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ABSTRACT
Network traffic data facilitates understanding the Internet of Things
(IoT) behaviors and improving IoT service quality in the real world.
However, large-scale IoT traffic data is rarely accessible, and pri-
vacy issues also impede realistic data sharing even with anonymous
personal identifiable information. Researchers propose to generate
synthetic IoT traffic but fail to cover the multiple services provided
by widespread real-world IoT devices. In this work, we take the first
step to generate large-scale IoT traffic via a knowledge-enhanced
generative adversarial network (GAN) framework, which intro-
duces both the semantic knowledge (e.g., location and environment
information) and the network structure knowledge for various IoT
devices via a knowledge graph. We use a condition mechanism
to incorporate the knowledge and device category for IoT traffic
generation. Then, we adopt LSTM and a self-attention mechanism
to capture the temporal correlation in the traffic series. Extensive
experiment results show that the synthetic IoT traffic datasets gen-
erated by our proposed model outperform state-of-art baselines
in terms of data fidelity and applications. Moreover, our proposed
model is able to generate realistic data by only training on small
real datasets with knowledge enhanced.
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1 INTRODUCTION
Internet of Things (IoT) expands the way humans perceive and in-
teract with the world via connecting various sensors, actuators, and
computing devices to the Internet. With the increasing popularity
of IoT applications, various devices are connected to the Internet
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and serve in smart energy projects, home automation, manufactur-
ing, commerce, etc. [9]. Under this circumstance, understanding the
behavior of IoT devices and improving IoT service quality based on
IoT traffic data attract increasing attention. Specifically, IoT traffic
data contains all the command and feedback between users and
IoT devices, reflecting their activities, and thus contributes to nu-
merous applications, including behavior analysis of specific IoT
devices [3, 18, 21], privacy leakage identification [2, 10, 26, 30, 34],
and IoT device management [7, 27, 32, 37], etc.

At the same time, the growing number of software standards
and frameworks of IoT devices designed by countless companies
for different applications have increased the fragmentation of IoT
devices and platforms. To counter the fragmentation, the Web of
Things (WoT) pursues to integrate the IoT devices seamlessly with
the Web technologies [15], where IoT traffic data also plays an
important role. Specifically, the IoT traffic data across various plat-
forms and application domains facilitates the WoT to comprehend
the IoT devices and provide appropriate web-based communica-
tion mechanisms. For example, devices with heavy communication
load (e.g., smart camera) and devices requiring high reliability (e.g.,
point-of-sale) demand different communication protocols [25].

However, most of the IoT traffic datasets in the existing studies
are collected in laboratories or simplex application scenes because
large-scale IoT traffic data is accessible for only a few organiza-
tions, e.g., Internet service providers, IoT service providers. Unfor-
tunately, these organizations are reluctant to share realistic data in
consideration of privacy. Although some organizations anonymize
the datasets via removing personal identifiable information, this
naive method is demonstrated to be vulnerable to a number of De-
Anonymization (DA) attacks [20, 41, 44]. Under this circumstance,
generating synthetic IoT traffic becomes an appealing solution. The
generated IoT traffic can retain the features of IoT behaviors with-
out real personal identifiable information, supporting IoT and WoT
applications while avoiding privacy leakage.

Recently, Nguyen-An et al. [29] propose IoTTGen to generate
synthetic traffic for smart home and bio-medical IoT environments.
This model requests configuration for each IoT device before traf-
fic generation, in which the packet size, port number, payload,
and arrival time interval are given as fixed parameters, whereas
dynamic in practice. To generate IoT traffic dynamically, Shahid
et al. [36] combine an auto-encoder with generative adversarial
networks (GAN) to generate sequences of packet sizes that cor-
respond to real traffic flows produced by a Google Home Mini (a
smart speaker), which is actively used for a week. Nevertheless,
the previous two works conduct experiments in laboratories for
simplex scenes, which require the specific configurations of devices
and parameters in traffic data. For the widespread IoT devices pro-
viding multiple services in the real world, collecting the specific
configurations and parameters is impracticable, which limits the
application of the previous two works. Therefore, we take the first
step to propose a traffic generation model to simulate various IoT
devices serving in multiple scenes based on large-scale realistic data.
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IoT traffic generation can be regarded as a particular case for time
series generation, which is influenced by complex background in-
formation of IoT devices, i.e., device category, manufacturer design,
user habit, and application service. The background information
facilitates the data fidelity once introduced in the generative model.
In various background information, the device category is an in-
herent attribute for IoT devices and is able to provide important
instructions for the function of devices and potent guidance for the
traffic series generation without privacy issues. Therefore, generat-
ing both the IoT device category and traffic series for the synthetic
dataset comes naturally. As GAN is capable of generating multiple
forms of data cooperated with different manners of generators, Lin
et al. [23] propose DoppelGANger and generate attributes for ob-
jects together with feature series, which reaches state-of-art results
on several network traffic datasets. However, in the experiments
for IoT traffic, the dataset generated by DoppelGANger omits rare
device categories, and the model fails to simulate the heavy im-
balance and sparsity of IoT traffic in the absence of background
information.

Nevertheless, generating IoT traffic is challenging for the follow-
ing reasons:
• Real-world IoT traffic is influenced by the complicated factors
from users, environments, and applications, which brings chal-
lenges to acquire the core background information and feed it
into the generative model while preserving privacy.
• The variable lengths of IoT traffic series, which are caused by the
different communication time intervals of IoT devices to perform
multiple functions, bring challenges to learning the temporal
patterns. Our observations show that except for short traffic se-
ries, which are sparse in the time domain, there also exist long
traffic series containing thousands of elements. As the generative
model is requested to learn both long-term and short-term tem-
poral patterns for the series, generating long series is especially
challenging.
• The distributions of device categories and features in the traf-
fic series are heavily unbalanced, which brings challenges to
generating a realistic and diverse synthetic dataset.
For IoT devices, the background information contains both se-

mantic knowledge and interaction relations, inspiring us to adopt
knowledge graphs naturally. Hence, we propose a knowledge-enhanced
GAN for IoT traffic generation to address the above challenges. First,
we construct a knowledge graph via IoT traffic data and other back-
ground information collected from the manufacturers, suppliers,
and users. Then, we construct a GAN framework to generate IoT
device category and traffic series simultaneously, consisting of a
comprehensive generator and a simple discriminator. To introduce
background knowledge into the framework and capture the influ-
ence of the device category on the traffic series, we adopt a condition
mechanism. Finally, we evaluate our knowledge-enhanced GAN
on a real-world IoT traffic dataset, and extensive experiments il-
lustrate that our model outperforms five baselines and performs
well on small datasets via introducing background knowledge into
generation.

In conclusion, our contributions are summarized as follows:
• We build a knowledge graph to describe the background infor-
mation for IoT devices, learning both semantic knowledge and
interaction features.
• We propose a knowledge-enhanced GAN for IoT traffic gener-
ation, which uses a condition mechanism to incorporate the
knowledge and device category for IoT traffic generation, and
adopts LSTM and self-attention mechanism to capture the long-
term and short-term temporal correlation in the traffic series.

Notation Definition

𝑂𝑖 IoT traffic data for device 𝑑𝑖 .
𝐶𝑖 Category of device 𝑑𝑖 .
𝑇𝑖 Network traffic series for device 𝑑𝑖 .
𝑀𝑖 Length of the network traffic series 𝑇𝑖 for device 𝑑𝑖 .

𝐴
𝑗
𝑖

Inter-arrival time between packets in 𝑗 − 1𝑡ℎ and 𝑗𝑡ℎ
sampling for device 𝑑𝑖 .

𝑃
𝑗
𝑖

Total number of packets in 𝑗𝑡ℎ sampling for device 𝑑𝑖 .

𝐿
𝑗
𝑖

Average packet length of the 𝑃 𝑗
𝑖
packets in 𝑗𝑡ℎ sam-

pling for device 𝑑𝑖 .
𝐾𝑖 Knowledge graph embedding (KGE) for device 𝑑𝑖 .

Table 1: Notations and definitions for IoT traffic generation.

(a) Traffic Data.

(b) IoT Knowledge Graph.

Figure 1: Illustration of IoT traffic data and IoT knowledge
graph : (a) Traffic data of IoT device, (b) IoT knowledge
graph.

• We conduct experiments on a real-world IoT traffic dataset, our
proposed model outperforms other state-of-art baselines on data
fidelity and application. The model is also demonstrated to gen-
erate realistic data trained on small real datasets by introducing
background knowledge into generation.

2 BACKGROUND AND PROBLEM
The IoT traffic dataset can be formally denoted as a set of objects
S = {𝑂𝑖 }𝑁𝑖=1, where 𝑂𝑖 represents the data of the 𝑖𝑡ℎ IoT device 𝑑𝑖 .
For each device, the data 𝑂𝑖 = (𝐶𝑖 ,𝑇𝑖 ), 𝐶𝑖 represents the device
category, and 𝑇𝑖 represents the 3-dimension network traffic series.
As presented in Figure 1(a), the traffic series 𝑇𝑖 = {𝐴 𝑗𝑖 , 𝑃

𝑗
𝑖
, 𝐿
𝑗
𝑖
}𝑀𝑖

𝑗=1,
where𝑀𝑖 is the lengths of traffic series for IoT device 𝑑𝑖 , and Table 1
presents details of the three features: arrival time interval 𝐴 𝑗

𝑖
, total

number of packets 𝑃 𝑗
𝑖
, and average packet length 𝐿 𝑗

𝑖
. Given a real-

world IoT traffic dataset 𝑆 , our goal is to generate a realistic traffic
dataset 𝑆 with a generative model 𝐺 .

Generative adversarial networks [14] is a state-of-art generative
model based on adversarial learning, which achieves remarkable
results in generation tasks of several fields [42, 46, 47]. A typical
GAN has two components, a generator 𝐺𝜃 and a discriminator 𝐷𝜙 ,
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Figure 2: Framework for knowledge enhanced IoT traffic generation.

which are alternately trained to generate fake data in comparison
with real data. The generator𝐺𝜃 learns to fool the discriminator𝐷𝜙
via generating fake data with similar distribution to real data, and
the discriminator 𝐷𝜙 learns to distinguish between the fake and
real samples, which performs a min-max competition as follows,

min
𝜃

max
𝜙
E𝑥∼𝑝𝑑

[
logD𝜙 (x)

]
+ E𝑥∼𝐺𝜃

[
log

(
1 − D𝜙 (x)

)]
, (1)

where 𝑥 is the samples, 𝑝𝑑 is the distribution of real data, 𝐺𝜃 rep-
resents the generator parameterized by 𝜃 , and 𝐷𝜙 represents the
discriminator parameterized by 𝜙 . Various structures for generator,
discriminator and loss function are constructed for different gen-
eration tasks, and we design a particular framework for IoT traffic
data generation.
3 METHODS
Generally, IoT traffic data is heavily unbalanced and sparse, which
leads to the failure of existing generative models. Especially, GAN-
based models easily suffer from mode collapse, which means that
the generator provides limited sample variety despite being trained
on diverse data. To generate realistic IoT traffic while avoiding
mode collapse, as each IoT device’s knowledge graph embedding
(KGE) is unique, we introduce the background information of IoT
devices via KGE to provide diverse conditions for the GAN model.
Then, we adopt a condition mechanism to acquire the influence of
knowledge and device category to the traffic series, and use LSTM
and self-attention mechanism to capture the temporal correlation in
series. The framework of our proposed model is presented in Figure
2 , lines in black, blue, and gray represent the transmissions of real
data, generated data, and noise, respectively. First, we construct a
knowledge graph from the basic information and network traffic of
IoT devices, and extract the KGE information for each device. Then,
we train a generator 𝐺 and a discriminator 𝐷 on the condition of
KGE information. The generator𝐺 consists of three sub-generators:
category generator 𝐺𝐶 , series length generator 𝐺𝑀 , and traffic
series generator𝐺𝑇 , which are associated with each other via the
condition mechanism.
3.1 Knowledge Graph Construction
The background information of IoT devices contains both seman-
tic knowledge and network structure, which inspires us to adopt
knowledge graphs naturally. To introduce the information to the
generative model, we construct a knowledge graph via IoT traffic
data and other background information. First, we collect basic in-
formation for each device from the descriptions of manufacturers,

suppliers, and users, e.g., the type of hardware model. Then, we use
an IoT privacy leakage quantification framework [19] to extract the
user, platform, location, and environment information from the net-
work traffic. The communications between IoT devices, IoT users,
and cloud platforms can be detected via the source and destination
IP addresses in network traffic packets, which contain the network
structure information. As presented in Figure 1(b), IoT devices are
considered as head entities in the knowledge graph, and the user,
platform, location, and environment information are regarded as
tail entities. The following triples give several examples,

• <device 𝑑𝑖 , manufactured_by, manufacturer: Samsung>,
• <device 𝑑𝑖 , located_in, city: Beijing>,
• <device 𝑑𝑖 , communicate_with, platform: Aliyun>.

Finally, we acquire 39,598 entities (including 10187 devices) and
133,075 relations for the knowledge graph, and the relations fall
into twenty categories. Then, we use the TransE model [5] to learn
the embedding 𝐾𝑖 of each IoT device 𝑑𝑖 . To ensure the semantic
information is preserved in the embeddings, we train serval classi-
fiers to predict the device category 𝐶𝑖 by KGE 𝐾𝑖 , and the accuracy
of most classifiers is around 90%, of which the details are shown in
Appendix A.

3.2 Generator
In terms of IoT traffic generation, the generator is designed to satisfy
three major requirements. 1) Introducing the IoT network struc-
ture and semantic knowledge to the generated data, 2) capturing
the correlation between device category and traffic series, and 3)
capturing both the long-term and short-term temporal patterns for
traffic series. To satisfy these requirements and avoid mode col-
lapse, we design a comprehensive generator that consists of three
sub-generators, as presented in Figure 3. For the first requirement,
these three sub-generators are associated with each other via a
condition mechanism. For the second requirement, we combine the
condition mechanism with device generator 𝐺𝐶 and series length
generator 𝐺𝑀 . For the third requirement, 𝐺𝑇 uses an LSTM with a
self-attention mechanism to generate traffic series 𝑇𝑖 based on 𝐶𝑖
and𝑀𝑖 .

Condition Mechanism. We use a condition mechanism to in-
troduce the IoT network structure and semantic knowledge to the
generated data and capture the influence of device category on
the traffic series. The conditions are presented in the following
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Figure 3: Illustration of our proposed knowledge enhanced GAN for IoT traffic generation.

formulation,

𝑃 (𝑂𝑖 , 𝐾𝑖 ) = 𝑃 (𝑂𝑖 |𝐾𝑖 ) · 𝑃 (𝐾𝑖 )
= 𝑃 (𝐶𝑖 ,𝑇𝑖 , �̂�𝑖 |𝐾𝑖 ) · 𝑃 (𝐾𝑖 )
= 𝑃 (𝑇𝑖 |𝐶𝑖 , �̂�𝑖 , 𝐾𝑖 ) · 𝑃 (�̂�𝑖 |𝐶𝑖 , 𝐾𝑖 ) · 𝑃 (𝐶𝑖 |𝐾𝑖 ) · 𝑃 (𝐾𝑖 ) .

(2)

First, we randomly sample a device 𝑑𝑖 , feed the corresponding
KGE information 𝐾𝑖 into each sub-generator as conditions, and
𝑃 (𝐾𝑖 ) represents the distribution of 𝐾𝑖 . Then, the device category
𝐶𝑖 generated by𝐺𝐶 obeys the distribution of 𝑃 (𝐶𝑖 |𝐾𝑖 ), which is fed
into𝐺𝑀 and𝐺𝑇 together with𝐾𝑖 and Gaussian random noise vector
𝑍𝑖 . Similarly,𝐺𝑀 generates �̂�𝑖 with the distribution of 𝑃 (�̂�𝑖 |𝐶𝑖 , 𝐾𝑖 ),
and �̂�𝑖 is fed into𝐺𝑇 to control the length of generated traffic series.
Finally, 𝐺𝑇 generates 𝑇𝑖 on the condition of 𝐶𝑖 , �̂�𝑖 , and 𝐾𝑖 . Hence,
the generated samples 𝑂𝑖 follows the distribution of 𝑃 (𝑂𝑖 |𝐾𝑖 ).

MLP Generators. We use multilayer perceptrons (MLP) with
sigmoid activation function to generate the device category 𝐶𝑖 and
the length of traffic series �̂�𝑖 . For category generator 𝐺𝐶 , we use
KGE information𝐾𝑖 and noise vector𝑍𝑖 as input, then the generated
device category 𝐶𝑖 is a zero-one normalized vector with the same
dimension as the total category number. For gradient calculation,
the category generator 𝐺𝐶 outputs continuous results, and the
dimension with the maximum value indicates the final category.
For series length generator 𝐺𝑀 , the generated device category 𝐶𝑖
and the KGE information𝐾𝑖 are both fed into it as condition vectors.
The noise and condition vectors are mapped to a zero-one value
after the linear layers and sigmoid activation function. Then, we
scale the value to the length of traffic series �̂�𝑖 via the maximum
threshold𝑀𝑚𝑎𝑥 , which can be calculated from the real dataset or
manually configured.

LSTMGeneratorwith Self-attention.To capture both the long-
term and short-term temporal patterns of the traffic series, we adopt
LSTM networks [17] to generate the traffic series 𝑇𝑖 . LSTM is an
RNN architecture particularly appropriate to process series data.
In a typical LSTM unit, each record in the series is mapped to the
hidden internal state in the corresponding step and merged with
the patterns of all the past records. Then, the 𝑗𝑡ℎ record is generated
correlated with the previous 𝑗 − 1 records, and it takes𝑀𝑖 steps to
generate a series with𝑀𝑖 length generally.

Although LSTM is known for memorizing history values over
arbitrary intervals, modeling series with thousands of dimensions is
challenging in efficiency and effectiveness. A common solution is to
segment long series into several short series as independent samples.
However, as IoT devices have traffic series with variable lengths,
segmenting the traffic for some of the devices while maintaining
others’ integrity is unreasonable in generation tasks. Therefore, we
generate 𝐵 samples𝑇𝑘

𝑖
in each step to improve the efficiency, where

𝑇𝑘
𝑖

= {𝐴 𝑗
𝑖
, 𝑃
𝑗
𝑖
, 𝐿
𝑗
𝑖
}𝐵𝑘
𝑗=𝐵 (𝑘−1)+1, 𝑘 = 1, 2, . . . , 𝑄 , and 𝑄 = ⌈�̂�𝑖/𝐵⌉. It

takes 𝑄 steps to generate a series with 𝑀𝑖 length. Specifically, as
presented in Figure 3, in the 𝑘𝑡ℎ step, the KGE information 𝐾𝑖 ,
generated device category 𝐶𝑖 , and noise vector 𝑍𝑘

𝑖
are fed into the

LSTM unit, which outputs an embedding ℎ𝑘
𝑖
for the samples 𝑇𝑘

𝑖
.

Moreover, to capture the correlation inner each 𝐵 samples of one
step, we adopt a scaled dot-product self-attention mechanism [38].

𝑅𝐾 = 𝑅𝑒𝐿𝑈 (ℎ𝑘𝑖𝑊𝐾 ), 𝑅𝑄 = 𝑅𝑒𝐿𝑈 (ℎ𝑘𝑖𝑊𝑄 ), 𝑅𝑉 = 𝑅𝑒𝐿𝑈 (ℎ𝑘𝑖𝑊𝑉 ),

𝑇𝑘
𝑖
= 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (

𝑅𝑄 · 𝑅𝑇𝐾√
𝑑
) · 𝑅𝑉 ·𝑊𝑠 .

(3)

In the self-attention layer, as presented in Equation 3, ℎ𝑘
𝑖
is mapped

to three representations (i.e., key 𝑅𝐾 , query 𝑅𝑄 , and value 𝑅𝑉 )
via linear projections. Then, we compute the dot products of the
query with all keys and compute the weights on the values via a
softmax activate function after normalizing the products by the
dimension of keys. Finally, the values are mapped to 𝐵 samples 𝑇𝑘

𝑖

by the above weights. After𝑄 steps, the generated samples {𝑇𝑘
𝑖
}𝑄
𝑘=1

are reshaped into 𝑇𝑖 = {𝐴 𝑗𝑖 , 𝑃
𝑗
𝑖
, 𝐿
𝑗
𝑖
}�̂�𝑖

𝑗=1. Note that the traffic series
generator 𝐺𝑇 has a single LSTM unit and self-attention layer. The
expanded structure presented in Figure 3 stands for the 𝑄 steps in
the generation.

3.3 Discriminator
We consider two major factors in the design of discriminator 𝐷 .
First, the training process of generator and discriminator are alter-
native and adversarial in GANs, which indicates that a significantly
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stronger generator or discriminator leads to failure. Particularly,
the generating task is more complicated than the discriminating
task for IoT traffic, which requests a more powerful generator than
the discriminator for model design, and an MLP is adequate for a
discriminator in IoT traffic generation task. Second, the device cat-
egory 𝐶𝑖 is one-hot encoding in the real dataset, which is discrete,
but the generated device category 𝐶𝑖 is continuous. Therefore, we
use Wasserstein distance [4] with gradient penalty [16] to deal with
the continuous and discrete data simultaneously, which requires
calculating the second derivative for the loss function. As the calcu-
lation of a second derivative for the loss function in deep learning
models is difficult in practice, MLP becomes a better choice. For the
above two reasons, we adopt an MLP for discriminator 𝐷 .

3.4 Loss Function and Training
As discussed in Section 3.3, the device category 𝐶𝑖 is discrete in
the real dataset, and the values in traffic series 𝑇𝑖 are continuous.
To deal with the continuous and discrete data simultaneously, we
use Wasserstein distance [4] with gradient penalty [16] in our
model, which is also demonstrated to be effective in performance
improvement for GANs. The loss function is as follows,

𝐿 = E
�̂�∼P𝑔

[𝐷 (�̂�)] − E
𝑂∼P𝑟

[𝐷 (𝑂)] + 𝜆 E
�̃�∼P

�̃�

[
(
∇
�̃�
𝐷 (�̃�)


2 − 1)2

]
,

(4)
where 𝐷 (𝑂) is the discrimination results of real samples 𝑂 , and
P𝑟 represents the real data distribution, 𝐷 (�̂�) is the discrimination
results of generated samples �̂� , and P𝑔 represents the generator dis-
tribution, �̃� are samplings uniformly along straight lines between
pairs of objects sampled from the real and generated data, 𝐷 (�̃�) is
its discrimination results and P

�̃�
represents its distribution.

The generator is trained to minimize the loss, while the discrim-
inator is trained to maximize it. We use mini-batch to improve the
training efficiency, and the discriminator is trained several times
before the generator is trained in each iteration. Details are shown
in Appendix B.

4 EXPERIMENTS
To verify the proposed generative model, we acquire a real-world
IoT traffic dataset, compare our model’s performance with five
baseline models in terms of data fidelity and application value, and
discuss the knowledge enhancement effect via training models on
small datasets.

4.1 Dataset
We obtain three-day IoT traffic from one of the largest mobile net-
work operators in China and identify 10,187 devices connected to 37
different IoT platforms, such as logistics and vehicle management
platforms. These devices work for multiple IoT applications and
services, and we search various data to collect their basic informa-
tion and extract the dataset. In addition to the network traffic, we
refer to their Type Allocation Code allocated by the Global Sys-
tem for Mobile Communications Alliance (GSMA), their product
descriptions on relevant websites, the official documents or user
guides provided by the manufacturers, and the product descrip-
tions or instructions given by distributors. Finally, the devices are
classified into ten categories presented in Figure 4, which cover the
commonly used functions of IoT devices. Similar to the device cate-
gories, the lengths of traffic series and the other three features are
on heavily unbalanced distributions, which requires the generative

models to learn the characteristics of "long tail" with limited train
samples, details are shown in Appendix C.

4.2 Performance Comparison
We compare the performance of our proposed model with baseline
models from two perspectives. First, we evaluate the fidelity of
generated data via Jensen–Shannon divergence (JSD) between the
distribution of generated data and real data. Then, we conduct a
case study on the generated datasets to verify their effect in the
application.

4.2.1 Baselines. We compare our proposed model with the follow-
ing five baselines:

Auto-regressive (AR) [12]. Typical AR models generate the
𝑗𝑡ℎ record in series according to the previous 𝑗 − 1 records, which
can only generate series with a fixed length. Hence, we denote𝑇 𝑗

𝑖
=

(𝐶𝑖 ,𝑇 𝑗𝑖 , 𝑀𝑖 ) = (𝐶𝑖 , 𝐴
𝑗
𝑖
, 𝑃
𝑗
𝑖
, 𝐿
𝑗
𝑖
, 𝐹
𝑗
𝑖
), where 𝐹 𝑗

𝑖
= 1 if 𝑗 < 𝑀𝑖 else 0.

Then, we train anARmodel such that𝑇 𝑗
𝑖
= 𝐴𝑅 (𝑇𝑖 𝑗−1

,𝑇𝑖
𝑗−2
, . . . ,𝑇𝑖

𝑗−𝑡 ).
In terms of generation, for each generated object 𝑂𝑖 , we randomly
sample an initial 𝑇 0

𝑖
= (𝐶𝑖 , 𝐴0

𝑖
, 𝑃0
𝑖
, 𝐿0
𝑖
, 1) from the real dataset for

the trained AR model. Finally, we reshape the generated series
{𝑇 𝑗
𝑖
}𝑀𝑚𝑎𝑥

𝑗=1 into 𝑂𝑖 = {𝑇 𝑗𝑖 }
𝑀𝑖

𝑗=1.
Hidden Markov models (HMM) [13]. Similar to AR, we use

𝑇
𝑗
𝑖
conditioning on device categories with variable length to help

HMM generate traffic series. Particularly, as the device category 𝐶𝑖
is directly sampled from the real data, we leave out the category
generation evaluation for AR and HMM.

Long Short Term Memory (LSTM) [17].We train the LSTM
generative model according to the series prediction manner. The
true values in the IoT traffic series are fed into the LSTM unit at each
step to predict the next values. In addition, we use 𝑇 𝑗

𝑖
to introduce

the device category and series length into the model similar to AR
and HMM, and add several linear layers after all steps to generate
the device category 𝐶𝑖 . Then, we use random noise as the initial
input for the trained model, and traffic series are generated step by
step.

Naive GAN [14]. In this model, we use MLPs as the generator
and discriminator, in which the generation of traffic series 𝑇𝑖 is on
the condition of the device category 𝐶𝑖 and length of traffic series
�̂�𝑖 , similar to our proposed model presented in Figure 3.

DoppelGANger [23]. DoppelGANger is a state-of-art GAN-
based generative model that can generate variable-length feature
series together with attributes of the series. For our generation task,
the device category𝐶𝑖 is considered as attributes in this model, and
the traffic series 𝑇𝑖 = {𝐴𝑖 , 𝑃𝑖 , 𝐿𝑖 } is the feature series.

Specifically, AR, HMM, and LSTM are representative series data
processing models, Naive GAN is the typical GAN model, and
DoppelGANger is a state-of-art GAN-based model for series data
generation. As for other state-of-art GAN models for IoT traffic
generation[29, 36], they mainly focus on a limited number of IoT
devices in simplex applications, while we aim to generate large-
scale IoT traffic in various applications. Thus, their performance is
not appropriate to be compared in our experiments, of which the
details are discussed in the related work. Overall, the performance
of our model can be credibly evaluated via being compared with
these selected models.

4.2.2 Fidelity. To evaluate the fidelity of generated data, we cal-
culate Jensen–Shannon divergence (JSD) between the distribution
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Figure 4: The number of devices of each category in datasets generated by different models.

JSD Cate-
gory

Series
Length

Arrival
Time

Interval

Packet
Number

Average
Packet
Length

AR – 0.4218 0.6085 0.4667 0.5385
HMM – 0.2217 0.2892 0.1694 0.5506
LSTM 0.3445 0.3196 0.5228 0.4950 0.6220
Naive
GAN 0.0558 0.3130 0.5077 0.6588 0.5114

Doppel-
GANger 0.0531 0.2562 0.6406 0.5153 0.6390

Non-KGE 0.0626 0.2136 0.1757 0.1453 0.2828
Non-

attention 0.0381 0.2192 0.1594 0.2323 0.0799

Ours 0.0352 0.1165 0.0898 0.1379 0.1404
Table 2: JSD between real data and generated data from
different generators, where lower results are better. Bold
denotes the best(lowest) results and underline denotes the
second-best results.

of generated data and real data, which is defined as,

JSD(P𝑔, P𝑟 )) =

√
KL(P𝑔 ∥P�̃� ) + KL(P�̃� ∥P𝑟 )

2 , (5)

where P𝑟 represents the real data distribution, P𝑔 is the generator
distribution, P

�̃�
represents the point-wise mean of P𝑟 and P𝑔 , and

KL is the Kullback-Leibler divergence. A lower JSD means a closer
distribution to the real data, which indicates a better generative
model. We include all the IoT traffic dataset features in fidelity
evaluation, i.e., device category 𝐶 , length of traffic series𝑀 , arrival
time interval 𝐴, packet number 𝑃 , and average packet length 𝐿. In
addition to the baseline models, we conduct ablation experiments
by removing the KGE information or self-attention mechanism in
our proposed model, denoted by ’Non-KGE’ and ’Non-attention’.

Table 2 presents the JSD between real data and generated data
from different generative models, where our model outperforms
the other models on four features and achieves a second-best result
on the last feature. In comparison with baselines, JSD between real
data and our generated data is conspicuously lower. For the device
category, our JSD result is 34% lower than the best baseline, i.e.,
DoppelGANger. Specifically, Figure 4 presents the device number
of each category in datasets generated by different models. As the
device number in category Tablet is too small, only our model

and LSTM-based model successfully generate the corresponding
samples. However, the LSTM-based model has poor performance on
other categories, with JSD far higher than all other models, which
is a decuple of our JSD result. For the length of series, arrival time
interval, number of packets, and average packet length, our JSD
result is 47%, 69%, 19%, and 15% lower than the corresponding best
baselines, i.e., HMM and DoppelGANger. Meanwhile, even with the
KGE information or self-attention mechanism removed, our model
outperforms the baseline models on all five features. Generally,
the model without self-attention performs better than the model
without KGE, which implies the importance of the knowledge and
condition mechanism proposed in Section 3.2.

JSD Series
Length

Arrival
Time

Interval

Packet
Number

Average
Packet
Length

AR 0.5376 0.4838 0.3382 0.5118
HMM 0.4142 0.3391 0.3003 0.5709
LSTM 0.4540 0.3179 0.3111 0.4473
Naive
GAN 0.3406 0.5001 0.6609 0.5712

Doppel-
GANger 0.3519 0.3786 0.4821 0.5309

Non-KGE 0.8278 0.3987 0.6020 0.5417
Non-

attention 0.3340 0.2216 0.3722 0.2217

Ours 0.2566 0.1563 0.1844 0.1945
Table 3: Categorized JSD between real data and generated
data from different generators, where lower results are bet-
ter. Bold denotes the best(lowest) results and underline de-
notes the second-best results.

Furthermore, to evaluate the correlation between device cate-
gory and other features, we calculate the JSD between real data and
generated data for each category and define the mean value for all
categories as categorized JSD, as presented in Table 3. Obviously,
categorized JSD is larger than JSD for the difficulty of capturing the
correlation between device category and other features. Our model
outperforms the other models on all the features, which demon-
strates the effectiveness of the condition mechanism. Meanwhile,
the model without the attention mechanism is the second-best one,
and the model without KGE has a poor performance, which im-
plies that KGE information plays a crucial part in capturing the
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Accuracy SVM kNN LR RF MLP NB

Real 0.6621 0.6828 0.6774 0.8011 0.7549 0.5034

AR 0.1805 0.4939 0.1687 0.5061 0.4399 0.1348
HMM 0.3942 0.4413 0.4201 0.3941 0.4179 0.4056
LSTM 0.2617 0.2455 0.2919 0.2352 0.1242 0.0447
Naive
GAN 0.5267 0.4843 0.5304 0.3668 0.3670 0.2577

Doppel-
GANger 0.4628 0.2627 0.4952 0.1011 0.2884 0.4958

Ours 0.4777 0.5890 0.5349 0.5648 0.5275 0.4134
Table 4: Results of device category classification via classi-
fiers trained on different datasets, where higher results are
better. Bold denotes the best(highest) results and underline
denotes the second-best results.

correlation between device category and other features. In addi-
tion, the LSTM model seems to perform better on categorized JSD, ,
which indicates that an LSTM is more suitable for generating series
on condition of given category distribution, like the traffic series
generator 𝐺𝑇 in our proposed model.

The above results demonstrate that our proposed model im-
proves the fidelity for IoT traffic generation compared to baselines,
and the knowledge and condition mechanism play crucial parts.
4.2.3 Application. As discussed in the introduction, IoT traffic
classification is an important task in IoT network traffic study.
Therefore, we conduct a traffic series classification task to evaluate
the application effectiveness of our generative model, and compare
the results with a number of baseline models. We train the classifier
on the generated dataset, and apply the trained classifier to the real
dataset. To control the impact of classification methods, the exper-
iment includes six common-used classification algorithms: linear
support vector machine (SVM), k-nearest neighbors (kNN), logistic
regression (LR), random forest (RF), MLP, and multinomial naive
Bayes (NB). In contrast, we split the real dataset into training and
testing set accounting for 70% and 30%, train these classifiers on the
training set and apply the trained model to the testing set. Table 4
presents the classification results, and classifiers trained on the real
dataset outperform others naturally. The classifiers trained on the
dataset generated by our proposed model perform second-best for
most of the classification algorithms. Naive GAN performs better
than our model for the SVM classifier, and DoppelGANger per-
forms better for the NB classifier. However, SVM and NB have poor
performances in comparison with other algorithms even trained
on the real dataset. For experiment conveniences, these classifiers
are based on oversimplified classification algorithms, and a well-
designed classifier trained on the generated dataset could achieve
better results.

These classification results illustrate that our model is capable
of capturing the correlation between device category and traffic
series, and the generated dataset is applicable in practice.

4.3 Knowledge Enhancement Effect
Performance comparison illustrates the effectiveness of our pro-
posed model and implies the importance of KGE information. There-
fore, we conduct a contrast experiment to study the effect of knowl-
edge used in our model particularly. First, we randomly sample the

real dataset using sampling rates that vary from 20% to 80%. Second,
we train the models with and without KGE simultaneously on dif-
ferent sizes of data. Then, we calculate JSD between the generated
datasets and the complete real dataset. The sampling, training, and
generation are repeated several times to avoid bias introduced by
sampling.

Figure 5 shows the JSD to real data of these datasets generated by
models trained on different sizes of data. The results for models with
andwithout KGE are presented as solid blue lines and yellow dashed
lines varying according to the sampling rates of training sets, where
the knowledge-enhancedmodels achieve better results.We find that
the knowledge enhanced models perform well on small training
sets with 20% or 40% sampling rates, which outperform or have
comparative results to models on large training sets with 80% or
60% sampling rates. The training set with a 20% sampling rate only
contains two thousand devices, which indicates that introducing
background knowledge helps to generate high-fidelity data with
limited samples.

In conclusion, the above experiments illustrate that our proposed
model is capable of capturing both the distribution characteris-
tics and the correlation between device category and traffic series,
which helps to generate a realistic IoT traffic dataset. Our proposed
model not only outperforms a number of generative models but also
performs well on small datasets via introducing background knowl-
edge into generation, which helps to provide abundant synthetic
data based on limited real data.

5 RELATEDWORK
5.1 IoT Traffic Analysis and Modeling
Since IoT services have become ubiquitous in everywalk of life grad-
ually, IoT devices bring colossal influence to our society through the
Internet, and their network traffic behaviors are gaining increasing
popularity and importance among researchers. Interested in the
new requirements and challenges of the machine to machine traffic,
Shafiq et al. [35] firstly study the characteristics of large scale M2M
traffic, such as temporal patterns, applications, and mobility. Then,
IoT device behaviors focused on certain application scenes like
vehicle [3] and wearable [21] are also analyzed. Later, motivated
by better network design, application scenario validation, or miti-
gating security threats, multiple frameworks are proposed for IoT
traffic modeling, predicting, or load estimation [1, 22, 31, 40]. In
addition to behavior analysis and modeling, IoT traffic are applied
to identifying the security issues [2, 10, 26, 30, 34], web services or
applications [24], and device types in IoT [27, 28, 32, 37].

These analyzing, modeling, predicting, and identifying tasks re-
quire large-scale realistic datasets on various kinds of IoT devices,
but most of their experiments are conducted based on single appli-
cation scenes or even testbeds in laboratories with several devices,
which spirits us to fill in the gaps of IoT data generation. Recently,
Nguyen-An et al. [29] propose IoTTGen to generate synthetic traffic
for smart home and bio-medical IoT environments, which succeed
in capturing the entropy of traffic characteristics for several smart
home devices (i.e., smart hub, light, camera, plug) and bio-medical
sensors (i.e., body temperature, blood pressure, heart rate, respira-
tory rate, electromyography, cardiography). Unfortunately, their
model requests configuration for each IoT device before traffic gen-
eration, in which the packet size, port number, payload, and arrival
time interval are given as fixed parameters. To learn the temporal
patterns in IoT traffic, Shahid et al. [36] propose to combine an
auto-encoder with a GAN to generate sequences of packet sizes
that correspond to bidirectional flows. The generated sequences of
packet sizes behave closely to real bidirectional flows produced by
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(a) Device Category. (b) Series Length. (c) Arrival Time Interval. (d) Packet Number. (e) Average Packet Length.

Figure 5: JSD between real data and dataset generated by models trained on different size of data, where blue dots represent
the results for knowledge enhanced model, yellow stars represent the results for model without KGE, and lower results are
better: (a) JSD of the device category, (b) JSD of the length of traffic series, (c) JSD of the arrival time interval. (d) JSD of the
total number of packets, (e) JSD of the average packet length.

a Google Home Mini, which was actively used for a week. However,
the IoT traffic data generated by the above two models is limited
to simplex application scenes. Their experiments are conducted
on a limited number of IoT devices in laboratories with detailed
parameters, where the devices can be easily configured based on
the prior knowledge. In our experiment, which is closer to the real
situations, collecting the detailed parameters of the 10,187 real-
world IoT devices in various applications and configuring all the
devices is not feasible. Therefore, we do not compare the above
models with our proposed model in the experiments.

5.2 Network Traffic Generation
Network traffic generation is a long-standing problem, which is
traditionally applied to test network equipment, network services,
and security products [48]. In the early stage, network traffic can
be generated based on network traffic models (e.g., Poisson model
), traffic characteristics (e.g., packet size and packet arrival distri-
butions [39]), and network protocols (e.g., TCP [43]), which are
appropriate for network performance tests but incapable of gener-
ating a high fidelity synthetic IoT traffic dataset for their limited
representational ability.

Recently, various machine learning methods are applied to gener-
ate network traffic data, for instance, auto-regressive based models
[6, 45]. As GAN [14] achieve remarkable effects in a number of
generation tasks, including videos [42], audio [47], images [46],
GAN-based models become popular for network traffic generation
[8]. Ring et al. [33] design three different pre-processing approaches
based on GANs to transform flow-based data into continuous values
and generate flow-based network traffic trained on the CIDDS-001
dataset. The dataset is created in a virtual environment using
OpenStack, providing abundant parameters, including IP addresses,
port numbers, TCP flags, etc. However, the required parameters
are hardly accessible in realistic environments, which restricts the
application of their method. Dowoo et al. [11] propose PcapGAN to
generate pcap files trained on cyberattack data and normal data for
intrusion detection. Except for generating traffic series or attributes
respectively, Lin et al. [23] propose DoppelGANger to generate data
attributes and feature series simultaneously and reach state-of-art
results on several traffic forms datasets, including web traffic time
series, geographically-distributed broadband measurements, and
compute cluster usage measurements.

These generative models for network traffic data provide us with
experience to generate IoT traffic. Based on these models, our GAN
framework generates realistic and diverse IoT traffic data enhanced
by network structure and semantic knowledge.

6 DISCUSSION AND CONCLUSIONS
In this paper, we propose a knowledge-enhanced GAN for IoT
traffic generation. First, we build a knowledge graph to describe
the background information for IoT devices, which contains both
semantic knowledge and network structure feature. Then, our GAN
framework incorporates the knowledge and device category for
IoT traffic generation via condition mechanism; it captures the
long-term and short-term temporal correlation in the traffic series
by LSTM and self-attention mechanism. Based on a large-scale
real-world IoT traffic dataset, we generate a synthetic IoT traffic
dataset via our proposed model, which outperforms other state-
of-art baselines on data fidelity and application. The model is also
demonstrated to generate high fidelity data trained on small real
datasets, which implies that introducing background knowledge
to generation helps GANs provide abundant synthetic datasets
based on limited real data. Our proposed model can easily extend to
similar datasets with both graph structure background and series
behaviors, for instance, sensor signals and social network behaviors.
Furthermore, we intend to enrich the knowledge graph and explore
more methods to introduce knowledge into generation models.

Moreover, our model can be reused to generate all kinds of traffic
data with variable lengths and attributes, e.g., mobile users’ traffic
or website visiting series. Other embeddings can replace the KGEs
of IoT devices to enhance the generation, and our model still outper-
forms other models without KGE. Therefore, our model is reusable
in different traffic generation tasks regardless of the existence of
the corresponding knowledge graphs. We have released our code
of the IoT traffic generation model on Github1. In addition, we also
provide the trained models and generated IoT traffic. We believe
this work promotes further studies of the traffic generation problem.
One limitation of our proposed model is that we do not directly
consider the interaction between IoT devices because we find few
flows between devices in the real IoT dataset in our experiments.
Specifically, the indirect relations between devices are learned via
the IoT knowledge graph. As interactions between devices may be
more frequent in the next generation of IoT, our model is able to
easily adapt itself by supplementing the traffic between devices to
the training dataset and adding the relations between devices to
the IoT knowledge graph.
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Algorithm 1 Knowledge-enhanced GAN. Default values : 𝜆 = 10,
𝑛𝐷=5, 𝑞 = 64, 𝛼=0.0001, 𝛽1=0.5, 𝛽2=0.9.
Require: The gradient penalty coefficient 𝜆, the number of
discriminator iterations per generator iteration 𝑛𝐷 , the batch size
𝑞, Adam hyperparameters 𝛼 , 𝛽1, 𝛽2.
Initialize: initial discriminator parameters 𝜙0, initial parameters
𝜃0.
1: while 𝜃 has not converged do
2: for 𝑡=1, ... ,𝑛𝐷 do
3: for 𝑖=1, ... ,𝑞 do
4: 𝐷𝜙 Training:

Sample real data 𝑂𝑖 ∼ 𝑃𝑟 ,
KGE 𝐾𝑖 ∼ 𝑃 (𝐾),
noise 𝑍𝑖 ∼ 𝑃 (𝑍 ),
random number 𝜖 ∼𝑈 [0,1]

5: 𝐶𝑖 ← 𝐺𝐶
𝜃
(𝑍𝐶
𝑖
|𝐾𝑖 )

6: 𝑀𝑖 ← 𝐺𝑀
𝜃
(𝑍𝑀
𝑖
|𝐶𝑖 ,K𝑖 )

7: 𝑇𝑖 ← 𝐺𝑇
𝜃
(𝑍𝑇
𝑖
|𝑀𝑖 ,𝐶𝑖 ,K𝑖 )

8: 𝑂𝑖 ← (𝐶𝑖 ,𝑇𝑖 )
9: 𝑂𝑖 ← 𝜖𝑂𝑖+(1-𝜖)𝑂𝑖
10: 𝐿𝑖 ← 𝐷𝜙 (

˜̂
𝑂)-𝐷𝜙 (𝑂𝑖 )+𝜆 (∥ ∇𝑂𝑖

𝐷𝜙 (𝑂𝑖 ) ∥2-1)2
11: end for
12: 𝜙← Adam(∇𝜙 1

𝑞

∑𝑞
𝑖=1𝐿𝑖 , 𝜖 ,𝛼 ,𝛽1,𝛽2)

13: end for
14: 𝐺𝜃 Training:

Sample a batch of noise{𝑍𝑠 }
𝑞

𝑠=1 ∼ 𝑃 (𝑍 ),
KGE {𝐾𝑠 }

𝑞

𝑠=1 ∼ 𝑃 (𝐾)
15: 𝐶𝑠 ← 𝐺𝐶

𝜃
(𝑍𝐶 |𝐾𝑠 )

16: 𝑀𝑠 ← 𝐺𝑀
𝜃
(𝑍𝑀 |𝐶𝑠 ,K𝑠 )

17: 𝑇𝑠 ← 𝐺𝑇
𝜃
(𝑧𝑇 |𝑀𝑠 ,𝐶𝑠 ,k𝑠 )

18: 𝑂𝑠 ← (𝐶𝑠 ,𝑇𝑠 )
19: 𝜃 ← Adam(∇𝜙 1

𝑞

∑𝑞
𝑠=1-𝐷𝜙 (𝑂𝑠 ),𝜃 ,𝛼 ,𝛽1,𝛽2)

20: end while

(a) Series Length. (b) Arrival Time Interval.

(c) Packet Number. (d) Average Packet Length.

Figure 6: The distributions of features in IoT traffic dataset:
(a) The length of traffic series, (b) arrival time interval, (c)
total number of packets. (d) average length of packets.

Model SVM kNN LR RF MLP NB

Accuracy 0.8884 0.9167 0.8311 0.9114 0.9286 0.6856
Table 5: Results of device category prediction via knowledge
graph embedding.

A DEVICE CATEGORY PREDICTION BASED
ON KGE

We split the real dataset into training and testing set accounting
for 50% and 50%, train the classifiers on the training set, and ap-
ply the trained model to the testing set. To control the impact of
classification methods, the experiment includes six common-used
classification algorithms: linear support vector machine (SVM), k-
nearest neighbors (kNN), logistic regression (LR), random forest
(RF), MLP, and multinomial naive Bayes (NB). Table 5 presents the
classification results, which indicates the semantic information is
preserved in the knowledge graph embeddings.

B MODEL TRAINING
The training process of our knowledge enhanced GAN is presented
in Algorithm 1,𝐺𝐶

𝜃
,𝐺𝑀
𝜃
,𝐺𝑇
𝜃
denote the 𝜃 -parameterized category

generator, series length generator, and traffic series generator, 𝐷𝜙
denote the 𝜙-parameterized discriminator. We adopt a Wasserstein
loss with gradient penalty [16], the generators 𝐺𝐶

𝜃
, 𝐺𝑀

𝜃
, 𝐺𝑇

𝜃
are

trained to minimize the loss, while the discriminator 𝐷𝜙 is trained
to maximize it. We use mini-batches of size 𝑞, and adopt an Adam
optimizer. In each iteration, the discriminator 𝐷𝜙 is trained 𝑛𝐷
times before the generator 𝐺𝜃 .

To train the discriminator𝐷𝜙 , we sample real data𝑂𝑖 , knowledge
graph embedding 𝐾𝑖 , noise 𝑍𝑖 , and a random number 𝜖𝑖 at first.
Then, device category 𝐶𝑖 is generated by 𝐺𝐶

𝜃
on the condition of

𝐾𝑖 , series length �̂�𝑖 is generated by 𝐺𝑀
𝜃

on the condition of 𝐾𝑖 and
𝐶𝑖 , and traffic series 𝑇𝑖 is generated by 𝐺𝑇

𝜃
on the condition of 𝐾𝑖 ,

𝐶𝑖 , and �̂�𝑖 . The generated sample 𝑂𝑖 consists of 𝐶𝑖 and 𝑇𝑖 . We use
𝜖𝑖 to sample 𝑂𝑖 uniformly along straight lines between the real
sample𝑂𝑖 and the generated sample𝑂𝑖 . The samples𝑂𝑖 ,𝑂𝑖 , and𝑂𝑖
are fed into the discriminator 𝐷𝜙 to compute the loss, and update
the parameters 𝜙 for discriminator 𝐷𝜙 to maximize the loss. After
𝑛𝐷 iterations for discriminator 𝐷𝜙 , we generate samples 𝑂𝑠 from
𝐺𝐶
𝜃
, 𝐺𝑀
𝜃
, and 𝐺𝑇

𝜃
, feed 𝑂𝑠 into 𝐷𝜙 to compute the loss and update

parameters 𝜃 for generators by minimize it. The training ends after
the convergence of generator parameters 𝜃 or configured iterations.

C FEATURE DISTRIBUTION IN REAL
DATASET

Figure 6(a) presents the lengths of traffic series for these devices,
which vary between 10 and 500, and the distributions of arrival
time interval, number of packets, and average packet length are
also presented in Figure 6. The heavily unbalanced distributions
require the generative models to learn the characteristics of "long
tail" with limited training data.
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