols the distance distribution of each displacement. It is set as 0.55 
in previous simulation based on empirical observations21. ρ0 mainly 
controls the principal of social interaction, it determines the likeli-
hood of individuals exploring more populated regions, and was set 
to ρ−1

0 → ∞ in past simulations to reproduce the strongly interac-
tive urban systems; ω is defined as the ratio between the number of 
citizens and the number of sites, that is, ω = M/l2. It represents the 
number of social interactions one would encounter per unit space. 
We now examine how these parameters may influence the charac-
teristics of the proposed CMM.

The morphology of simulated urban areas and reproduced 
urban growth patterns with different parameter settings are present 
in Figs. 5 and 6, respectively. First, as shown in Fig. 5a,b, we observe 
that ω does not notably affect the fractal morphology of urban sys-
tems. Furthermore, as shown in Fig. 6a–c, the city size distributions, 
population growth patterns and urban occupation profiles all agree 
with the empirical observations under different ω settings. These 
results indicate the urban growth patterns are robust with different 
ω. Second, α has substantial impact on the compactness of simulated 
urban systems, which is probably because it controls the jump-size 
distribution of each exploration in equation (1). When α is smaller 
than the empirical value, the exploration will have larger jump-size; 
thus, as shown in Fig. 5c, the occupied areas of urban systems are 
more diverged and distributed further away from the city centers. 

By contrast, Fig. 5d shows when α is larger than the empirical value 
the simulated urban system is more cohesive, and larger subclus-
ters are produced. Moreover, Fig. 6d–f shows city size distributions, 
population growth patterns and urban occupation profiles all devi-
ate from the empirical rules when α is different from the empiri-
cal value. These results show that α plays an important role in both 
urban morphology and urban growth patterns; thus, α is not only 
an important parameter in human mobility behavior, but also fun-
damentally governs urban growth. Third, ρ0 largely affects the mor-
phology of urban areas. Figure 5e shows that the simulated urban 
systems show prominent fractal morphology when ρ−1

0 → ∞ as 
ρ0 = 10−6; however, when we increase ρ0 to 1 in Fig. 5f, the fractal 
urban morphology is not reproduced and it shows homogeneous 
growth on the perimeter of the urban area. Furthermore, Fig. 6g 
shows that the exponents of city size distribution gradually increase 
when ρ0 increases from 0 to 1. As shown in Fig. 6h,i, the population 
growth patterns and urban occupation profiles also deviate from 
empirical rules when ρ0 increases to 1. These results indicate CMM 
can accurately reproduces the empirical rules of urban growth when 
ρ−1
0 → ∞, which corresponding to a singular mobility model that 

has both strong social interaction and long-term memory effect. 
On the contrary, the CMM predictions gradually converge to IMM 
when ρ−1

0 → 0, which is consistent with our theoretical analysis 
that IMM is a special case of CMM. These results show the param-
eters α and ρ0 in CMM have important impact on the compactness 
of urban system and the fractal morphology, respectively. We there-
fore set α = 0.55 and ρ−1

0 → ∞ in our CMM to follow the empirical 
observations and reproduce the strong social interactions.

Discussion
This paper seeks to establish a connection between urban growth 
and human mobility. It is worth pointing out that although most 
human mobility models are developed on the basis of the active 
mobility behavior that characterizes daily movements, urban 
growth is more closely related to the residential mobility, that is, 
the relocation of residence. Although residential and active mobil-
ity are human movements on different timescales, they share com-
mon features in behavior patterns. For instance, the Gravity model 
is often used in both scenarios42. Moreover, the long-term memory 
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Fig. 5 | Qualitative comparison between the morphology of urban area reproduced by CMM with different parameter settings. The standard parameter 
setting is ω = 1/3, α = 0.55, ρ0 = 0. a–f, We change the value of one parameter in each simulation: ω = 1/6 (a), ω = 1/2 (b), α = −0.45 (c), α = 1.55 (d), 
ρ0 = 10−6 (e) and ρ0 = 1 (f). The population distribution of the simulated urban system is visualized as heatmap on a logarithmic scale, where blue and red 
colors represent underpopulated and high-population regions, respectively.
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effect is equally important for relocation due to numerous socio-
economic factors such as the effect of civic memory and change of 
workplaces43,44. The CMM therefore provides a framework for both 
active and residential mobility, each corresponding to different 
experiment set-ups. For example, the relocation has a much smaller 
transition rate—that is, probability of movement per unit time—
than the daily movements. Nevertheless, we do not set a specific 
timescale in the simulation and find that the universal urban laws 
observed in the proposed CMM are largely independent of choos-
ing different modeling parameters (see Fig. 6). The application of 
simulations on different timescales will be investigated in future 
research. Besides, our study shows long-term memory and social 
interaction mechanisms are a minimum set of common principles 
in human mobility that governs the empirically observed universal 
laws of urban growth. On the other hand, the d-EPR model that 
leverages static social interaction network also cannot reproduce 
the urban growth, which shows the limitation of physical determin-
ism models in capturing the self-organizing nature of urban system. 
By contrast, the proposed CMM is not solely physical determinis-
tic, yet a highly simplified decision-making model where individu-
als choose their exploration locations based on the dynamic social 

attractiveness of the locations (see Supplementary Section 5 for 
more details). Together with the long-term memory mechanism 
for the return processes, CMM is a human mobility model with a 
minimal set of decision-making processes that allows theoretical 
analysis and numeric simulations. We feel that the simplicity of 
the proposed model makes it a succinct and general framework for 
urban growth simulation.

Our study has direct implications on several downstream appli-
cations45,46, including city planning, resource allocation, policy mak-
ing and so on. Top-down city governing has been shown ineffective 
in foreseeing urban growth and optimizing urban functions by the 
previous research2,47. Predictive experiments show the proposed 
CMM outperform baseline models in predicting the morphology 
change of urban areas (see Supplementary Section 3 for details), 
which can help city planning and resource allocation to stay ahead 
of urban development and reduce inefficient investments. The pro-
posed model provides a bottom-up perspective to understand how 
urban growth emerges from human mobility behavior. It allows 
the policy-makers to make sense of the driving force of human 
movements behind urban growth, which can inform the design of 
policies that optimize urban functions, for example, improving the 
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operation of transportation system and designing suitable reloca-
tion policies.

The present work can be improved from the following directions, 
which are left for future research. First, the proposed CMM provides a 
theoretical framework that connects urban growth and human move-
ment; however, the detailed empirical mechanisms that contribute to 
this connection are not investigated in current research, which might 
require quantitative and qualitative analysis on the empirical data 
collected from heterogeneous sources. Second, the proposed CMM 
is computation intensive due its strongly interactive nature. We pro-
pose two sampling methods to improve the efficiency of simulation 
(see Methods for details); however, further optimization is needed to 
simulate large-scale urban systems with millions of citizens. Third, 
the proposed CMM is general and can be further optimized for spe-
cific application domain by including relevant contextual features. 
For example, although we demonstrate the predictive power of our 
model, it can be further augmented by explicitly considering the con-
textual features such as lakes, rivers and road networks.

Methods
Urban growth simulation. We simulate urban growth with M individual citizens 
moving according to the mobility models and considered the occupied sites as 
developed urban areas. Specifically, urban growth simulation is performed on 
a two-dimensional square simulation space with l sites in each dimension for T 
time steps. The simulated citizens are initially located at the central site (l/2, l/2) 
of simulation space, and then iteratively sample their next sites according to the 
mobility models at each time step. After the system is converged, we considered 
the populated sites as an urban area, and examine the morphology and growth 
patterns of the simulated urban system. Following the settings in previous work5, 
we identify the connected components of urban area as cities and group them 
in logarithmically spaced bins. The patterns of city size distribution and urban 
population growth are reported by averaging over the cities in each bin with 
sliding windows. As for the urban occupation profile, we use sliding windows 
gradually moving from city centers to frontier to capture the gradual change of 
urban occupation density. We perform statistical analysis to test the robustness of 
simulated patterns (see Supplementary Section 6 for more details).

Specifically, we set l = 300, M = 30, 000, T = 20, 000 in the main simulation 
experiment. The simulation size is typical for a strongly interactive agent-based 
model48, where the computational complexity is considerably high. In each step, it 
requires to sample the next site of each individual from the entire universe of sites 
based on the probability distribution derived from human mobility models. The 
overall time complexity of the memoryless mobility model—that is, Lévy-flight 
and Gravity models—is therefore O(TMA). As for the memory-aware mobility 
model, that is, IMM and CMM, we define θE and θR as the average probability of 
exploration and preferential return, respectively, where θE + θR = 1, and p̂ as the 
average number of previously visited sites; the overall time complexity is then 
O(TM(θEA + θRp̂)). Although the simulation can be accelerated with parallel 
processing as the sampling at each step is independent among individuals, the 
computation complexity is still not scalable to simulate a large urban system. For 
example, it requires over 690 h to simulate a l = 300, M = 30, 000, T = 20, 000 urban 
system on a computer with 40 cores of 3.6 GHz Intel i7 processors. We therefore 
propose two improved sampling methods—alias sampling and sorted array 
sampling—to improve the efficiency of the simulation.

The alias sampling method aims to optimize the exploration mechanism that 
is important in all four mobility models, which characterizes how citizens travel 
to new sites. It is especially time-consuming as in each step it requires sample a 
site based on a certain probability distribution from the entire universe of sites for 
each citizen. As a result, we design an improved sampling method by exploiting 
the insight that the probability distributions for the citizens in the same sites 
are identical in each step, which allows us to reuse the probability distribution 
among the citizens in the same sites. To achieve this goal, we implement an alias 
sampling technique to draw subsequent samples from the same distribution 
in O(1) complexity49 (see Supplementary Fig. 2). Denote the sampling space 
as a ∈ {1, 2, ... , A}, the probability of sampling a as p[a]. The alias sampling 
algorithm is described as two subprocesses: creating an alias table and generate 
subsequent samples. In the first subprocess, the algorithm works by reshaping the 
probability distribution over A sites into A pairs of sites {bi∣ for i ∈ {1, 2, ... , A}}, 
and the summed up probability of each pair of sites is identical, namely, A−1. 
This subprocess is also called the Robin Hood method as it requires to break 
down the sites with probabilities p[a] > A−1 and pair them with the sites with 
probabilities p[a] < = A−1. In the second subprocess, the algorithm first samples a 
pair of sites from {bi∣ for i ∈ {1, 2, ... , A}} based on uniform probability distribution. 
Then, sample a site from the site pair based on its corresponding probability. It 
is straightforward to prove that each sample generated by the second subprocess 
follows the exact probability distribution defined by p[a]. Note that the time 

complexity of creating alias table in the first subprocess is O(A); however, the alias 
table can be reused to generate subsequent samples from the same probability 
distribution at O(1) complexity. Therefore, the amortized time complexity per 
draw is O(1) when the number of samples is large. In our simulations, a large 
number of citizens share the same probability distributions since they are in the 
same sites. Therefore, the alias sampling technique is able to effectively reduce the 
complexity of exploration mechanism from O(TMA) to approximately O(TM), 
which renders the time complexity independent with the size of site universe and 
substantially speeds up the simulation.

The sorted array sampling method aims to improve the efficiency of simulating 
preferential return mechanism in IMM and CMM. The probability of preferential 
return is positively correlated with the number of sites individuals previously 
visited S. Specifically, we can implement the preferential return mechanism by 
first sampling an integer from a uniform distribution on the number of total visits 
of an individual, [0, ∑if(vi)]. Then, we cumulatively summed up the frequency 
of each site and select the site to render the sums first above the sampled integer. 
Therefore, the time complexity of each preferential return is proportional to S since 
we need to go through all visited sites, and it will be computation expensive when 
citizens have visited a large number of sites. An important observation is that the 
probability distribution is skewed among all the sites visited by individuals since 
the probability is proportional to the visitation frequency associated with each site. 
Therefore, an intuitive optimization solution is to sort the array of previously visited 
sites by the frequency, and first examine the site with highest frequency since they 
are most likely to be sampled. However, sorting an array with S elements requires 
a time complexity of O(Slog2S), which is more expensive than the complexity of 
sampling O(S). To address this problem, we leverage the insight that the orders of 
the array will not change notably between two neighboring steps. Therefore, we 
implement a sorted array data structure to enable the reuse of the array of sorted 
sites among neighboring steps. Specifically, the data structure contains the pairs of 
sites and the associated visitation frequency. If the citizens perform a preferential 
return, we update their sorted arrays by increasing the frequency of sampled sites 
and moving up the corresponding pairs until the arrays become sorted again. If the 
citizens perform an exploration, we add a new pair of sites and frequency to the 
bottom of the array. It is straightforward to prove that the average time complexity 
of maintaining a sorted array data structure is less than O(log2S), which effectively 
improved the efficiency of simulating preferential return mechanism.

These optimization techniques allow us to reduce the computational time of 
simulating a l = 300, M = 30, 000, T = 20, 000 urban system from 690 h to 12 h on a 
workstation with 40 cores of 3.6 GHz Intel i7 processor, which makes it feasible to 
simulate large-scale urban systems.

Diffusion equation of gravity model. We prove the fractional diffusion equation 
(2) for evolution of the density ρ(−→v , t) in the Gravity model. We start 
with a master equation in a site, and then derive the continuous equation by taking 
the proper limit when the site spacing h approaches zero. The transition rate matrix 
Wij defines the probability rate of individuals departing from site i and arriving in 
site j. With equation (3), we have

Wij = λg(h)
ρi(t) + ρ0

|
−→v i −

−→v j|d+α
, (9)

where λg(h) is a normalization factor that shall scale appropriately with the site 
spacing h, and α ∈ (0, 2]. The corresponding master equation reads,

dρi(t)
dt =

∑

j

[

Wijρj(t) − Wjiρi(t)
]

= λgρ0
∑

j

ρj(t) − ρi(t)
|
−→v i −

−→v j|d+α
. (10)

Assuming a small site spacing h, we approximate the summation by a 
continuous integration,

∑

j

ρj(t) − ρi(t)
|
−→v i −

−→v j|d+α
≈ hα

∫

ρ(−→y , t) − ρ(−→x , t)
|
−→x −

−→y |
d+α

dy = −cd,αhα
(−Δ)

α/2
ρ(−→x , t),

(11)

where (−Δ)α/2 is the fractional Laplacian satisfying ̂(−Δ)α/2f(−→k ) = |

−→k |
α f̂(−→k ), 

and cd,α =
πd/2|Γ(−α/2)|
2α Γ((d+α)/2). Taking the continuous limit h → 0 requires the existence of 

lim
h→0

λg(h)hα, that is, g(h) ~ h−α for small h. Substituting equation (11) by equation 

(10) leads to equation (2), where the diffusion constant D ≡ cd,α ρ0 lim
h→0

λg(h)hα.  

For α = 2 we recover the standard diffusion equation. Therefore, as long as the 
diffusion constant D is positive, the simulated urban population will diffuse to 
eventually follow a uniform distribution. Otherwise, negative D corresponds to a 
unusual negative diffusion process where urban area cannot exist stably and will 
sink to a single point.

Data collection and calibration. All datasets used in this paper are publicly 
available. Specifically, the data of the urban area and population in the US was 
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originally released by the US Census Bureau for the year 200050. It contains the 
information of urban size and population in the granularity of neighborhoods 
or towns. Besides, the data of cities in Great Britain was originally released by 
the Statistical Office of the European Union for the year 199151. It provides 
information on the city’s coverage and population distribution in the resolution of 
discrete 200-meter squares. We use the preprocessed datasets released by previous 
research52. The dataset of the Berlin region is extracted from the telemetry images 
of settlement area distributions in 1910, 1920 and 1945 published by previous 
work (see Fig. 4.1 in ref. 53). We follow the procedures proposed by previous 
researchers5,54 to digitize the empirical data into discrete sites. The telemetry images 
provide information on whether a site belong to urban area, but not the urban 
population distribution.

Statistics and reproduciblility. We use two-sided Wald test with t-distribution55 
to examine the null hypothesis that human movement models reproduce urban 
growth patterns with zero exponents. The detailed statistical analysis results can be 
found in Supplementary Table 2.

As for the city size distribution, we find all four models reject the null 
hypothesis with statistical significance: Lévy-flight model (P-value < 0.05, n = 17), 
Gravity model (P-value < 0.05, n = 18), IMM (P-value < 0.05, n = 11) and 
CMM (P-value < 0.05, n = 16). Moreover, the theoretical analysis and empirical 
observations both indicate the exponent should be two due to the strongly 
correlated urban development5. To test this pattern, we use the Theil–Sen estimator 
to compute the confidence intervals of the exponent reproduced by each model36. 
As a result, the 95% confidence intervals for the Lévy-flight model, Gravity 
model, IMM and CMM are [2.40, 2.70], [2.41, 2.75], [2.47, 3.49] and [1.89, 2.15], 
respectively. Only the proposed CMM contains the empirical observed two 
exponents in its 95% confidence interval.

As for the super-linear urban population growth, Supplementary Table 2 shows 
Lévy-flight model (P-value = 1.0, n = 14), Gravity model (P-value = 1.0, n = 14), 
IMM (P-value = 1.0, n = 3) cannot reject the null hypothesis of zero exponents, 
whereas CMM (P-value < 0.05, n = 10) rejects the null hypothesis with statistical 
significance.

As for the urban occupation profile, we find that the Lévy-flight 
(P-value = 1.0, n = 25) and Gravity (P-value = 1.0, n = 25) models cannot reject the 
null hypothesis of 0 exponent, whereas IMM (P-value < 0.05, n = 22) and CMM 
(P-value < 0.05, n = 25) reject the null hypothesis with statistical significance.

Data availability
The empirical urban datasets that support the findings of this study are public 
available. The datasets for US and GB were released by previous research52. The 
Berlin dataset is extracted from the telemetry images in previous works53 (see Data 
Collection and Calibration for details), which is available in GitHub, https://github.
com/tsinghua-fib-lab/Collective-Mobility-Model56. Source data for Figs. 3, 4 and 6 
are available with this manuscript.

Code availability
The source code for numeric simulation is available online: https://github.com/
tsinghua-fib-lab/Collective-Mobility-Model (ref. 56).
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1 Models Description

To explore the correlation between urban growth and human mobility behavior, we examine three

representative mobility models in this research, namely, the Lévy-flight model, Gravity model, and

individual mobility model. In addition, we further propose a collective mobility model to make up

the shortcomings of previous works and reveal the underlying mechanism of urban growth. The

investigated mobility models are discussed in detail in this section (see Table 1).

Models Cost of Travel Distance Social Interaction Memory

Lévy-flight model 1, 2 X × ×

Gravity model 3 X X ×

IMM 4 X × X

CMM X X X

Supplementary Table 1: Comparison between different mobility models on the principals in human

mobility.

Lévy-flight Model Through analyzing a massive amount of mobility data collected through the

circulation of banknotes and mobile devices, researchers find extensive evidence that the distance

of displacements can be best characterized by scaling law distribution 1, 2. It predicts individuals

are more likely to visit nearby locations but also have a notable probability to make long-distance

displacements. Such behavioral patterns have also been validated on numerous species. It has

been proven to be the best mobility strategy in searching the scarce food randomly distributed in
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the wild. Formally, the probability of individual traveling to location r0 + ∆r from location r0 is

modeled as follows,

P (r0 + ∆r) ∼ 1

|∆r|(d+α)
, (1)

where d = 2 in 2-dimensional space and α is the parameter controlling the decaying rate of travel

probability with distance. It is set as 0.6 based on the empirical observations in previous research 1.

The Lévy-flight model predicts an individual’s traveling probability to follow an inverse scaling

law with the travel distance, which accounts for the principal of cost of travel distance in human

mobility.

Gravity Model The idea of Gravity model stems from Newton’s law of universal gravitation that

particles attract each other with a force proportional to their masses and inversely proportional to

the distance between their centers. Such a mechanism has been generalized to model the attraction

of population 3, where the probability of an individual traveling to a location is predicted to be

proportional to the population of that location and inversely proportional to the distance of travel.

Researchers rationalize the underlying reasons as humans are motivated to travel to densely popu-

lated and nearby locations for more opportunities for social cooperation and less cost of traveling.

Therefore, it simultaneously models the principals of social interactions and cost of travel distance

in human mobility. In addition, such a mechanism also provides a promising solution to model the

spatially correlated urban growth at the microscopic level, where the developed urban area is more

likely to attract further development. Specifically, the details of the Gravity model are elaborated as

follows. We assume that at step t the individual is at a location r0. Then, he/she decides to explore

3



a new location with the probability distribution described as the below equation at step t+ 1,

P (r0 + ∆r) ∼ ρ(r0 + ∆r)

|∆r|(d+α)
, (2)

where ρ(r0 + ∆r) denotes the population in location r0 + ∆r. Similarly, Gravity model also has a

parameter α that controls the decaying travel probability with distance. We set it as 0.6 based on

the observations in the Lévy-flight model 1.

Individual Mobility Model An important drawback of Lévy-flight model and Gravity model is

that they cannot explain the range of home effect 5, which is an insightful concept that has been

validated on most mammals, including humans. The range of home effect describes the frequent

revisits on a small set of locations and the ultra-slow diffusion of an individual’s coverage area,

which cannot be rationalized by Lévy-flight model and Gravity model since they both are a diffusive

process. As a result, the Individual Mobility Model (IMM) is proposed to significantly make up the

drawbacks by introducing an insightful preferential return mechanism 4. Specifically, the IMM is

described as follows. We assume at step t individual is at location r0. At the next step t+ 1, he/she

decides to explore a new place with probability Pexp = δS−γ or return to a previously visited

location with the complementary probability Pret = 1 − δS−γ , where S is the number of distinct

visited location. If the individual decides to explore a new place, he/she makes a displacement of

∆r based on the following equation,

P (r0 + ∆r) ∼ 1

|∆r|(d+α)
, (3)
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Otherwise, the model predicts the individual to return to a previously visited location ri based on

the following equation,

P (ri) =
f(ri)∑
i f(ri)

, (4)

where f(ri) is the frequency of visiting location ri in historic mobility behavior. On the basis of

Lévy-flight model, IMM further models the principal of memory in human mobility by leveraging

the preferential return mechanism. Specifically, α, δ and γ are three empirical parameters that are

set as 0.55, 0.1 and 0.21 based on the previous research 4.

d-EPR model One closely related recent work proposed a computational urban mobility model,

i.e., d-EPR model, to introduce a social dimension into the memory-aware IMM 6. Specifically,

the d-EPR model calculates a location relevance score based on the total number of phone calls

originated in each location C(r0 + ∆r). Then, on the basis of competing returning and exploring

mechanisms in IMM, d-EPR model further predicts individuals will have higher probability to

explore location with high relevance score:

P (r0 + ∆r) ∼ C(r0 + ∆r)

|∆r|(d+α)
, (5)

There are subtle but critical distinctions d-EPR model and the proposed CMM. Specifically,

while d-EPR model successfully captures individual movements on a daily basis, there are two

limitations for modeling urban growth: 1) individuals move independently and do not interact with

each other; 2) the background field in d-EPR model is static and does not evolve with time. In con-
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Supplementary Figure 1: The city size distribution and urban occupation profile simulated

by d-EPR model. (A) d-EPR model predicts the number of city drops more quickly than the

scaling law with −2.0 exponent, which indicates large cities are less likely to be formed in d-EPR

model. CMM accurately reproduces the universal scaling laws. (B) d-EPR model predicts the

urban occupation profile to follow a exponential distribution with a exponent of −0.04. However,

it does not reproduce the pattern of gradually flatten profile as the simulation proceeds.

trast, the proposed CMM uses many-body interactions generated dynamically from the movements

of all individuals, which leads to two major distinctions from d-EPR model:

1) Self-organization: The strong many-body interactions among individuals in CMM lead

to self-organized growth. As a consequence, it predicts universal scaling laws. Figure 1 A plots

the number of cities N(A) as a function of city area A for CMM and d-EPR model. While CMM

predicts precisely the universal scaling law of N(A) ∼ A−2, d-EPR model fails to reproduce the
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scaling law. Instead, the number of cities N in d-EPR model decreases with the city area A more

rapidly for smaller cities yet more slowly for larger cities. This finding implies that introducing

many-body interactions is one of the key ingredients to capture the self-organization nature, and

consequently the universal scaling laws of urban growth.

2) Dynamic evolution: Unlike a static background field used in d-EPR model, the dynamic

interactions in CMM predict urban growth as a time-evolving process.To quantify this difference

between d-EPR model and CMM, we measure the occupation profile φ(r) as a function of the radial

distance r for both models. Figure 1 B shows φ(r) at different times, finding that the occupation

profile is independent of time for d-EPR model, whereas gradually flattens as the city grows for

CMM, in line with the empirical observations (see Fig. 4 in the main text).

Note that for applications in a short-time scale such as daily movements we may approx-

imate the dynamic interactions in CMM by a static mean field, where CMM and d-EPR model

become similar to each other. However, for applications in a large time scale such as urban growth,

the difference between the static mean field (d-EPR model) and dynamic interactions (CMM) is

not anymore negligible, making d-EPR model fail to capture the long-term universality of urban

growth. Besides, the d-EPR model requires a huge amount of inputting parameters measuring from

the number of phone calls at each location, while the proposed CMM is self-contained and nearly

parameter free (with only 4 parameters). We believe that this nearly parameter-free nature is one

of the strengths of the proposed approach, as it demonstrates the universality of urban growth.
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Collective Mobility Model Simulation and theoretical analysis show that previous human mo-

bility models are inadequate to predict the morphology and dynamics of urban growth. A key

observation is that all three principals are vital to reproduce urban growth patterns. Based on these

considerations, we propose a Collective Mobility Model (CMM) to self-consistently model all the

key principals in human mobility, namely social interaction, memory and cost of travel distance.

Specifically, we leverage the preferential exploration mechanism and preferential return mecha-

nism to characterize these factors and unify them under a competing framework. At the next step

t+ 1, individual decides to explore a new place with probability Pexp = δS−γ or return to a previ-

ous visited location with probability Pret = 1 − δS−γ , where S is the number of distinct location

previously visited by him/her. If the individual decide to explore a new place, he/she makes a

displacement ∆r based on the preferential exploration mechanism described as follows,

P (r0 + ∆r) ∼ ρ(r0 + ∆r) + ρ0

|∆r|(d+α)
, (6)

Otherwise, he/she returns to a previously visited location ri based on the preferential return mech-

anism described as follows,

P (ri) ∼
f(ri)∑
i f(ri)

, (7)

where f(ri) is the frequency of visiting location ri in historic mobility behavior. α, δ and γ are

empirical parameters that set as 0.55, 0.1 and 0.21 to follow the setting of IMM. Besides, we set

ρ0 → 0 in the simulation to consider the scenario of strong social interaction. On the contrary,

IMM is a special case of CMM with ρ0 →∞.
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2 Accelerating Urban Growth Simulation

Supplementary Figure 2: Illustration on accelerating exploration with alias sampling tech-

nique.

3 Predictive Analysis

To evaluate the predictive power of the proposed CMM model, we compare it against the baseline

models on predicting morphology change of the urban areas in Berlin region, which is shown in

Fig. 3. As shown in Fig. 3A, the Berlin dataset contains the urban area distribution in the years

of 1910, 1920, 1945, which covers a space of 221 × 221 locations in total and the developed

locations are denoted with yellow color. Specifically, the number of developed locations in year

1910, 1920 and 1945 is 6243, 9681 and 15758, respectively. Since this dataset does not contain

population distribution data, we set the initial location of each simulated citizen randomly among

the developed urban locations in 1910, which naturally reproduces the exponential population
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Supplementary Figure 3: Performance on predicting urban morphology. (A) Urban morphol-

ogy of Berlin area in 1910, 1920 and 1945, where yellow area denotes the developed urban areas.

The 1910 data is used to initialize urban population distribution, 1920 data is used to calibrate

simulations, and 1945 data is used to evaluate the prediction performance. The urban morphology

prediction generated by: (B) Lévy-flight model; (C) Gravity model; (D) IMM; (E) CMM.

distribution due to the exponential profile of urban area density shown in Fig. 3C in the main text.

Then, we simulate the citizens to move according to the mobility models and consider the occupied

locations as the predicted developed locations. Since the effect of memory and social interaction

mechanisms are computed based on the individual and population’s distribution, the location of

each individual can be considered as tunable parameters. To provide a supervision signal 7, when

the number of occupied locations reaches 9681 as the ground truth in year 1920, we calibrate to
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location of each citizen by relocating them to the closet developed locations shown in 1920 data.

After that, we continue to simulate the urban system until the number of occupied locations reach

15758 as the ground truth in year 1945.

The simulated urban areas of Levy-flight model, Gravity model, IMM and our proposed CMM

are presented in Fig. 3B–E, respectively. Specifically, we can observe that our CMM can reproduce

dense and cohesive urban areas in the city center and medium size sub-clusters in the peripheral

area, which is consistent with the empirical observations in Berlin region. On the contrary, the

baseline models predict the urban population to distribute more loosely in simulation space, and

generate large number of small and isolated sub-clusters in the peripheral area, which are unreal-

istic in urban development. Moreover, our CMM also reproduces the fractal morphology that is

observed in Berlin region.

Besides, we also quantify the predictive power as the accuracy rate of predicting whether

a location will be developed, which is computed by comparing against the ground turth in 1945.

Our proposed CMM has an accuracy of 82.9%, which substantially outperforms the 70.4% of

IMM and 68.3% of Gravity model and 68.1% of Levy-flight model. Although our model is not

optimized for fine-grained city growth prediction, these results combined to suggest our model

has superior predictive power compared to the baselines. The substantial performance gain in city

growth prediction can translate into notable social economic benefit in downstream applications,

such as city planning and resource allocation, which are left for future research.
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Supplementary Figure 4: Fractal dimension of the urban system simulated by CMM. It is

calculated with the box-counting method 8. The fractal dimension is the coefficient of the log-log

fitting between urban size S(ε) and scale ε. They are 1.62, 1.67, 1.72 and 1.78 respectively, when

the simulation step t is at 2000, 4000, 6000 and 8000.

4 Fractal Dimensions

The fractal phenomenon is an important empirical observation made on real-world urban systems 9.

Previous works found extensive evidence that the fractal dimension is around 1.4∼1.9 in the cities

across the globe 9–12. Besides, several longitudinal studies suggested each city’s fractal dimension

will gradually increase over time 10, 11. For example, the fractal dimension of the metropolitan area

of Lisbon increased from 1.42 to 1.66 as it evolved from 1960 to 2004 10.

In the previous analysis, we qualitatively examine our CMM’s capability in reproducing the
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fractal effect of the urban system through visualization. To better quantify such a phenomenon, we

adopt the standard box-counting method to compute the fractal dimensions of the simulated urban

system 8. Specifically, we segment the simulation space into numerous grids that each covers ε× ε

sites. Then, we count the number of grids occupied by the simulated urban area S(ε). The fractal

dimension (also known as box-counting dimension 8) df is computed as,

df = lim
ε→0

logS(ε)

log(1/ε)
, (8)

We present the log-log plot of S(ε) and ε in Fig. 4. We observe that CMM adequately reproduces

the fractal dimension around 1.62∼1.78, which is consistent with the empirical observations 9.

Moreover, as simulation step increase from 2000 to 8000, the fractal dimension gradually increases

from 1.62 to 1.78, which also echos the findings in previous studies 10, 11. These results indicate

the CMM effectively explains the fractal phenomenon in real-world urban systems.

5 Human decision-making and heterogeneous behavior in urban mobility

In the past decade, geographers and regional scientists put forward accumulating evidences that

human decision-making process plays important role in human mobility 13–15. For example, pre-

vious research showed residential satisfaction 13, the context of current locations 14, and the urban

environment 16 all affected individuals mobility decisions. These results put doubts in simulat-

ing urban systems with physical determinism model. Physical particle model DLA simulates the

urban system as the diffusion-limited aggregation of particles 17 , and cellular automaton model

CP uses spatially correlated site percolation for simulation 18. Besides, human mobility models

that do not involve dynamic social interaction are also effectively physical deterministic, such as
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random walk models (e.g. Brownian motion and Lévy-flight model) and models solely depend on

prior trajectories (e.g. IMM and d-EPR model). Our simulation results also confirmed that these

individual-based physical determinism models fail to capture the urban growth.

On the contrary, the proposed CMM explicitly characterizes the dynamic social interaction

among urban citizens on high-level, where individuals make decisions about their explorations

based on the social attractiveness of the location. Therefore, the proposed CMM is not solely

physical deterministic, yet a highly-simplified agent-based model that integrates two key ingredi-

ents, i.e., a simplest version of decision making process based on strong social interactions among

agents, together with the memory effect for individual return processes. Compared to existing

agent-based models that often consists of a large number of microscopic details (e.g., context of

current locations and urban environments), CMM is an agent-based model with a minimal set of

decision making processes that allows theoretical analysis and numeric simulations for a long-run.

The general framework described by CMM can be easily extended to include more detailed deci-

sion making process by considering the fine-grained demographic features and behavioral patterns

of urban citizens, which is left as future research.

On the other hand, heterogeneous behavior is another important phenomenon in urban mo-

bility 4. Although CMM predicts individuals to follow the same rules, we find that the model

generates dynamically inhomogeneous movement patterns due to the memory effect. Fig. 5 shows

the trajectories of three randomly-selected individuals from the simulation, where nodes represent

the five most visited locations with their size proportional to the visitation frequencies. We find
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Supplementary Figure 5: Visualizing the simulated trajectories of four randomly selected indi-

viduals. The nodes represent the 5 most frequently visited locations in each individual’s simulated

trajectory, and the node size denotes the visit frequency. The edge color denotes the frequency of

movements, where deeper color means more frequent visitation.

that the visitation frequency is highly inhomogeneous for each location. Fig. 6 plots the average

visitation frequency conditions on the rank of individuals visited locations, finding that the visita-

tion frequency decreases drastically with the rank following a Zipfs law 19. The most frequently

visited locations could be potential work and residence, the low frequency one grocery store, all

the way to the rare family visit, taking place once a year. Therefore the CMM achieves the visita-

tion inhomogeneity dynamically, without an a priori assignment of the various location labels and

the microscopic details of individual demographic.

We also find individuals visiting different locations with a highly inhomogeneous movement

range in Fig. 5. To quantify the inhomogeneity of the movement ranges, we measured the radius

of gyration for each individual. Specifically, the radius of gyration rg is widely adopted to measure
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Supplementary Figure 6: The Zipfs law in location visitation frequency distribution.

the size of active region in human mobility 2, 4, which is defined as

rg =

√∑T
i=1(~ri − ~rcm)2

T
, (9)

It is computed as the root mean square distance of each agent’s visitations ~ri, i = 1, 2, ..., T to the

center of mass of its overall trajectory ~rcm =
∑T

i=1 ~ri
T

. Fig. 7 shows the distribution of radius of

gyration across all individuals. The fat-tailed nature of the radius of gyration indicates a notable

inhomogeneity among the mobility patterns of the simulated population.

Therefore, inhomogeneity is a built-in feature of the proposed CMM. It is, however, also

possible to introduce additional inhomogeneity of individual characteristics by assigning environ-

mental and intrinsic parameters to each agent which requires a lot of extra parameters. We feel that

a nearly parameter-free nature of the minimal CMM is in fact the strength of the current approach,

as it demonstrates the universality of urban growth, without requiring all the information about
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Supplementary Figure 7: The distribution of radius of gyration in simulated agents.

individual residencies and demographic features.

6 Robustness Analysis

Statistical Testing The proposed model is mainly evaluated through numerical simulations, which

inevitably introduce randomness in the sampling processes. To evaluate the robustness of the

reproduced urban growth patterns, we repeat the simulation for 5 runs with randomly initiated

random seeds. We present the three most important urban growth rules, i.e., city size distribution,

super-linear population growth with city size and urban occupation profile, in Fig. 8. We can see

that there is no significant differences between the reproduced urban growth in different runs of

simulations and they all agree with the theoretically predicted patterns (see Results Section in main

text for details). Therefore, these results suggest the reproduced urban growth patterns are stable

in different runs of simulation.

17



Supplementary Figure 8: The reproduced urban growth patterns of different runs of simula-

tions. (A) City size distribution. (B) Super-linear urban population growth. (C) Urban occupation

profile.

We also perform statistical testing on the robustness of the reproduced urban growth patterns.

We measure the goodness-of-fit of each urban growth patterns with the coefficient of determination

R2 20, where R2 closes to 1 means the simulated data fits well with the hypothesized functions.

Besides, we calculate the two-sided p − value for a hypothesis test whose null hypothesis is that

the simulated exponents are zero, which is computed via Wald Test with t-distribution 21. We can

reject the null hypothesis of zero exponent if the p− value is smaller than a given threshold, e.g.,

0.05. These statistical analysis results are presented in Table 2.

As for the city size distribution, we can observe that all four models accurately reproduce

the scaling laws with R2 close to 1, and they all generate non-zero exponents with statistical sig-

nificance (p − value < 0.05). Moreover, the theoretical analysis and empirical observations both
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Models
City size distribution Population growth Occupation profile

R2 p− value n R2 p− value n R2 p− value n

Lévy-flight 0.99 < 0.05 17 1.00 1.00 14 1.00 1.00 25

Gravity 0.99 < 0.05 18 1.00 1.00 14 1.00 1.00 25

IMM 0.96 < 0.05 11 1.00 1.00 3 0.69 < 0.05 22

CMM 0.99 < 0.05 16 0.92 < 0.05 10 0.99 < 0.05 25

Supplementary Table 2: Statistical analysis on the robustness of the reproduced urban growth

patterns. The coefficient of determination R2 measures the goodness-of-fit. The two-sided p −

value is calculated via Wald Test with t-distribution, which measures the statistical significance of

reproducing non-zero exponents. The reportedR2 and p−value are both rounded to two decimals.

n denotes the number of data points.

indicate the exponent should be 2 due to the spatially strongly correlated urban development 18. To

test this pattern, we use Theil-Sen estimator to compute the confidence intervals of the exponent

reproduced by each model 22. As a result, the 95% confidence intervals for Lévy-flight model,

Gravity model, IMM and CMM are [2.40, 2.70], [2.41, 2.75], [2.47, 3.49] and [1.89, 2.15], respec-

tively. It means with 95% confidence we can say the exponents reproduced by each mobility model

are within these intervals. Therefore, only the proposed CMM contains the empirical observed uni-

versal exponent 2, suggesting that CMM is the only model that captures the universal scaling laws

with a 95% confidence level.
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As for the super-linear urban population growth, Table 2 shows all four models can accurately

reproduce the hypothesized function with the R2 close to 1. However, the p− value of Lévy-flight

model, Gravity model and IMM are 1, which means they cannot reject the null hypothesis of

zero exponent. On the contrary, CMM can reject the null hypothesis with statistical significance

(p−value < 0.05). In fact, Lévy-flight model, Gravity model and IMM predict the urban population

density to be invariant with city size, while CMM reproduces the super-linear growth of urban

population.

As for the urban occupation profile, we can observe that Lévy-flight model and Gravity model

cannot reject the null hypothesis of zero exponent, while IMM and CMM can reject it with statisti-

cal significance (p− value < 0.05). However, the coefficient of determination R2 of IMM is only

0.69, indicating it cannot adequately reproduce the negative exponential function. In contrast, the

proposed CMM can simultaneously reproduce the negative exponential function (R2 = 0.99) and

non-zero exponent (p− value < 0.05).

To conclude, these results show the proposed CMM outperforms three baseline models in re-

producing city size distribution, super-linear population growth with city size and urban occupation

profile with statistical significance.

Simulation Size To evaluate the impact of simulated urban size, we simulate urban systems with

l = 100, l = 300 and l = 500, respectively. That is, we simulate the systems on spaces with

100×100, 300×300 and 500×500 locations. Besides, we keep the population density the same as

previous simulations, i.e., M/l2 = 1/3. The obtained results of city size distribution, super-linear

20



Supplementary Figure 9: Urban growth patterns reproduced by the proposed CMM with dif-

ferent size of simulation system. (A) City size distribution. (B) Super-linear urban population

growth. (C) Urban occupation profile.

urban population growth, and urban occupation profile are presented in Fig. 9. From the result, we

can observe that the reproduced urban growth rules are consistent across different simulated urban

size. Specifically, the city size distributions all follow scaling laws with -2 exponent, which is

consistent with the empirical observations and theoretical analysis. Besides, the urban population

growth reproduce the logarithmic relation with varying exponents, which is probably affected by

the different number of simulated citizens and simulation size. However, they all agree well with

the logarithmic relation, which are consistent with the empirical observations in Fig. 3 B in main

text. Similar observations can be made on the exponential urban occupation profile. Therefore,

these results show the simulation results are robust in simulation system of different size.
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Supplementary Figure 10: Urban growth patterns reproduced by the proposed CMM with

different simulation time periods. (A) City size distribution. (B) Super-linear urban population

growth. (C) Urban occupation profile.

Simulation Convergence Here, we present the urban growth patterns predicted by CMM with

different simulation time periods in Fig. 10. We can observe that the patterns city size distribution

(A) and super-linear growth of urban population (B) remain consistent with different simulation

time, while the occupation profiles (C) reproduce the empirically observed gradually flatten phe-

nomenon (see Fig.4 in main text). Therefore, these results indicate the simulated cities remain

stable after the simulation converge, and the reproduced urban growth patterns are not sensitive to

simulation time periods.

7 Time Evolving Urban Occupation Profile

Empirical observations show that the urban occupation profiles will gradually become more flatten

as time increases, which is rationalized as the constantly pushing forward perimeters of cities 18. To
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Supplementary Figure 11: The time evolving urban occupation profiles. (A) Lévy-flight model.

(B) Gravity model. (C) IMM.

evaluate other mobility models’ capability of reproducing this property, we plot the corresponding

time evolving occupation profile in Figure 11. From these results, we can find that none of them

generates the exponential profile. Moreover, they fail to reproduce the gradually-flatten profiles as

shown in the real-data and CMM (see Fig. 4 in main text). Specifically, the Lévy-flight model and

Gravity model simulate the urban population to distribute uniformly on the space, which predict

the occupation profile to be invariant with distance to city center. Besides, due to the lack of social

interaction mechanism in IMM, it cannot capture gradually increased attractiveness in peripheral

urban area. As a result, it cannot reproduce the gradually flatten urban occupation profile.
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