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ABSTRACT
Satellite imagery depicts the earth’s surface remotely and provides
comprehensive information for many applications, such as land use
monitoring and urban planning. Existing studies on unsupervised
representation learning for satellite images only take into account
the images’ geographic information, ignoring human activity fac-
tors. To bridge this gap, we propose using Point-of-Interest (POI)
data to capture human factors and design a contrastive learning-
based framework to consolidate the representation of satellite im-
agery with POI information. Also, we design an attention model
that merges the representations from the geographic and POI per-
spectives adaptively. On the basis of real-world datasets collected
from Beijing, we evaluate our method for predicting socioeconomic
indicators. The results show that the representation containing
POI information outperforms the geographic representation in
estimating commercial activity-related indicators. Our proposed
framework can estimate the socioeconomic indicators with an 𝑅2
of 0.874 and outperforms the baseline methods.

CCS CONCEPTS
•Human-centered computing→Ubiquitous andmobile com-
puting design and evaluation methods.
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Representation learning, socioeconomic indicator prediction, satel-
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1 INTRODUCTION
Satellite images acquired through ubiquitous remote sensing tech-
nology depict the Earth’s surface from a bird’s eye perspective,
providing comprehensive data for a variety of applications, rang-
ing from land cover monitoring [2, 20] to socioeconomic status
inference [1, 7]. In comparison to traditional data sources, such as
field surveys, satellite imagery is collected in a more time and cost-
efficient manner. Thus providing enormous potential for timely
monitoring of land cover and human activities on a large scale.

Combined with current advances in computer vision and deep
learning, studies have successfully leveraged satellite imagery to
classify land cover [17], predict commercial activeness [15, 31], esti-
mate population [7], and infer economic status [34]. These achieve-
ments were made by task-specific supervised learning, which re-
quires massive labeled data for training. However, in most remote
sensing applications, obtaining a large volume of high-quality anno-
tated data is extremely difficult [20, 32]. In general, remote sensing
delivers large amounts of data, like satellite imagery; but a lack of
labels makes many downstream applications difficult to implement.

To reduce the need for labeled data, the research community
has turned to unsupervised representation learning for satellite
images [12, 13, 20]. The task of such representation learning is to
find a low-dimensional representation of a satellite image while
persevering associations between objects. Such learning does re-
quire labeled data. The learned representations are multipurpose
and can be used for different downstream tasks [4]. Similar to word
embeddings in natural language processing (NLP) [25, 26], the crit-
ical issue in learning satellite imagery representations is to define a
similarity/association metric between satellite images and encode
them into quantitative representations. The majority of existing
studies [20, 22, 32] built their similarity metrics by following To-
bler’s First Law of Geography [27], which states that ‘everything
is related to everything else, but near things are more related than
distant things.’ In other words, geographically adjacent satellite
images are more likely to have similar meanings and thus repre-
sentations. In uninhabited regions, this law works well. However,
the law does have deficiencies in human-inhabited areas that have
been substantially altered by human activity. Two human-inhabited
regions might have different land uses and configurations, even
though they are geographic neighbors. To bridge this gap, Han et
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al. [12] incorporated human efforts into their representation learn-
ing framework by having experts annotate a small set of satellite
images and then distilling knowledge from this annotated dataset.
Notably, such a method is still time-consuming and, to some extent,
limits the performance.

In this paper, we aim to learn compressed yet informative rep-
resentations for unlabeled satellite imagery. Specifically, there are
three challenges to achieving this objective. 1). As previously dis-
cussed, relying solely on the geographic features of satellite imagery
has some limitations. Human activity is more important in describ-
ing the surrounding areas in urban regions. As a result, the first
challenge is how to depict and capture information about human
activity factors. 2) . After capturing human factors, the second chal-
lenge is how to develop a framework for introducing human factor
features into the satellite imagery representation learning process.
3). Apart from human factors, geographic information contained
in satellite images is also useful for learning representations. As a
result, the third challenge is to figure out how to combine the fea-
tures of these two aspects in an auto-adaptive manner to produce
better final representations.

To address these issues, we propose a representation learning
framework for unlabeled satellite imagery based on the three key
designs. 1).We use the POI data to capture the nature of human
activity factors. POIs, which show the locations related to human
activity in populated areas, can reflect the characteristics of hu-
man activity in a given region. For example, if a region has a lot
of restaurant POIs, this suggests that there are many people din-
ing there, and if a region has education POIs, this suggests that
people come to the region primarily to study. 2). A contrastive
learning module is designed to take advantage of POIs that support
learning representations of unlabeled satellite images. In particular,
we measure the similarity across all satellite images in the POI
domain and learn common features between similar instances and
distinguishing features between dissimilar instances. By doing so,
we can extract more representative features from satellite images
that reflect human activity. 3). We design an attentional fusion
model that can adaptively fuse representations from two different
perspectives: human and geographic factors. Thus the importance
of different perspectives in predicting socioeconomic indicators can
be automatically learned.

The contribution of our work is summarized as follows.

• We introduce POI data to capture the characteristics of hu-
man activity. Such data is an important supplement to exist-
ing assumptions (e.g., First Law of Geography) that enable
unsupervised representation learning for satellite imagery.

• We propose a framework based on contrastive learning. Our
framework learns informative representations of satellite
imagery containing human activity factors by maximizing
the similarity of the representations for satellite images with
similar POI features.

• We develop an attentional fusion model to adaptively fuse
representations related to human activity and geographic
factors, enhancing the adaptability of learned representa-
tions across multiple tasks such as population prediction
and commercial activeness prediction.

• We evaluate our proposed framework on real-world large-
scale datasets. In the task of predicting socioeconomic in-
dicators, our method outperforms the baselines by 4.3% in
terms of 𝑅2. We also demonstrate the transferability of our
model across different cities.

We envision new Web-based services enabled by machine learn-
ing and data fusion to provide insights regarding socioeconomic
indicators and human behavior. To this end, our work advancesWeb
technologies by contributing a new machine learning method for
combining Web-accessible data, such as POIs and satellite imagery.

2 PRELIMINARIES AND FRAMEWORK
OVERVIEW

2.1 Data Overview
Satellite Imagery. Satellite imagery captures images of the earth’s
surface by using space satellites. It can reflect near real-time in-
formation about the ground surface. In practice, Environmental
Systems Research Institute (Esri)1 provides visible-band spectral
satellite imagery of various resolutions.

Point-of-Interests. Point of interest (POI) data represents var-
ious venues in human-inhabited areas, like shopping malls and
theaters. Existing studies [11, 35] have found that human activity
has a strong link with POIs. Inspired by these studies, we incorpo-
rate POI information into the representation learning for satellite
imagery in our study. In practice, we crawl 1,481,100 POIs from
Tencent Map Service covering the entire area of Beijing with 14
POI categories.

Socioeconomic Indicators. The socio-economic development
status of human-inhabited areas is an important characteristic
that can be measured using socioeconomic indicators. Previous
research [1, 13, 34] has shown that satellite images can be used
to estimate a region’s socio-economic development. Thus, we use
learned satellite imagery representations to estimate multiple so-
cioeconomic indicators to assess performance. Specifically, we use
the number of takeaway orders and online comments on commer-
cial entities as ground-truth indicators of commercial activeness.
On the other hand, we use population and population density as
ground-truth social indicators.

• Number of takeaway orders. The dataset covers the takeaway
order records of over 25,000 restaurants in Beijing. The data was
gathered from Meituan, China’s most popular online shopping
platform for local consumer goods and retail services.

• Number of comments. The online comments were gathered
from Dianping, a popular Chinese platform for restaurant reviews.
The collected dataset contains the comments of around 140,000
commercial entities in Beijing.

• Population. The WorldPop organization2 provided us with
Beijing population statistics for 2020.

• Population Density. The density of people in a given area is
referred to as population density. In our case, the population density
data was collected in 2020 by the WorldPop organization.

Figure 1 shows the geographic distribution of the aforementioned
indicators. We can see from the visualizations that the geographic

1https://www.esri.com/en-us/home.
2https://www.worldpop.org/.
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Table 1: Correlation between POI categories and socioeconomic indicators.

POI category Population Ranking Population
density Ranking Number of

comments Ranking Number of
takeaway orders Ranking

Transportation facility 0.4654 7 0.3828 7 0.2353 10 0.2571 12
Leisure & Sport 0.5324 3 0.4572 4 0.5307 1 0.4521 4

Residence 0.4929 5 0.4221 6 0.1440 11 0.3751 6
Company 0.4358 8 0.3682 8 0.4055 3 0.3532 7

Medical service 0.3743 10 0.3368 9 0.2392 9 0.3000 9
Factory & Agriculture 0.2758 13 0.1910 13 0.0365 14 0.1009 13

Government & Organization 0.5497 2 0.5253 1 0.2946 7 0.4301 5
Education 0.4828 6 0.4740 3 0.3402 6 0.4684 3
Scenic spot 0.0951 14 0.0871 14 0.0453 13 0.0368 14

Automobile service 0.3976 9 0.3056 12 0.1420 12 0.2608 11
Life service 0.5907 1 0.5029 2 0.4040 4 0.5048 1

Shopping mall 0.3481 12 0.3085 10 0.3675 5 0.2677 10
Hotel 0.3532 11 0.3058 11 0.2873 8 0.3070 8

Restaurant 0.5223 4 0.4315 5 0.5282 2 0.4753 2
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Figure 1: Geographic distribution of socioeconomic indica-
tors in Beijing.

distributions of socioeconomic indicators do not follow Tobler’s
First Law of Geography very well. The distributions of takeaway
orders and online comments, in particular, do not appear to be
geographically consistent. As a result, relying solely on geographic
autocorrelation to model socioeconomic indicators is insufficient.

2.2 Motivation
Learning representations for satellite imagery based solely on ge-
ographic information may have the drawback of ignoring human
factors, resulting in poor performance in predicting socioeconomic
indicators related to human activity. This motivates us to lever-
age POI data to represent the human factor for satellite imagery
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Figure 2: Differences in socioeconomic indicators between
two satellite images with similar POI distributions or that are
geographically adjacent. (’geo’: ’Geographic’, ’NC’: Number
of Comments, ’NT’: Number of Takeaway Orders, ’P’: Popu-
lation Count, ’PD’: Population Density)

representation learning. We begin by conducting a preliminary
investigation into the correlations between the number of POI cat-
egories and the socioeconomic data in each satellite image. Table
1 displays the results, with the top three POI categories for each
indicator colored in blue from darkest to lightest. We can observe
that the POI data, particularly some POI categories such as life
service, shopping, and entertainment, is highly correlated with
socioeconomic indicators.

We also explore the difference of a single socioeconomic indi-
cator in two geographically adjacent satellite images and in two
satellite images with the most similar POI distribution. The distri-
butions of differences are shown in Figure 2 with box plots. We
can deduce that the differences in the number of takeaway orders,
number of comments, and population count between two satellite
images with similar POI distribution are smaller than the differ-
ences between two geographically adjacent images. This reinforces
the importance of incorporating POI data into the representation
of satellite imagery to reflect human activity factors.

2.3 Problem Statement and Framework
Overview

We next formally define the representation learning problem for
the unlabeled satellite imagery. Given a set of unlabeled satellite
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Figure 3: Framework Overview.

Figure 4: Architecture of constructing contrastive samples.

images I and corresponding POIs that fall within the scope of the
satellite images, our objective is to learn a representation r𝑖 for
each satellite image 𝐼𝑖 through an unsupervised model 𝐹 , where
r𝑖 = 𝐹 (𝐼𝑖 ).

We present an overview of our proposed framework in Figure 3.
There are two principal steps in our framework: the representa-
tion learning process and the evaluation process. To be specific,
according to the POI information or the coordinates of the satellite
images, we construct contrastive samples for satellite images with
similar POI distribution and for geographically adjacent images, re-
spectively. Based on the samples, we train two different contrastive
learning models for imagery representations with POI information
and with geographic information. After that, we design an atten-
tional fusion model to adaptively combine the representations from
two different perspectives. With the socioeconomic indicators, we
evaluate the effectiveness of our proposed method.

3 METHOD
We formally present the design of our proposed framework in this
section, as well as key modules including constructing contrastive
samples, contrastive learning model, and attentional fusion model.

3.1 Constructing Contrastive Samples
Contrastive samples are the image pairs that are used to train the
contrastive learning model. In this phase, we find a contrastive
partner (thus creating a pair) for every satellite image in the POI
view by selecting the satellite image with the most similar POI
distribution. Assuming there are overall 𝐾 POI categories in the
dataset, for each satellite image 𝐼𝑖 , we can define a 𝐾-dimensional
POI vector 𝑃𝑂𝐼𝑖 = [𝑃𝑂𝐼𝑖1, 𝑃𝑂𝐼𝑖2, ..., 𝑃𝑂𝐼𝑖𝐾 ], with each dimension

𝑃𝑂𝐼𝑖𝑘 (𝑘 = 1, 2, · · · , 𝐾) representing the number of 𝑘-th POI cate-
gory. Then, to determine the satellite image with the most similar
POI distribution, we use the Euclidean distance between POI vectors
of two satellite images 𝐼𝑖 and 𝐼 𝑗 as follows:

𝑑𝑖𝑠𝑡𝑃𝑂𝐼𝑖, 𝑗 =

√√√(
𝐾∑︁
𝑘=1

(
𝑃𝑂𝐼𝑖𝑘 − 𝑃𝑂𝐼 𝑗𝑘

)2)
. (1)

Those images with the smallest distance are considered to be the
most similar satellite image partners in POI view. If there are mul-
tiple satellite images that have the same POI distance to a certain
image, we select one of them at random as the most similar.

We also select for each satellite image the geographically most
adjacent image, which is the satellite image with the minimum
geographic distance calculated from the geographic coordinates.
After this step, a satellite image has a geographically adjacent pair
and a most similar pair in POI view.

3.2 Contrastive Learning Model
A contrastive learning model learns from the contrastive samples
to make a compressed representation of unlabeled satellite images.
The model is separated into POI-view and geographic-view con-
trastive learning models. The former assumes that two satellite
images with similar POI distribution should possess similar human
activity information, while the latter assumes that geographically
adjacent satellite images should be more semantically similar than
the geographically distant images. In practice, the contrastive learn-
ing model maximizes the representation similarity of the satellite
images from the same pair, i.e., satellite images with similar POIs
or geographically adjacent images, and enlarges the representation
dissimilarity of the satellite images from different pairs, i.e., satel-
lite images with different POIs or geographically distant satellite
images.

From POI-view contrastive pairs, we consider an unlabeled satel-
lite imagery 𝐼𝑖 and its POI-similar pair 𝐶𝑖 . Then, we train a CNN
(convolutional neural network) 𝐹𝑃 to map the satellite images 𝐼𝑖
and 𝐶𝑖 into a low-dimensional representation space:

r𝑃𝑖 = 𝐹𝑃 (𝐼𝑖 ) , v𝑃𝑖 = 𝐹𝑃 (𝐶𝑖 ) . (2)

The similarity between r𝑃
𝑖
and v𝑃

𝑖
should reflect that these two

satellite images have similar human activities, i.e., they have similar
POI distributions. Inspired by [30, 33], we adopt the Normalized
Temperature-scaled Cross Entropy loss, called NT_Xent loss in
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Figure 5: Architecture of the contrastive learning model.

[8]. For 𝑁 randomly selected satellite images 𝐼𝑖 (𝑖 = 1, 2, · · · , 𝑁 ) in
a minibatch, we get 𝑁 corresponding images 𝐶𝑖 (𝑖 = 1, 2, · · · , 𝑁 )
that have similar POI distribution. By applying the CNN 𝐹𝑃 , there
are 2𝑁 representations for the 𝑁 satellite image pairs: r𝑃

𝑖
and v𝑃

𝑖
(𝑖 = 1, 2, · · · , 𝑁 ). When computing the loss, we treat the satellite
imagery 𝐼𝑖 and its matching pair 𝐶𝑖 as positive samples and the
other 2(𝑁 −1) satellite images in this minibatch as negative samples.
The loss for image pair (𝐼𝑖 ,𝐶𝑖 ) is as follows:

loss(𝐼𝑖 ,𝐶𝑖 ) = − log
exp

(
2 · sim

(
r𝑃
𝑖
, v𝑃
𝑖

))
𝑑1 + 𝑑2 , (3)

where sim(·) denotes the cosine similarity, 𝑑1 and 𝑑2 are calculated
using the negative samples as:

𝑑1 =
𝑁∑︁
𝑘=1

1[𝐼𝑖≠𝐼𝑘 ]exp
(
2 · sim

(
rPi , r

P
k

))
, (4)

𝑑2 =
𝑁∑︁
𝑘=1

exp
(
2 · sim

(
rPi , v

P
k

))
, (5)

where 1[𝐼𝑖≠𝐼𝑘 ] is an indicator function: 1[𝐼𝑖≠𝐼𝑘 ] = 1 if 𝐼𝑖 ≠ 𝐼𝑘 and
1[𝐼𝑖≠𝐼𝑘 ] = 0 in other situations. The loss is computed across all
contrastive samples (𝐼𝑖 ,𝐶𝑖 ) and (𝐶𝑖 , 𝐼𝑖 ) in the minibatch. Previous
studies suggest that the quality of the learned representations will
increase if we, in the training step, add a multi-layer perception
(MLP) on top of the CNN for calculating the contrastive loss and use
the representations of the final layer of CNN for the downstream
tasks[8]. Therefore, we use an MLP with two linear layers and a
ReLU activation function as the projection module for the CNN. To
be specific, we define the output of projection module 𝐻 as

z𝑃𝑖 = 𝐻

(
r𝑃𝑖

)
= W(2)ReLU

(
W(1)rPi

)
, (6)

where r𝑃
𝑖
is the output representation of 𝐹𝑃 for satellite image 𝐼𝑖 ,

andW(2) andW(1) are the parameters in the projection module.
In the optimization process, we use the output z𝑃

𝑖
of the projection

module to calculate the loss in (3), rather than the direct output r𝑃
𝑖

of the POI-view model 𝐹𝑃 .
Similarly, we denote the geographic-view model as 𝐹𝐺 , and use

a CNN and projection module of the same architecture as in the
POI-view contrastive learning model. We then have

r𝐺𝑖 = 𝐹𝐺

(
𝐼𝑖

)
, (7)

z𝐺𝑖 = 𝐻

(
r𝐺𝑖

)
= W(2)ReLU

(
W(1)rGi

)
, (8)

where r𝐺
𝑖
is the representation of satellite image 𝐼𝑖 through 𝐹𝐺 , and

z𝐺
𝑖
is the output vector of the projection module.

3.3 Attentional Fusion Model
Next we consider merging the two representations to construct a
more informative final representation for use in the downstream
tasks. As discussed previously, the two representations are from
different modalities: the representation from the POI-view model
𝐹𝑃 emphasizes information about POI data (human factors), while
the representation from the geographic-view model 𝐹𝐺 emphasizes
spatial location (the First Law of Geography). In addition, the im-
portance of the different representations in estimating different
socioeconomic indicators is still unknown, so we add an attentional
fusion model before the final prediction process to automatically
determine the weights for each kind of representation.

For r𝑃
𝑖
(POI-view representation) and r𝐺

𝑖
(geographic-view repre-

sentation) from one satellite image, we define learnable parameters
c, V, and b to adaptively fuse them. We have

𝛼𝑚𝑖 = cT · Tanh
(
V · rmi + b

)
, m ∈ {P,G} , (9)

𝛽m𝑖 =

exp
(
𝛼mi

)
∑
m∈{P,G} exp

(
𝛼mi

) , (10)

rfinal
𝑖

=
∑︁

m∈{P,G}
𝛽m𝑖 · rmi , (11)

where rfinal
𝑖

is the final representation for satellite image 𝐼𝑖 and
𝛽m
𝑖
(m ∈ {P,G}) are weight coefficients. We then use an MLP with

the ReLU activation function to predict the socioeconomic indicator
𝑦𝑖 from rfinal

𝑖
as follows,

𝑦𝑖 = MLP(rfinali ) . (12)

4 EVALUATION
In this section, we conduct extensive experiments on real-world
datasets to evaluate the effectiveness of our method and discuss
the case studies of the learned representations.

4.1 Datasets
The datasets in the experiments include satellite imagery, POI data,
and four socioeconomic indicators collected from Beijing. 1). The
satellite images are of a fixed size 256*256 and spatial resolution
≈ 4.7m. For Beijing, the number of total satellite images is 18,289.
2). The POI data is collected from November 2018 to January 2020.
There are 1, 481, 100 POI in Beijing, which are divided into 14 cate-
gories. 3). Number of takeaway orders. The takeaway order records
are collected from July 2020 to December 2020. 4). Number of com-
ments. The number of comments data is collected from 2017 to
2018 [10]. The total number of restaurants is 139, 131. 5). Popula-
tion3. The dataset is of a resolution of approximately 100m. The
units are the number of people per grid cell in 2020. 6). Population
density4. The dataset is the population density in 2020 per grid cell
and is of a resolution of approximately 1𝑘𝑚.

3https://www.worldpop.org/geodata/summary?id=49919.
4https://www.worldpop.org/geodata/summary?id=44834.

https://www.worldpop.org/geodata/summary?id=49919
https://www.worldpop.org/geodata/summary?id=44834
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Table 2: Socioeconomic indicators prediction results in Beijing.

Number of Takeaway Orders Number of Comments Population Population Density

Methods 𝑅𝑀𝑆𝐸 𝑅2 𝑀𝐴𝑃𝐸 𝑅𝑀𝑆𝐸 𝑅2 𝑀𝐴𝑃𝐸 𝑅𝑀𝑆𝐸 𝑅2 𝑀𝐴𝑃𝐸 𝑅𝑀𝑆𝐸 𝑅2 𝑀𝐴𝑃𝐸

Autoencoder 2.2116 0.1307 0.7077 3.0886 -0.0258 0.8807 1.5851 0.3755 0.2611 1.5451 0.4647 0.2434
PCA 2.2057 0.1354 0.7186 2.9138 0.0870 0.8720 1.5280 0.4196 0.2603 1.5961 0.4288 0.3398
ICA 2.2610 0.0916 0.7946 2.8825 0.1065 0.8834 1.5093 0.4338 0.3103 1.7815 0.2884 0.2749

Resnet-18 1.3599 0.6552 0.4371 2.2614 0.4501 0.6546 1.0118 0.7746 0.1633 0.9939 0.7806 0.1668
Tile2vec 1.4199 0.6241 0.4767 2.3324 0.4150 0.6771 1.0959 0.7014 0.1825 0.9253 0.8098 0.1441
READ 1.3359 0.6673 0.4186 2.1122 0.5202 0.5755 0.9582 0.7718 0.1530 0.9409 0.8034 0.1595

Geographic 1.3894 0.6401 0.4654 2.1600 0.4983 0.6560 1.0283 0.7372 0.1709 0.8084 0.8549 0.1300
POI 1.2445 0.7113 0.4118 1.9924 0.5731 0.5313 0.9431 0.7789 0.1526 0.9714 0.7904 0.1671

Concat 1.1997 0.7240 0.4035 1.9038 0.6424 0.4997 0.9421 0.7794 0.1501 0.8771 0.8292 0.1405
Ours 1.1771 0.7486 0.3947 1.8962 0.6453 0.4903 0.8551 0.8183 0.1371 0.7523 0.8743 0.1197

4.2 Experiment and Baseline Settings
4.2.1 Experiment settings. In our experiments, we use Resnet-18 [14]
as a backbone. With a batch size of 128 and a learning rate of 3𝑒−4,
the Adam optimizer [23] is used to minimize the training loss. After
training 100 epochs, we extract a low-dimensional vector repre-
sentation for each satellite imagery. In the prediction tasks, for
each indicator, we randomly split the dataset into 60% training, 20%
validation, and 20% test sets.

4.2.2 Baselines. To evaluate the effectiveness of our methods in
estimating multiple socioeconomic indicators, we compare our
methods with various baselines as introduced below:

Autoencoder [24]. An autoencoder is a neural network that
learns representations for unlabeled data. In our case the autoen-
coder is trained byminimizing the reconstruction error of unlabeled
input satellite images.

PCA [29]/ICA [18]. Principal Component Analysis (PCA) and
Independent Component Analysis (ICA) are dimension reduction
methods in signal processing. We unravel the original satellite
imagery into a long vector and apply PCA/ICA to compute the first
10 principal/independent components of each satellite image.

Resnet-18 [14]. Resnet-18 is a deep learning model trained on
Imagenet. We use it as the feature extractor to show the limitations
of directly applying a model trained on natural images to satellite
images.

Tile2vec [20]. Tile2vec is an unsupervised method, which uses
geographic distance as a form of weak supervision. For each satellite
imagery, Tile2vec finds a geographic neighbor image as a positive
sample and a distant image as a negative sample. Tile2vec then
minimizes the representation distance between the positive samples
and maximizes the distance between negative samples.

READ [12]. Representation Extraction over an Arbitrary District
(READ) is a semi-supervised model. It is trained with a small subset
of human-labeled satellite images and a large number of unlabeled
images. We directly use the embedding model of the original paper
to extract representations for our satellite imagery.

POI/Geographic. These are the representations learned by uti-
lizing only the POI-view model or geographic-view model.

Concat. This is a variant of our method, which concatenates
representations obtained from the POI-view and geographic-view
models. This is to demonstrate the superiority of the attentional
model.

4.3 Performance Analysis
We present the RMSE (Root Mean Square Error), 𝑅2, and MAPE
(Mean Absolute Percentage Error) as the evaluation metrics of pre-
diction results of the socioeconomic indicators in Table 2, where the
best performance is in boldface. Our method with the attentional
fusion model outperforms all the baseline representations when us-
ing MLP to predict the socioeconomic indicators. The autoencoder
performs the worst, possibly because its compressed representa-
tion cannot adequately capture human-related factors. PCA and
ICA use dimension reduction to compute principal/independent
components, which may not be relevant to socioeconomic indica-
tors. Also, a model trained on natural images has limitations in
capturing socioeconomic status from satellite images, as shown
by Resnet-18’s performance. Tile2vec and READ show comparable
performance with our methods, because Tile2vec uses geographic
distance as a side information while READ uses human knowl-
edge about development status in satellite imagery. However, they
yet to consider human-factor information. Notably, the POI-view
model has better performance regarding takeaway orders, com-
ments, and population count, while the geographic-view model
performs better on population density. The results are consistent
with our preliminary studies (see Figure 2). The concatenation of
the representations shows higher performance than most of the
baselines, but is still lower than our model with an attentional mod-
ule, which demonstrates the superiority of our proposed attentional
fusion model.

4.4 Case Studies
4.4.1 Visualization of the POI-view Representations. In this phase,
we map the POI-view representations into a 2-dimensional space
through PCA, and visualize how the satellite images of different
socioeconomic values are located in the representation space in Fig-
ure 6. We select six anchor points as shown in Figure 6 and display
the corresponding satellite images. In general, the development
status increases from anchor point 1 to 6. At anchor point 1, the
satellite images mostly contain farmland areas where few people
live. Anchor point 2 images mostly contain small villages, and at
anchor point 3, the satellite images contain more residential areas.
We can see the images at anchor point 4 are composed of a large
number of buildings, but there are still some non-building areas.
Finally, at anchor points 5 and 6, the satellite images mainly contain
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Figure 6: Visualization of the representation space. We mark
the urbanization trend (the increasing direction of socioeco-
nomic values) with an arrow in blue. ’P’ denotes the popula-
tion in the satellite image.

urban areas and display highly urbanized cityscapes. We use the
population data of satellite images to verify our analysis. We see
the population increase from anchor point 1 to 6, and the increasing
trend is marked by an arrow in blue. Therefore, we can conclude
that our proposed POI-view model can learn highly informative
representations containing human factors.

We next select the points at the top-right corner of the represen-
tation space in Figure 6 and plot their actual geographic locations
in Figure 7. The selected points are blue, and the others are orange.
After querying the specific locations, we find the ‘blue points’ are
in commercial centers in urban and suburban areas. Location 1 is
near the government building of the Yanqing district (a district in
Beijing). Similarly, the locations 2 to 5 are near the government
buildings of Miyun, Huairou, Changping, and Pinggu districts (ad-
ministrative districts in Beijing), respectively. Most government
buildings are located in relatively developed areas where the sur-
roundings typically have high commercial activity. Locations 6 and
7 are close to Shimen and Beijing Jiaotong University subway sta-
tions. Many commerce POIs are found in the surrounding areas.
From the above analysis, we can conclude that, through the learned
POI-view representations, regions with high socioeconomic val-
ues can be distinguished from regions with low socioeconomic
indicators without the help of actual ground surveys.

4.4.2 Model Transferability to Other Cities. To test the general-
izability of our proposed model, we conduct experiments with
another well developed city (i.e., Shanghai) and an underdevel-
oped city (Shenyang) in China. The number of satellite images is
5,904 for Shanghai and 15,095 for Shenyang and population data
is also collected from WorldPop. Additionally, we collect online
comment datasets for both cities from Meituan. We begin by ap-
plying the trained Beijing’s model to satellite images of Shanghai
and Shenyang. The corresponding socioeconomic indicators for
Shanghai and Shenyang are then predicted. Even in cities with
different levels of development, our contrastive learning method
with an attentional model outperforms the baselines in predicting
socioeconomic indicators. A potential reason for the differing per-
formance of our method in different cities is the diversity of human
activity patterns across these cities.

Figure 7: Geographic locations of the points at the top-right
corner in the representation space in Figure 6 and corre-
sponding satellite images. The points selected are marked in
a rectangle and their geographic locations are blue.

4.4.3 Region Similarity Analysis. Representations of satellite im-
agery can also be used to depict the similarity between two regions.
Given satellite images of Beijing, we examine whether we can find
satellite images of Shanghai with similar levels of a given socioe-
conomic indicator. We randomly select three satellite images of
Beijing with varying populations and compute the cosine similar-
ity between the POI-view representations of the selected images
and all the images of Shanghai. Then we show the satellite im-
ages of Shanghai with high cosine similarity in Figure 8. Although
the images of Beijing have varying populations, similar images
of Shanghai can be found through the representations. Therefore,
our learned representation can find similar regions across different
cities with high performance.

5 RELATEDWORK AND DISCUSSION
5.1 Related Work
5.1.1 Representation Learning for Satellite Imagery. Representation
learning for satellite imagery transforms satellite images into com-
pressed yet informative vectors for various downstream tasks. The
representation learning methods can be classified into supervised
and unsupervised methods. For the supervised case, Ayush et al. [3]
trained an object detection network for satellite imagery to generate
an interpretable representation. Jean et al. [19] used the nighttime
light intensity as the label for satellite imagery to extract represen-
tations related to poverty. He et al. [15] used OpenStreetMap tags as
labels for representation learning. However, labeled satellite images
are hard to obtain in most cases, therefore many works focus on
unsupervised methods. Han et al. [12] designed a semi-supervised
method by labeling a small set of satellite images manually and
used knowledge distillation to train the deep learning model. Jean et
al. [20] proposed Tile2vec that uses the geographic distance of the
satellite imagery to extract the representations from unlabeled satel-
lite imagery. Bjorck et al. [5] applied the geographic information in
representation learning of satellite images for the management of
invasive species. Wang et al. [31] utilized traditional feature extrac-
tion methods, such as HOG and GIST, and a ‘Bag Of Features’ model
to generate representations for satellite images. Unlike the previous



WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France Yanxin Xi, Tong Li§ , Huandong Wang, Yong Li, Sasu Tarkoma, and Pan Hui

Table 3: Socioeconomic indicators prediction results in multiple cities.

City Indicator Metrics Autoencoder PCA ICA Resnet-18 Tile2vec READ Geographic POI Ours

Shanghai Population
𝑅𝑀𝑆𝐸 1.4462 1.3993 1.5102 0.9902 0.9744 0.9384 0.9887 0.9518 0.8743
𝑅2 0.2768 0.3227 0.2115 0.6683 0.6597 0.6727 0.6780 0.7166 0.7339

𝑀𝐴𝑃𝐸 0.1739 0.1631 0.1866 0.1309 0.1338 0.1164 0.1282 0.1204 0.1152

Shanghai Number of
Comments

𝑅𝑀𝑆𝐸 3.1245 2.5403 2.5295 1.8587 2.0656 1.8281 1.9485 1.8845 1.8245
𝑅2 -0.5315 -0.0123 -0.0037 0.4221 0.2865 0.4411 0.3650 0.4061 0.4433

𝑀𝐴𝑃𝐸 0.9916 0.8811 0.8802 0.5705 0.6591 0.5533 0.5903 0.5640 0.5443

Shenyang Population
𝑅𝑀𝑆𝐸 1.6645 1.4209 1.7966 1.1668 1.2779 1.1554 1.1895 1.1821 1.1334
𝑅2 0.1384 0.3721 -0.0038 0.5658 0.4792 0.5743 0.5488 0.5544 0.5904

𝑀𝐴𝑃𝐸 0.3809 0.3304 0.40418 0.2588 0.2916 0.2561 0.2666 0.2631 0.2526

Shenyang Number of
Comments

𝑅𝑀𝑆𝐸 4.0102 3.3529 3.1894 1.8392 1.9408 1.7147 1.8326 1.7764 1.6084
𝑅2 -0.9572 -0.4155 -0.2809 0.6202 0.5771 0.6699 0.6300 0.6457 0.7095

𝑀𝐴𝑃𝐸 1.3817 1.2626 0.9525 0.6068 0.6177 0.5795 0.5776 0.5666 0.5496

Figure 8: Region Similarity Analysis. (’P’ is the abbreviation for population and ’CS’ is the abbreviation for cosine similarity.)

methods, we use POI data to capture human factors in satellite im-
agery and a contrastive learning model to extract human-activity
related representations from unlabeled satellite imagery.

5.1.2 Socioeconomic Indicators Estimation from Satellite Imagery.
The advancement of remote sensing technology has made it possi-
ble to perform socioeconomic estimations using satellite imagery,
which previously required costly field surveys. There are two types
of indicators in previous studies: economic and social indicators.
The economic indicators mostly deal with wealth and commer-
cial activeness. Abitbol et al. [1] trained a deep learning model
to predict the income status of Paris from satellite images. Yeh et
al. [34] predicted the asset wealth in African villages from satellite
imagery. Mirza et al. [28] utilized the nighttime light data to study
the inequality problem globally. Han et al. [13] incorporated human
intelligence and machine intelligence to design a scoring model for
the development status based on satellite imagery. Wang et al. [31]
proposed to predict the commercial activeness of urban commer-
cial districts with satellite imagery and street view imagery. He et
al. [15] predicted commercial activeness from satellite imagery and
OpenStreetMap tags. Jean et al. [19] used nighttime imagery as a
proxy to predict poverty in five African countries. Head et al. [16]
explored the potential to measure human development indicators
using satellite imagery. Chen et al. [6] analyzed regional economic
development based on land cover and land use data. In the case of
social indicators, Han et al. [12] used a semi-supervised model to
predict population density, age, and household data from satellite
images. There are also studies that combine satellite images and so-
cial sensing data tomap populations (Cheng et al. [9], Jing et al. [21]).
The advantage of our work is the simultaneous consideration of

the social and economic indicators and the incorporation of human
factors (POI information) in the satellite images for prediction.

5.2 Discussion
The accurate and timely measurement of socioeconomic indicators
is important for urban planning. Relatedly, the increasing availabil-
ity of detailed satellite images can help enable the measurement
of such socioeconomic indicators. However, the scarcity of labeled
satellite images forces researchers to turn to unlabeled images. To
help leverage this unlabeled data, this work presents the first use
of POI data for capturing the human factors in unlabeled satellite
images. We show how our contrastive learning model takes advan-
tage of POI information to incorporate human-related factors into
the representations of satellite images. We then demonstrate the
POI-view representations to verify they are informative about the
socioeconomic indicators. Our research shed light on incorporating
POI data for representation learning of unlabeled satellite imagery.
In summary, our research establishes new performance benchmarks
for tasks of representation learning and predicting socioeconomic
indicators from satellite imagery.

We believe there are significant research directions for future
work based on further study and understanding of representations.
Specifically, we plan to analyze the situations where POI data can
lead to better representations than the geo data and how different
categories of POI contribute to the POI-view representation. Ad-
ditionally studying how representations contribute to predicting
different kinds of socioeconomic indicators will be important for
broadening the application areas.
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6 CONCLUSION
In this paper, we introduce an unsupervised learning method to
learn representations for unlabeled satellite imagery. Apart from a
representation learning method that utilizes the First Law of Ge-
ography, we propose to use the POI data to capture the human
activity factor in representations and design a contrastive learning-
based framework to combine the POI data and satellite imagery in
representation learning. On top of the representations using spa-
tial information and POI information, we construct an attentional
fusion model to fuse the representations from the two modalities
automatically. Experiments for predicting various socioeconomic
indicators demonstrate that our proposed model can learn more
effective representations. Overall, our research takes a fresh look
at how to learn representations for unlabeled satellite imagery.
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