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Air pollution is a serious global issue impacting public health and social economy. In particular, exposure to small particulate
matter of 2.5 microns or less in diameter (PM2.5) can cause cardiovascular and respiratory diseases, and cancer. Fine-grained
urban air quality monitoring is crucial yet di�cult to achieve. In this paper, we present the design, implementation, and
evaluation of an ambient environment aware system, namely UbiAir, which can support �ne-grained urban air quality
monitoring through mobile crowdsensing on a bike-sharing system. We have built speci�c IoT box con�gured with multiple
pollutant sensors and attached on shared bikes to sample micro-scale air quality data in the monitoring space that is split by a
scalable grid structure. Both hardware and software data calibration methods are exploited in UbiAir to make the sampled
data reliable. Then, we use Bayesian compressive sensing (BCS) as an inference model that leverages the calibrated samples to
recover data points without direct measurements and reconstruct an accurate air quality map covering the entire monitoring
space. In addition, red envelope based incentive schemes and di�erential rewarding strategies have been designed in UbiAir,
and an adaptive BCS algorithm is proposed to deploy the red envelopes at the most informative positions to facilitate data
sampling and inference. We have tested our system on campus with over 100k data measurements collected by 36 students
through 18 days. Our real-world experiments show that UbiAir is a light-weight, low-cost, accurate and scalable system for
�ne-grained air quality monitoring, as compared with other solutions.
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1 INTRODUCTION
Ambient (outdoor) air pollution is a major environmental health problem a�ecting everyone in low, middle, and
high-income countries. The World Health Organization estimated in 2016 that outdoor air pollution in both cities
and rural areas causes 4.2 million premature deaths worldwide per year [27]. Air pollution occurs when harmful
or excessive quantities of substances including gases, particles, and biological molecules from anthropogenic
(man-made) or natural sources are released into the atmosphere and dispersed through ambient air. Various
locations, activities or other factors are responsible for generating pollutants into our ecosystem. Therefore,
e�cient and ubiquitous air quality monitoring solutions are greatly needed to e�ectively infer and control air
pollution, especially in highly-populated urban areas.

1.1 Motivations
Although the government-led monitoring is able to measure the pollution near the static stations, it cannot
accurately re�ect actual air quality people breathe in, which is much more valuable to our health and daily lives.
Low-cost stationary sensors and human-carried sensors have been adopted recently to monitor micro-scale
urban air quality in client-cloud systems such as AirCloud [4] and Mosaic [11], where ambient pollution data are
collected by the mobile client side and regional air quality status are inferred on the cloud server side. However,
these exiting solutions are still lacking in terms of coverage and scalability (see Section 2). Therefore, new designs
are needed to achieve high coverage and high accuracy while maintaining low cost. Given these considerations,
mobile crowdsensing [16, 22, 45], an ubiquitous approach to outsource or share sensing tasks among workers,
could be a promising solution to achieve light-weight, �ne-grained, and scalable air quality monitoring. With
the advent of portable sensing and computing devices (i.e., Dylos and Aeroqual), crowd workers [13, 32] are
able to carry small-size air quality monitoring equipment to measure the main pollutants in their surroundings.
Nevertheless, crowdsensing air pollution still faces the following twomajor problems: (1) Commercial o�-the-shelf
devices usually can only detect one type of air pollutant. To monitor various air pollutants at the same time, crowd
workers need to carry additional devices, which is a burden for them. (2) Air quality data at speci�c locations
are usually required for some inference models. These locations may be inconvenient for crowd workers, and
sometimes these speci�c locations may be di�cult to access via mobile vehicles.

(a) Sharing Bikes (b) Mobike Electric Version (c) Booming of Electric Bikes

Fig. 1. Bike-sharing and its popularity.

The emergence of sharing economy [29, 34, 39] o�ers new collaborative forms of consumption, production,
�nance, and learning to facilitate mobile crowdsensing of urban air quality monitoring. Sharing economy focuses
on the sharing of underutilized assets, monetized or not, in ways that improve e�ciency, sustainability, and
community. With the recent development of various sharing facilities (e.g., sharing bikes, sharing scooters, sharing
cars) [12], these mobile platforms provide a natural, scalable, and ubiquitous solution to carry various IoT devices,
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and assist people to collect air pollution data at speci�c locations. For example, bike-sharing, especially dockless
bike-sharing, is booming all over the world, and there are more than ten bike-sharing brands (e.g., Mobike, ofo,
Hellobike) in China, as shown in Fig. 1 (a). On one hand, as an environment-friendly approach, bike-sharing o�ers
people a convenient way to commute and solves the “last mile” problem. By allowing users to access and park
bikes at any valid place, dockless bike-sharing has gained signi�cant popularity. For instance, Mobike has nearly
8.65 million daily active users among 200 million registered users, and operates over 8 million bikes in China and
abroad [23]. On the other hand, current bike-sharing is intended for short-term use at a very low price or free.
Therefore their business model is usually in doubt and can cause serious �nancial problems. For example, ofo, a
Chinese bike-sharing giant, now su�ers from consistently high operation costs and lack of additional funding to
expand its business. In this work, we propose to integrate the sharing economy with mobile crowdsensing on IoT
platforms, which o�ers a feasible and sustainable solution to support �ne-grained air quality monitoring.

1.2 Challenges and Our Approaches
With respect to the pervasive usage and fast evolution of sharing bikes, as shown by the recently launched
electric version and its popularity in Fig. 1 (b) and (c), we present a �ne-grained air quality monitoring system,
namely UbiAir, through mobile crowdsensing on shared bikes. The main challenges related to the system
design and implementation are: 1) Unlike the sparse and stationary governmental stations that only provide
macro-scale and coarse-grained measurements, UbiAir emphasizes on ambient pollution and correspondingly air
quality monitoring has to be �ne-grained. This implies that geographically-dense measurements are needed on
micro-scale size to guarantee high coverage and accuracy, and the measurement network structure can scale to
urban scenarios with light weight and low cost. 2) It is normal that data collection errors occur in mobile and
distributed sensing. This is especially challenging when a large number of shared bikes are employed during
mobile crowdsensing, given that the IoT device carried on each bike is composed of low-cost air pollution sensors
with accuracy variations. These errors not only make the dynamic measurements on the client side unable to
re�ect the true concentration of di�erent air pollutants, but also a�ect the performance of the air quality inference
model on the server side. 3) The operation of e�cient air quality monitoring requires speci�c designs for a
concise and practical inference model running on the server side. Ideally, we would like to assign shared bikes to
collect air pollution data intensively over the prede�ned measurement network structure. In reality, there are
still a small number of regions that bikes or workers cannot access. Given the spatially distributed data points,
how to exploit the collected data to infer the air quality status on the data points without measurement remains
an critical issue that the inference model needs to resolve.
UbiAir has been designed and implemented as a holistic system to tackle above challenges through mobile

crowdsensing. Speci�cally, with regard to the convenient usage of dockless shared bikes for short and medium
distance trips, UbiAir deploys a small-size air quality monitoring box composed of di�erent low-cost pollution
sensors on each shared bike. The boxes attached on bikes can be switched on/o� by crowd workers (cyclists) to
collect air pollutant data through a light-weight mobile application, where user experience has been considered
to avoid inquiring the worker’s original trip plan. By doing this, mobile crowdsensing on shared bikes can reach
most urban areas due to the broad scope of biking paths from di�erent workers. In addition, we propose a scalable
scheme to partition the measurement network into a grid structure, as well as an incentive strategy to motivate
workers to collect data at the most informative grid points. To improve measurement accuracy, the collected
data can be calibrated separately via both hardware and software, and the mobile application can geotag and
upload these calibrated data as sampling information to the server for air quality inference. Since most of the
natural environmental data could be approximated by a mixture of Gaussian distributions, UbiAir chooses the
Gaussian kernel function to implement a Bayesian compressed sensing (BCS) model to infer the sampling data
and reconstruct the air quality map with micro-scale and accurate results.
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The major contributions of the UbiAir system are summarized as follows:

• A mobile crowdsensing framework to monitor micro-scale air quality on shared bikes capable of detecting
di�erent air pollutants, with speci�c designs on data measurement, data inference, and incentive scheme.

• A scalable and adaptive data collection method with a series of practical processing to achieve high coverage
and accuracy, including grid partitioning, data calibration, and di�erential rewarding strategy.

• An e�cient air quality inference model utilizing Bayesian compressive sensing to learn sampling data, and
reconstruct �ne-grained air quality map covering di�erent regions in an urban area.

• A light-weight and user friendly mobile application to perform data collection, and assist the mobile
crowdsensing workers while keep their normal biking behavior intact.

• Extensive real-world evaluation on campus with over 100k air quality data measurements collected by
36 students riding the shared bikes through 18 days, and these students were involved in the mobile
crowdsensing process by our incentive scheme.

The rest of this paper is organized as follows: Section 2 introduces the related works. Section 3 presents our
system overview. Section 4 explains our data sampling method. Section 5 elaborates our data calibration scheme.
Section 6 describes our data analysis model. Section 7 evaluates system performance. Section 8 discusses with
users on their experience. Section 9 concludes our paper.

2 RELATED WORKS
Di�erent approaches exist for air quality monitoring. Related works have been proposed to address this issue and
can be classi�ed as follows.

2.1 Government-led Measurement Stations
Traditional air quality monitoring ways led by government, such as remote sensing [25] and stationary air quality
monitoring stations [44], require enormous space, special resources, and economic investment. For example,
a typical stationary station run by the government needs about 200,000 USD for construction and 30,000 USD
per year for maintenance [44]. As such, government-led measurement stations are limited in scale. Without a
signi�cant number of monitoring sites, it is di�cult to obtain �ne-grained air quality information from active
and populated regions that are geographically distributed in large-scale urban areas, which consists of stationary
hotspots (e.g., construction and industrial facilities) and mobile hotspots (e.g., cars and trucks) of air pollution.
The macro-scale data measured from the sparse and stationary governmental stations usually cannot re�ect
the micro-scale air quality status in these regions [11]. The accuracy is also a bottleneck in remote sensing due
to weather and other factors. People could be misled by the publicly-available macro-scale and coarse-grained
air quality data, without noticing pollutant emissions in their ambient environments, such as small particulate
matter of 2.5 microns or less in diameter (PM2.5), which may cause respiratory disease, childhood asthma, cancer,
and other health problems.
In comparison with the sparse and stationary governmental stations that only provide low-quality mea-

surements, UbiAir emphasizes on ambient pollution and achieves �ne-grained air quality monitoring, where
geographically-dense measurements are collected on micro-scale size to guarantee high coverage and accuracy.
In addition, the measurement network structure of our UbiAir can scale to urban scenarios with light weight and
low cost, which is impossible for government-led measurement stations.

2.2 Ambient Air�ality Monitoring
Some studies have been developed to monitor indoor air quality with special equipment and to monitor the air
quality around people with wearable devices. MyPart [35] is a personal and portable particle sensor with a low
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cost under 50 USD. It can distinguish and calculate particles of di�erent sizes. W-Air [24] is a personal multi-
pollutant monitoring platform for wearables. It adopts a sensor-fusion calibration method to recover high-�delity
ambient pollutant concentrations from the human emissions interference. AirCloud [4] is a client-cloud system
for low-cost and stationary air quality monitoring, where two types of Internet-connected particulate matter
monitors are designed with a mechanical structure for optimal air �ow. AirSense [8] is an intelligent home-based
indoor air quality sensing system. It is able to automatically detect pollution events, identify pollution sources,
estimate personal exposure to air pollution, and provide reasonable suggestions to help user improve indoor
air quality. MAAV [26] is a system to measure air quality, annotate data streams, and visualize real-time PM2.5
levels. It is able to collect data from multiple monitors, annotate the data, and send message when PM2.5 spike is
detected. It also displays measurement data and annotations via an interactive tablet interface.

Although these devices or systems can monitor the air quality around the equipment, these monitoring devices
are not placed on mobile vehicles. Using low-cost stationary sensors or human-carried sensors su�ers the lack
of coverage and scalability problem, therefore cannot achieve large-scale �ne-grained air quality monitoring.
Our UbiAir adopts the widely deployed shared bikes available and close to users as the mobile platform to
mount monitoring devices. Furthermore, these shared bikes can collaboratively complete large-scale monitoring
through distributed crowdsensing, with accuracy guarantee by grid partitioning, data calibration, and di�erential
rewarding strategy.

2.3 Fine-grained Air�ality Monitoring
Recently, various studies have been attempting to get �ne-grained air pollution data by low-cost sensors. Two
sensing models were designed to obtain �ne-grained air quality data in [5], where one model was for public
transportation infrastructure with �xed and reliable routes along high-capacity corridors, and the other model
relies on personal sensing devices in cars. Mosaic [11] is a low-cost urban air quality monitoring system based on
mobile sensing. The Mosaic-Nodes was built with a constructive air�ow disturbance design and GPS-assisted
�ltering based on an adjusted air�ow structure. In these studies, the sensing devices are carried by city buses or
deployed in cars. However, due to the geographical constraints (e.g. residential area, narrow road, mountains,
lakes), these public vehicles can only measure a limited number of locations of the entire monitoring space. On
the other hand, public vehicles are driven on a �xed route on the road, still su�ering the lack of coverage and
resulting in limited data collection. To solve these problems, we propose a mobile crowdsensing framework
in UbiAir that is capable of assigning shared bikes to collect air pollution data intensively over the prede�ned
measurement network structure, with speci�c designs on data measurement and incentive scheme.

To avoid exhaustive measurements over the entire monitoring area, some studies used a data inference model
to approximate the value of unmeasured area. The inference model used in [44] is based on a few public air
quality stations, meteorological data, road networks, taxi trajectories, and point of interests. Third-Eye [20] was
developed as a mobile application that can utilize mobile phones to monitor PM2.5 with high-quality. It also
designed a inference model that is based on web crawling and large-scale data set of the outdoor images taken
by mobile phone. Although these multi-source data based inference models are able to e�ectively solve above
problems that only limited number of measurements can be collected in the entire monitoring space, di�erent
types of data besides air pollutant data are needed in these models and some types of these data are not easy
to collect without governmental resources. In reality, the operation of e�cient air quality monitoring requires
speci�c designs for a concise and practical inference model running on the server side. Therefore, an e�cient air
quality inference model has been deployed in our UbiAir utilizing Bayesian compressive sensing to merely learn
sampling air pollutant data, and reconstruct �ne-grained air quality map covering di�erent regions in an urban
area.
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2.4 Air�ality Monitoring Using Bikes
As the route of public transportation (e.g. bus, taxi, metro) is �xed, bikes as a more agile mobile sensing platform
have been used for ambient data construction. BikeNet [6] was proposed for cyclist experience mapping leverag-
ing opportunistic sensor networking principles and techniques. The system is focused on quantifying cyclist
performance, but cyclist-environmental information are collected on the trajectory to infer the performance. The
emerging urban infrastructure have been studied in [10] to identify shared bicycling behaviors across stations
and show how these behaviors relate to temporal and spatial dynamics of a city. These have led several works
to address air-quality monitoring using bikes as the mobile platform, such as Canarin II [1], CyclAir [31], and
Aero�ex [7]. These works focused on environmental data rather than behavior data, and all have designed their
own prototype bikes with the similar implementation approach. That is, individual bikes equipped with air
quality measurement devices collect ambient data and transfer it to the back-end database to provide the public
with air quality information on the tracks that the bicycles pass by. Air pollution monitoring using public bicycle
infrastructure was addressed in [21] as well by mounting the sensing box on a public bike. However, this kind
of docked shared bicycle needs to be returned to the cycling station, and the riding trajectory is usually very
limited, which cannot e�ectively cover large monitoring area.
The existing air quality monitoring works using bikes can only monitor the data either on the individual

bike’s trajectory or limited area by several docked public bikes. On constrast, our UbiAir system can cover
entire monitoring area using mobile crowdsensing combined with the sharing encomy paradigm on dockless
shared bikes. Moreover, due to the lack of design on incentive mechanism, existing works cannot enroll and
maintain enough number of bikes and volunteers to consistently contribute su�cient data for long-term air
quality monitoring. The red envelope incentive mechanism proposed in our work can solve this problem to
a certain extent. Additonally, except the work mentioned in BikeNet [6], almost all the existing works with
mounted sensor box on bikes have not addressed the sensor calibration issue along the bicycling trajectory,
which may results in data collection deviation from the actual values and provisioning the incorrect air quality
information to the public. On contrast, our UbiAir system speci�cally tackles this issue by speci�c designs on
software and hardware calibrations.

3 SYSTEM OVERVIEW
UbiAir is designed within a mobile crowdsensing framework and implemented as a novel client-server system
following the sharing economy paradigm. As shown in Figure 2, the framework of our system consists of
three major modules: data sampling, data calibration, and data analysis. These modules are interconnected and
dependent on each other to form an organic system.

3.1 Data Sampling
Our main objectives in data sampling module are to incentivize users to be involved in the mobile crowdsensing
process and collect the ambient air quality data at or near the desired locations by the on-demand assignments
from our measurement network structure.

• Grid Partitioning. UbiAir deploys measurement network with scalable grid structure where masses of
users having di�erent trajectories ride their bikes across the grids and corresponding data sampling is
performed at the grid points. The system server splits the urban areas that need to be monitored into dense
grid cells, and the size of grid cells can be adjusted adaptively upon the demands on measurement accuracy.
The grid partitioning method can satisfy the requirements of our air quality inference model on acquiring
spatially distributed data as well.

• Red Envelope Incentive.We have designed an incentive scheme that mimics the Red Envelope, a monetary
gift which is given during holidays or special occasions in Chinese and other East Asian and Southeast
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Fig. 2. System overview of UbiAir.

Asian societies. Our scheme encourages users to grab red envelopes distributed over speci�c grid points,
accompanying with tasks to collect air quality data at these positions. The bonus amount of each red
envelope is determined by a di�erential rewarding strategy, through evaluating the information gain and
the di�culty of data collection at corresponding position. Generally, more data collected with high-coverage
biking trip, more rewards grabbed with incremental red envelopes.

3.2 Data Calibration
The air pollutant data crowdsensed from the data sampling module are recorded as raw data in UbiAir client
on sharing bikes. These raw data are classi�ed with their pollution types and labeled with their geographical
information, and will be uploaded to the backend server via the UbiAir mobile application. The data calibration
module extracts the key information and converts the raw data into more accurate data through our hardware
calibration model and software calibration model, sequentially.

• Hardware Calibration. Because of the inherent errors among di�erent sensors, the UbiAir server �rst
runs training process over the measurements of low-cost sensors and the measurements of high-precision
sensors, and derived a hardware calibration model through learning their errors. The trained model can be
used to improve the accuracy of the collected data and make the calibrated data close to the ground truth,
from the hardware aspect.

• Software Calibration. The air quality data cannot be always collected at the expected sampling positions
(grid points) exactly, some of which could be sensed and recorded at nearby places passed by the sharing
bikes. We tune sensor’s sampling frequency and choose redundant sampling data around the grid point
without measurement. These samples along the biking trajectory are used to estimate the concentration of
air pollutant at speci�c grid point statistically. By doing this, UbiAir can get data from all the desired grid
points, which have been well calibrated to be ready for our air quality inference model.
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3.3 Data Analysis
The calibrated data at grid points are extracted from its corresponding database and used as the input to the
Bayesian compressive sensing (BCS), which is deployed as our inference model to reconstruct the air quality map
in urban areas.

• BCSModel. The BCS technology provides a method to recover data from a number of measurements much
less than that required by the Nyquist-Shannon theorem [40]. Given the grid structure for data collection,
when the amount of sampling data is su�cient to meet the basic requirement of BCS model, this inference
model can get �ne-grained results by recovering the air quality data of entire monitoring area with high
precision. Otherwise, the model will generate missing grid points that need further measurements.

• Red Envelope Deployment. The data at di�erent positions has di�erent e�ects on the recovery result of
the BCS model. We want to collect data at positions that minimize the recovery error. UbiAir proposes
an adaptive BCS method to assess the information gain of these positions and rank them accordingly.
Once speci�c grid points are selected, users are expected to be dispatched to collect data at these positions.
Correspondingly, the red envelops will be deployed on these important positions to reward users that �nish
these tasks.

More details about the design and implementation of above modules and their operations will be explained in
following sections.

4 DATA SAMPLING
To design a �ne-grained air quality aware system, the �rst thing we have to do is to get the data in a reasonable
way with tradeo� between practical deployment and e�ective performance. Here we propose a grid partitioning
method to sample air pollutant data on-demand. Furthermore, a red envelope incentive scheme is designed
to encourage users to participate in mobile crowdsensing, and user experience has been considered to avoid
interfering their biking plan.

4.1 Grid Partitioning
Considering the sharing bike users usually have di�erent destinations and various biking paths, it is di�cult to
determine whether the user will pass the sampling position we are interested in. Given this situation, we have
designed an e�ective way to sample air pollutant data following a feasible grid network structure.

Speci�cally we split the space to be monitored into uniform grid cells by horizontal and vertical lines. In general,
the density of the grid cells is determined by the spatial precision of the air pollutant data we want to reconstruct.
The advantages of splitting the space to be monitored into uniform grid cells are: 1) achieving on-demand data
collection, where users are preferred to collect data at our speci�ed grid points (sampling positions); 2) making
the collected data more evenly distributed in space, not concentrated in a small piece of area; 3) facilitating the
data recovery of our inference model, where the Gaussian basis matrix Bn⇥n in the adaptive BCS algorithm can
be easily processed, as explained in Section 6.2.

The data sampling process using grid partitioning is illustrated by an example in Figure 3, where the monitoring
space is split to form a grid structure map with resolution of 9 ⇥ 9 grid cells. Initially, some red envelopes are
generated and deployed at speci�c grid points selected by our adaptive BCS method, as shown in Figure 3 (a).
The crowd workers can collect data and get reward from the red envelopes in two ways: one is that the user
takes the initiative to intentionally ride to the red envelope position and �nish data collection task, following the
black solid arrow; the other is that the user’s biking path just passes through a red envelope position and the
data is collected along the biking trajectory automatically, as depicted by the dashed line. Figure 3 (b) presents
the situation after di�erent users have collected the data and grabbed corresponding red envelopes. Then the
original red envelope marks are replaced by mission completion marks. When the data collection at all the red

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 4, No. 2, Article 61. Publication date: June 2020.



When Sharing Economy Meets IoT: Towards Fine-grained Urban Air �ality Monitoring through . . . • 61:9

澻濴澼 澻濵澼 澻濶澼

澻濷澼澻濹澼 澻濸澼

Fig. 3. Grid partitioning and data sampling.

envelope positions is completed, a new round of red envelop distribution is generated in Figure 3 (c) to place
rewards at other grid points requiring data sampling, and corresponding data collection is performed in Figure 3
(d). UbiAir repeats this red envelope generation and data collection process, as shown in Figure 3 (c) and (d),
until meets the requirement of its BCS model on acquiring the expected amount of data, as depicted in Figure 3
(e). Then, these sampling data collected at partial grid points will be used as input data for the BCS model to
reconstruct the air quality data covering the entire grid map, as illustrated in Figure 3 (f).

4.2 Red Envelope Incentive
Considering some users may be reluctant to participate in the data sampling process, we encourage users in a
paid way with very small amount of bonus. The virtual red envelopes developed in WeChat, a multi-purpose
messaging, social media and mobile payment app developed by Tencent, has proved that it is an e�ective way to
draw instant attention and keep user’s adhesiveness [14]. This inspired us to adopt the idea of virtual/digital red
envelops in our incentive scheme, but with speci�cally new design on distribution and rewarding for mobile
crowdsensing, to motivate users to collect data at crucial grid points for air quality sampling.

The red envelopes are generated and deployed at speci�c grid points where their information gain are ranked
in the top k . The value of k can be customized by the UbiAir system. The calculation of the information gain of
grid points by our BCS model is detailed in Section 6.2. After red envelopes are distributed over the prior grid
points, the amount of bonus of the red envelope Ri, j at grid point with coordinates (i, j) is modeled in Eq. (1):

Ri, j = � Ii, j + �T
2
i, j (1)
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(a) Login Interface (b) Scan and Use (c) User Settings (d) Collect for Rewarding (e) Collect by Planned Trip

Fig. 4. The UI of UbiAir mobile application.

where Ii, j is the information gain of deploying the red envelope at coordinates (i, j). Ti, j is the duration that the
red envelope has been retained at coordinates (i, j) since its generation. � and � are constant parameters, and
their value is set according to the amount of money we can a�ord.
Intuitively, if the data at some grid point positions have not been collected after some time, it tends to be

di�cult to collect these data. To guarantee the timeliness of �nishing data collection over the whole grid map,
UbiAir should reasonably increase the bonus amount of these special red envelope to match their di�culty levels.
Within the tolerant amount of bonus, we set a bonus threshold U . When Ri, j > U , we consider the position of
red envelope too remote or unreachable in space (such as a red envelope in a lake) and remove this red envelope
from the grid map. After that, UbiAir system will generate a new red envelope at the (k + 1)th grid point where
its information gain is ranked (k + 1)th among all the grid points. According to this rule, we can �nally collect
data from k grid points.

4.3 User Experience
We have implemented the UbiAir mobile application including the above-mentioned designed functionalities on
the mobile Android platform. The backend service is running on Alibaba Cloud with the server implemented in
Python/MySQL. The mapping, navigation and location-based services used in UbiAir are provided by AutoNavi,
which is a major provider of map information in China. UbiAir is committed to creating a light-weight and user
friendly mobile application that performs e�cient data collection, and assist workers being involved in the mobile
crowdsensing while keep their normal biking behavior intact. The operation process of crowd workers has been
carefully designed in UbiAir and simpli�ed as much as possible to deliver a great user experience.
Figure 4 illustrates the user interface (UI) of UbiAir displaying the main functions of the system, and its

usability design. Figure 4 (a) shows the login page of the system. Users can choose to log in to UbiAir with their
authorized identi�cation; they also can log in with accounts from other popular social networks (e.g.WeChat,
Facebook). After authorization, UbiAir guides the users to unlock their dockless sharing bikes that carry the
UbiAir box composed of various air pollutant sensors. As shown in Figure 4 (b), this step can be easily done by
scanning the quick response(QR) code within the suggested scanning area provided the rear camera of mobile
phone. Subsequently, UbiAir automatically pops up the UI of data collection settings to encourage the users to be
involved in its mobile crowdsensing, as illustrated in Figure 4 (c). The users can opt to turn on/o� the UbiAir box
for mobile crowdsensing during their biking trip. Once data collection is enabled, the users need to choose a
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wireless communication method to connect their mobile phone with the UbiAir box (e.g. Bluetooth, WiFi), so that
the collected data can be temporarily stored in the phone during the biking trip and later uploaded to the server.
In addition, UbiAir present an option in Figure 4 (c) to recommend the data sampling positions to users by

displaying surrounding red envelopes along the real-time biking trajectory. Once this option is selected, the
distance and bonus of an nearby red envelope will pop up and navigate the users to collect corresponding data at
the speci�c grid point according to their current location, as shown in Figure 4 (d). By doing this, the users are
considered to be more active in data collection with intention to grab the red envelopes through adjusting their
trip plan. Otherwise, for the users that would like to join the mobile crowdsensing but hope their original biking
plan intact, UbiAir also presents a rewarding solution for them without a�ecting their biking experience, as
shown in Figure 4 (e). By turning on data collection in Figure 4 (c), the user will get a view of the map showing the
positions of all the red envelopes in Figure 4 (e), so that the biking path to destination can be planned beforehand,
with inclination to grab some red envelopes. Once the UbiAir box attached on sharing bikes passes the position
of a red envelope and samples its data, corresponding bonus will automatically deposit into the user’s account.
We show the details of uploaded data information in Figure 4 (e), but in reality these information will be hidden
from the user. Note that in both Figure 4 (d) and (e), there is an scan button for users to reconnect their mobile
phone with the UbiAir box once the previous wireless communication is interfered and disconnected.

5 DATA CALIBRATION
The emerging of cheaper, smaller and more portable sensors makes large-scale, ubiquitous monitoring of air
quality possible. However, many low-cost sensors lack su�cient accuracy on data measurement, resulting
in bias on hardware-dependent sampling precision and low stability vulnerable to the dynamic changes of
environmental conditions. Thus, data calibration from both hardware and software aspects is essential to the
UbiAir box composed of low-cost sensors.

5.1 Hardware Calibration
Hardware calibration is performed to address the low precision issue and tune the sampling bias of low-cost
sensors before their deployment in real world. The two-phase learning [18] as a typical approach to calibrate
low-cost sensors is adopted and extended in UbiAir for urban air quality measurement, where the measurements
of low-cost sensors are trained to obtain corresponding model parameters, which are used to enable the calibration
measurement ĉ close to the reference measurement cr (true value).

To obtain a well trained model, the relationship between the measurements of low-cost sensors and the expected
calibration measurement is decomposed into a linear part and an non-linear part. The linear part is trained in
the �rst phase by multiple least square (MLS) method and the non-linear part is trained in the second phase by
random forest (RF) approach, respectively. During the two-phase learning process, over�tting may happen due
to the inclusion of inappropriate features before training the model. To avoid this, we use an automatic feature
selection algorithm based on the Akaike information criterion (AIC) [28] to select proper features during the
linear training process. The �nal calibration measurement can be expressed as Eq. 2.

ĉ = linearpart(c) + nonlinearpart(c) = �0 + �1c1 + �2c2 + �3c3 + · · · + �ucu + f (c) (2)

where �0, �1, · · · , �u are calibration coe�cients consisting of an intercept �0 and u di�erent kinds of features
selected by the automatic feature selection. A vector c is composed of raw sensor measurements.
In the �rst phase (linear part) of Eq. 2, the least squares regression model is used to determine the values of

�0, �1, · · · , �u . In the second phase (nonlinear part), we �rst calculate the residual error, that is the di�erence
between the calibration measurement of the �rst phase and the reference measurement. Then we use the
RF approach to learn the complex relationship between all available features and the residual error, which is
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Fig. 5. So�ware calibration.

represented by f (c) in Eq. 2. Through these operations, a well trained model for hardware calibration can be
derived via dynamically adjusting the calibration measurement and approaching the reference measurement.

5.2 So�ware Calibration
The air quality data cannot be always directly collected at the expected sampling positions (grid points) during
data collection process, due to geographical constraints, or crowd workers having no willingness to reach these
positions. We divide these expected grid points without direct measurements into emission source points and
non-emission source points. The emission source point refers to position where certain air pollutants are released,
such as industrial factories. The non-emissions source point does not generate pollution but may be impacted by
the dispersed air pollutants emitted from other places. The software calibration is proposed to approximate the
measurement of air quality data at these speci�c grid points where the sharing bikes have a high probability to
pass around with certain distance along their trajectories.

Here, we introduce a prior knowledge that most environmental signals (such as gases, particles, and biological
substances) follow a molecular di�usion process. That is, the amplitude of the signal is smoothly attenuated
from source to tail, which has the same property as the Gaussian distribution. This characteristic can be used to
determine whether the position is the source of emissions. In general, if there is no emission source at a grid
point, the concentration of sampled air pollutants near the grid point does not change much. Otherwise, the
concentration of sampled air pollutants near the emission source gradually decreases as the distance from the
source increases. In our software calibration, for the grid point with emission source, we estimate its air quality
status with a series of data sampled at di�erent positions around it by Gaussian averaging, where the sampling
position closer to the emission source has a higher weight. For the grid point with non-emission source, data
sampled at di�erent positions around it are not much di�erent, so we estimate its air quality status by arithmetic
averaging.
As shown in Figure 5, we determine a sampling circle centered at a speci�c grid point without direct mea-

surement. When the sharing bike carrying a UbiAir box with pre-tuned sampling frequency enters the circle, a
series of data sampled at di�erent positions along the biking trajectory in this circle can be used to estimate the
concentration of air pollutants at the speci�c grid point statistically. We set the sampling position closest to the
grid point as S0. As for a sharing bike, from its entering point to its leaving point of the sampling circle, its UbiAir
box run data sampling at stable interval according to the pre-tuned sampling frequency, resulting in a series of
sampling positions. We evenly selected a number of sampling positions before and after S0, labeled as S�4 to S�1,
and S1 to S4, respectively. For the 9 sampling positions, we obtain 9 sampling data correspondingly as a data set
S = (s�4, s�3, · · · , s0, · · · , s3, s4). Based on the data set, the Gaussian averaging for emission source point XESP
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and the arithmetic averaging for non-emission source point XNESP are operated as follows, respectively:

XESP =

Õ
i
(Gi ⇤ si )Õ
i
Gi

, XNESP =

Õ
i
si

|S | (3)

where Gi is a Gaussian function which could be described as Gi =
1

2�� 2 e
� i2

2� 2 . � 2 is a constant parameter which
can be set according to the practical requirements. si is the sampling data from the data set S obtained within the
sampling circle. |S | represents the number of sampling data in the data set S .

6 DATA ANALYSIS
After above data calibration operations, UbiAir can get su�cient sampling data from the desired grid points,
which have been well calibrated to be ready for data analysis on the �ne-grained air quality data reconstruction,
and the calculation of information gain at grid point. We illustrate the key approaches in this section.

6.1 Data Reconstruction Using BCS
Given all the pollutant data collected at the grid points of our monitoring region, these values can be aggre-
gated into an n by 1 vector Xr . Xr represents the instant pollutant distribution in this region. The goal of air
quality monitoring is to recover Xr with a limited number of measurements by the sensors of UbiAir box. The
reconstruction of the pollutant data Xr is then solving a linear regression problem as:

Ym⇥1 = �Xr + en = �m⇥nwn⇥1 + en (4)

where Ym⇥1 is anm by 1 vector (m ⌧ n) that stands for the sensor measurements, � = �B is the projection
matrix, B is a �xed Basis matrix, � is the sampling matrix,w is the sparse weights to be estimated, and en are the
zero-mean Gaussian distributed noises in the measurements. The measurement/sampling matrix � represents
the positions of red envelopes. Each row in the sampling matrix � is exactly a unit vector with only one non-zero
element in it. In this way, �Xr is anm by 1 vector composed of the collected values of the sensors at the red
envelope positions.
It is reasonable to assume that in our grid partitioning most environmental data are sparse under Gaussian

Kernel basis B. Compressive sensing provides us a method for estimating sparse solutions to underdetermined
linear regression [2, 3]. Its algorithm reconstructs the environmental data as X = Bw . The Gaussian basis matrix
is de�ned as: B = [� (Xr1)� (Xr2) · · ·� (Xrn)]T , where � (Xr i ) = [K (Xr i ,Xr1) · · ·K (Xr i ,Xrn)] and K

�
Xr i ,Xr j

�
is the prede�ned Gaussian Kernel function. We have K

�
Xr i ,Xr j

�
= exp

n
��1

�
Xr i1 � Xr j1

�2 � �2
�
Xr i2 � Xr j2

�2o,
where �1 and �2 are hyper-parameters of the kernel function, and the coordinates of Xr i is (Xr i1,Xr i2).

Speci�cally, Bayesian compressive sensing (BCS) [15] is used as an inference model in UbiAir to estimate the
sparse vectorwn⇥1 in Eq. 4, in which Bayesian models are applied to maximize the posterior probability ofwn⇥1.
Generally speaking, our BCS recovery algorithm combines hierarchical sparseness priors forwn⇥1 and en with
relevance vector machine (RVM) based BCS inversion [36] to estimatewn⇥1. Given Ym⇥1 and �m⇥n , we estimate
� and � 2

0 that are the hyper-parameters in Gaussian priors forwn⇥1 and en as described in [15] by maximizing
P
�
w |y,� ,� 2

0
�
, and then the sparse vectorw can be determined. Moreover, our BCS recovery algorithm employs a

fast sparse Bayesian learning algorithm to improve the computational speed. The detailed processes in this fast
algorithm can be referred in [37].

6.2 Adaptive BCS
BCS inference model provides the posterior density function for wn⇥1 instead of a point estimate of w . This
property enables us to adaptively estimate the optimal next projection to be added into the measurement matrix,
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There are three phases in the adaptive BCS environmental monitoring model,
which are sampling, recovery and reconstruction. The three phases are detailed as
follows:

1. Sampling phase: We sample the environmental signal with the sampling/sensing
matrix, in which sensor deployment information is contained. An initial sensor
deployment consisted of few random sensor places is generated to start the work
flow shown in Fig. 1.

2. Recovery phase: We estimate the sparse vector w and its covariance matrix with the
BCS technique. Then we estimate the next sensor location with the method
described in this section and revise the sampling matrix. We run the sampling-
recovery loop until termination condition is met.

3. Reconstruction phase: The monitored signal can be reconstructed via a simple
matrix multiplication X = Bw.

In the adaptive BCS approach, the sensor deployment phase and sampling phase are
implemented simultaneously. This property of the adaptive BCS environmental mon-
itoring model may bring difficulties to practical engineering. Thus, we propose to train
the sensor locations with history data. This history data based adaptive BCS approach
will be discussed in Sect. 4.3.

Fig. 1. Work flow of the adaptive BCS

42 C. Wu et al.

Fig. 6. Work flow of the adaptive BCS.

which facilitates data sampling selectively at the most informative positions rather than randomly. Here we
propose an adaptive BCS approach in UbiAir to deploy red envelopes at the most informative positions to attract
bike-sharing users to collect data.

6.2.1 Selecting Projections Adaptively. The sparse weights vectorw is actually a multivariate Gaussian distri-
bution with the mean µ and covariance matrix � [17]. A projection matrix � can be designed to minimize the
di�erential entropy h (X ) = �

Ø
P (X ) log P (X )dX for the reconstructed data X = Bw [15]. To deploy a new red

envelope is equivalent to adding a new row on the projection matrix. If we add a new projection � on �, where
�T is a new row, and we want to minimize the h (X ), it has been proven in [15] that the goal is equivalent to
maximizing the �T�� as:

�T�� = �TCo�ariance (w)� � Variance (Y ) (5)
where the �T to be added into � represents the most informative measurement. �T�� is equivalent to a measure
of the“information gain” at grid point in our scenario.

Given the air quality monitoring problem shown in Eq. (4), the projection matrix � = �B is actually choosing
rows from basis matrix B and we aim to choose the optimal row from B one by one to build the � and minimize
�T�� . In this case, �T is a row in B. The measure of how informative �T is can be then described as follow:

nextscore (i) = �T�� = aTB�Ba = BTa�Ba (6)

where aT is a 1 by n unit vector in which the i-th element is one and BTa is the i-th row of the basis matrix B.
Accordingly, our UbiAir uses the measurements at the positions of deployed red envelopes as the feedbacks to

help guide the deployment of the next red envelope. Moreover, the adaptive BCS approach greedily takes the
current estimated variances as the criterion to optimizing red envelope deployments.
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6.2.2 The Computational Model. There are three phases in our environmental monitoring model, which are
sampling, recovery and reconstruction, as shown by the work �ow in Figure 6. The three phases are detailed as
follows:
1) Sampling phase: UbiAir samples the air quality data with the sampling matrix, in which red envelope deploy-

ment information is contained. An initial red envelope deployment consisted of few random red envelope
positions is generated to start the work �ow shown in Figure 6.

2) Recovery phase: UbiAir estimates the sparse vectorw and its covariance matrix with the BCS technique. Then
the system calculates the nextscores for all the rows in B that have not been in � so far, and revise the sampling
matrix by adding k rows to � that corresponds to the top k nextscore . The k rows indicate the next top k red
envelope positions. UbiAir runs the sampling recovery loop until termination condition is met.

3) Reconstruction phase: The air quality data in the monitoring region can be reconstructed via a simple matrix
multiplication X = Bw .
Note that in the adaptive BCS, the red envelope deployment phase and sampling phase are implemented

simultaneously. That is, the adaptive BCS algorithm uses the data that has been sampled to �nd k new red
envelope deployment positions. After obtaining these deployment positions, UbiAir incentivizes users to collect
new data at these positions until enough sampling data are obtained to reconstruct the �ne-grained results for
air quality monitoring using our BCS inference model.

7 PERFORMANCE EVALUATION
We have conducted comprehensive experiments to evaluate the proposed UbiAir system. First, we evaluate the
recovery accuracy of our system with the calibrated sampling data. Second, we evaluate the impact of three
external factors on system performance; that is grid cell’s density, sampling error and sampling time. Finally,
we evaluate the e�ectiveness of the data calibration method and red envelope deployment method used in our
system. In our experiments, the parameters �1 and �2 used in the BCS model are empirically set to 20, and the
initial number of sampling positions is set to 30.

7.1 Data Sampling and Recovery
The UbiAir box as the sampling device in our system can be con�gured with six types of sensors to collect six
di�erent air pollutants at maximum, namely PM2.5 sensor, CO2 sensor, PM5 sensor, PM10 sensor, temperature
sensor and humidity sensor. The price of UbiAir box is around 20 USD. We have built and customized the UbiAir
box that is easy to carry by the sharing bikes. These boxes can be charged either by a portable battery or the
embedded power system of electric bikes, as shown in Figure 7. Note that the data collected by our UbiAir box are
transmitted to participants’ mobile phones for caching during the biking trip and later uploading to the server, so
that the storage and communication costs in our UbiAir box can be reduced greatly to maintain at an acceptable
level for large-scale deployment as a sharing IoT device.

7.1.1 Participant Bootstrapping and Recruitment. We veri�ed our UbiAir system initially at our university, and
the initial mobile crowdsensing participants involved in our system are mainly students on campus. Figure 7 (d)
shows the map of experimental area, marked with the static monitoring stations and the grid. We started with
a small number of students by explaining the red envelope incentive to them, as described in Section 4.2, and
they would love to try the UbiAir application to obtain corresponding rewards. Later, we showed these initial
participants the performance di�erence between the �ne-grained monitoring by mobile crowdsensing and the
coarse-grained monitoring by traditional static stations. For example, Figure 7 (e) shows the concentration of
PM2.5 recovered by our UbiAir system and the concentration of PM2.5 measured by the nearest static monitoring
station over ten consecutive days from the same monitoring area, respectively. We observe there is a certain
performance deviation between the two methods, though their trend are basically the same. The measurements of
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Fig. 7. The demo of sharing bikes carrying UbiAir box to collect air pollutant data.

UbiAir obviously �uctuate more than the static station along with the time; it shows that our platform is reliable to
re�ect the micro changes in ambient air pollution. Considering the air quality data measured directly by the static
station can only use the data value collected at a �x position to represent the general air quality situation in its
vicinity, the air quality conditions far from the static station may deviate from the coarse-grained measurement by
the static station. On contrary, UbiAir system can use sampling data at grid points to reconstruct the distribution
of air pollution concentration in details, therefore presenting a �ne-grained air quality information.

After we showed these visual results to our initial participants, they agreed with the importance of micro-scale
and �ne-grained air quality monitoring, and keep using UbiAir as an ambient air quality alert. Also, these
participants spread the positive feedbacks of our UbiAir to their friends, and encourages them to share and
compare the rewards with each other. In addition, through the di�erential incentive schemes using red envelopes
to improve user experience during mobile crowdsensing, as described in Section 4.3, UbiAir system is able to
motivate users for participating and recruit su�cient crowd works to collect the expected sampling data at
speci�c grid points with timeliness guarantee, which will be uploaded to the backend server with their geotags
for data calibration and �ne-grained air quality recovery.

7.1.2 Evaluation Results. In this set of experiments, we recruited 36 crowd workers by our red envelope
incentive scheme to sample di�erent air pollutant data over an urban area that has been split as a grid map to be
monitored. The resolution of the grid map is 32 ⇥ 32, which contains 1024 grid cells and the side length of each
grid cell is around 30 meters. Figure 8 has presented both the sampling maps and reconstruction maps of four
di�erent air pollutants (CO2, PM2.5, PM5, and PM10). The sampling map shows the distribution of the sampling
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(a) CO2 Sampling Map (b) CO2 Reconstruction Map (c) PM2.5 Sampling Map (d) PM2.5 Reconstruction Map

(e) PM5 Sampling Map (f) PM5 Reconstruction Map (g) PM10 Sampling Map (h) PM10 Reconstruction Map

Fig. 8. Data sampling and recovery of di�erent air pollutants.

data collected from all the grid points over the measurement map. The reconstruction map shows the �ne-grained
results using adaptive BCS approach in the same monitoring area, where a small number of measurements (100
sampling data) from the sampling map at speci�c positions are selected as the input to the BCS model for data
reconstruction.
As we can see from all the �gures depicted by two dimensional (2D) heatmaps, the data reconstruction map

presents smoother color transition than the data sampling map, and the grid squares at the same position (i.e.,
the same row and the same column) present similar colors among these heatmaps. The areas with high pollutant
concentrations are marked with various red color and the deep red square indicates serious pollution level. This
shows that the data construction can present �ne-grained and stable results, because our adaptive BCS can select
sampling data at the most informative positions and our data calibration scheme can improve the quality of
sampling data for the BCS inference model. We calculate the reconstruction error with kXr�X k2

kX k2 , and the symbol
meanings have been de�ned in Section 6. Our results show that the data reconstruction errors of CO2, PM2.5,
PM5, and PM10 are 9.29%, 3.32%, 2.62% and 2.37%, respectively. These data reconstruction errors might change
according to their collection time and pollution concentration, but all with an averaging performance below 10%.
This further justi�es that the UbiAir system can obtain satisfactory recovery accuracy.

7.2 Impact of External Factors
The density of grid cells, the data sampling time and the data sampling error are three important external factors
that might in�uence the system performance. Here, we investigate these relevant issues using PM5 as the air
pollutant data to be collected and analyzed.

7.2.1 Density of Grid Cells. The recovery accuracy varies with the density of grid cells. Given the number
of sampling positions is constant, when the density of grid cells is low, the recovery is more accurate because
we get the information at most of these grid cells. Conversely, if the density of grid cells is high, the number of
sampling positions is comparatively sparse to provide enough information to recovery the air pollutant data
of the monitored area. The density of grid cells can be adjusted by the size of each grid cell. We choose a same
region and divide it into grid cells by two density strategies, with resolution in the grid map of 25 ⇥ 25 grid cells
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Fig. 9. The impact of external factors on reconstruction error.

and 32 ⇥ 32 grid cells, respectively. Then we recover PM5 as the target air pollutant data of the whole grid map
with the calibrated measurements of 100 sampling positions for the two di�erent densities.

The recovery accuracy for each case over ten consecutive days is shown in Figure 9 (a). We have observed
from the results that the recovery accuracy of grid cells with low density are higher than that of high density.
This con�rms our intuition. Furthermore, Figure 12 shows that when the density of grid cell is constant, there
are more sampling positions and the recovery e�ect is better. This also gives us some guidance on choosing a
reasonable density to achieve expected recovery accuracy during mobile crowdsensing. When increasing the
density of the grid cell, the number of sampling positions should be increased accordingly to ensure a certain
degree of recovery accuracy, although this will increase the complexity of computation of our system. How to
balance the complexity of the algorithm with the accuracy of recovery is a problem worth studying in the future.

7.2.2 Data Sampling Error. In this experiment, we have compared the average recovery accuracy of the
uncalibrated PM5 data with the calibrated PM5 data for ten consecutive days. The comparison results are shown
in Figure 9 (d). As can be seen from this �gure, when the data is not calibrated, the recovery result that employing
the group of 36 workers is worse than the recovery result with the group of 12 workers. This may not in line
with our intuition that the sampling time of 36 people should be less than that of 12 people, so the recovery
performance should be better. However, after data calibration, the opposite result occurs, and the result that
sampling with 36 workers is better than sampling with 12 workers on recovery accuracy is what we expect by
introducing data calibration into our system.
Considering that the number of sensors used by 36 workers is more than the number of sensors used by 12

workers, the sampling error caused by redundant sensors with various hardware precision is an external factor
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that has a large impact on recovery accuracy. In addition, the impact of uncalibrated data from low-cost sensors
usually has a greater in�uence on the recovery accuracy than the sampling time. Therefore the uncalibrated
data from 36 workers result in lower recovery accuracy than that from 12 workers. After we re�ne the two
sampling data sets with both hardware calibration and software calibration, the recovery accuracy of the 12
workers becomes worse than that of the 36 workers. The improved recovery accuracy veri�es the e�ectiveness
of our data calibration algorithms. It also con�rms the impact of sampling time on recovery accuracy, that is, the
shorter the sampling time is, the higher the recovery accuracy can be achieved.

7.2.3 Data Sampling Time. It is worth setting the time/delay/latency of the measurement for data sampling,
and this can be analyzed on how fast air quality changes, and consequently, how soon each measurement
expires. Since the changing trend of PM2.5 measurements is more volatile than PM5, we depict the concentration
values of the calibrated PM2.5 data collected per minute at the same location with our UbiAir sensor box on
three di�erent days from 4.30 pm to 6.30 pm, as shown in Figure 9 (c). In general, the changing trend of PM2.5
concentration is di�erent. According to Figure 9 (c), the PM2.5 concentration is decreasing on Thursday, increasing
on Saturday, and relatively stable on Sunday, along with the time evolving. In addition, the variation range of
PM2.5 concentration is di�erent over the three days as well, with the smallest range on Sunday (nearly 9 µ�/m3),
and the largest range on Thursday (nearly 27 µ�/m3). Therefore, from our observation, it is di�cult to predict the
changing trend and changing rate of PM2.5 concentration, due to the fact that it is a�ected by many factors, such
as weather, factory emissions, and vehicle exhaust emissions. Consequently, during UbiAir sampling period, we
need to constantly monitor the changes of air pollutants at the same location, and the pollutant value collected
by the UbiAir box sensor is uploaded to the back-end server for hardware calibration. Then, the new value will
be compared with the previous value sampled at the same location and stored in the back-end database. Once
the di�erence is too large to exceed the prede�ned threshold which could be customized during data sampling,
then the previous measurement data expires and will be replaced by the new value. Furthermore, if there is no
new pollutant value collected for a location since recording its previous data sampling over a comparably long
time, the database needs to set all the previous measurement data over the grid map expired and re-generate
red-envelopes for the new round of grid points to run data sampling again.
After ensuring the valid duration of data measurement, we would like to investigate how the system perfor-

mance varies when the sample time changes. It is obvious that the sampling time (duration) to �nish all the data
collection tasks required by our BCS model for data construction changes with di�erent number of workers
involved during mobile crowdsensing in the same monitoring area. The higher the number of workers, the shorter
the data sampling time. We �rst choose two groups of workers in our experiments, one group with 12 workers
and the other group with 36 workers. Then we let these workers sample the air pollutant data at the same time
of the day and in the same area; the area is divided into 32 ⇥ 32 grid cells, as described above. After that, 100
sampling positions are selected by the adaptive BCS method. The air pollutant data of the entire monitoring area
are reconstructed with the calibrated measurements at the 100 sampling positions.
We compared the PM5 data reconstruction errors of the two groups in Figure 9 (d); it shows the e�ects of

di�erent sampling times on the recovery accuracy. To evaluate the general performance, we use the sampling
data collected over ten consecutive days, and these sampling data have been calibrated before running data
reconstruction. We observe that the reconstruction error of the sampling data �nished in a shorter time with
averaging duration around 10 minutes (36 workers involved) is smaller than the data sampling over a longer
period of time with averaging duration around 20 minutes (12 workers involved). In other words, the shorter
the sampling time, the higher the recovery accuracy is. These results in Figure 9 (d) re�ect the fact that the
concentration of air pollutants (such as PM5) in positions close by is usually correlated, and this correlation will
become weaker as the duration of air pollutant data collection increases. That is, even if the distance between
the sampling positions is not too far, as long as the sampling time takes too long, the correlation of the data
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Fig. 10. The comparison of di�erent calibration methods for PM5 estimation.

collected by the workers is not strong. This characteristic will cause interference to our inference model, making
its data reconstruction error larger. Therefore, we need to reduce the time cost in the data sampling phase. The
most e�ective way to reduce the sampling time is to increase the number of workers in the mobile crowdsensing.
This further veri�es the necessity of designing a feasible incentive scheme such as our red envelop strategies
in data sampling process. The red envelope incentive we propose can reduce the sampling time to a certain
extent, because its rewarding strategies can di�erentiate the information gain and the di�culty of data collection
at sampling positions. Furthermore, our UbiAir can detect red envelope deployment positions inaccessible or
geographically di�cult to reach, and new red envelopes can be generated by the adaptive BCS at new locations
where the workers are possible to collect the corresponding data and �nish their data collection tasks in short
time.

7.3 E�ectiveness of Data Calibration
The low-cost sensors in the UbiAir box may have bias on hardware-dependent sampling precision during data
measurement, so we have proposed the two-phase learning based hardware calibration method in Section 5.1.
In addition, the Gaussian processing based software calibration is proposed to obtain the data on unreachable
locations in Section 5.2. Both calibrations methods are used to provide reliable and accurate data measurements
for sustainable air quality monitoring in our UbiAir system, and their performance in comparison with other
methods are evaluated as follows.

7.3.1 Hardware Calibration. To evaluate the performance of our two-phase learning based hardware calibra-
tion, we compare it with two state-of-the-art methods, namely MLS and Stepwise [9] used in recent works for
the calibration of air quality measurements as introduced in Section 5. A real-world PM5 data set collected by
our UbiAir system from one sunny work day, one rainy work day, and one sunny weekend day respectively
in the same monitoring area is used to present comprehensive conditions for the calibration evaluation. In
our experiment, we use one high-precision sensor as the reference node to provide ground truth PM5 value
and additional three environmental features (i.e., CO2, temperature, and humidity) to train the model. We also
deploy three UbiAir boxes with low-cost sensors to collect raw PM5 measurements along the same trajectories
as the high-precision sensor and run calibration after the measurements. Totally, our data set contains 4873
measurements from both the high-precision sensor and low-cost sensor, where 70% of the data are used for
training and the rest data are used for testing.
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Compared with the MLS and Stepwise methods that usually present poor performance for the nonlinear part,
our two-phase learning based hardware calibration can not only �t the linear part well in the �rst phase, but
also provide robust performance for the nonlinear part due to its adoption of the random forest in the second
phase. Figure 10 (a) shows the comparison results in terms of the relative error of PM5 estimation. The raw
measurements are depicted to present a baseline. We observe that our two-phase learning based calibration
achieves the best performance, while MLS and Stepwise methods perform similarly. Speci�cally, according to
the CDF (Cumulative Distribution Function), 76% of the calibrated measurements have relative error less than
10% using our two-phase learning method in UbiAir, while the percentages for MLS method is 56% and the
percentages for Stepwise method is 63%. In addition, we calculate the root mean square error (RMSE) for these
methods, and derive that the two-phase learning still yields the best result with a value of 7.906. Comparatively,
the RMSE is 10.746 for MLS, 11.280 for Stepwise, and 16.537 for the raw measurement, respectively, which further
con�rms the superiority of our two-phase learning method on e�ective hardware calibration.

7.3.2 So�ware Calibration. The software calibration is proposed to approximate the measurement of air
quality data at speci�c grid points where the sharing bikes have passed around with certain distance, based on
their data collection at a series of sampling positions along the biking trajectories. To evaluate its performance, we
choose a grid point with known air quality as the reference point, and then use four di�erent trajectories passing
around the grid point to estimate its air quality separately within the sampling circle, where nine sampling points
on each trajectory are used to run the estimation once so that we have four estimation results for the reference
point. The distance from the four trajectories to the reference point are di�erent. That is, the smaller the ID of
the trajectory, the closer the trajectory is to the reference point. We repeat this evaluation process to estimate
the air quality for 342 grid points, and obtain the average performance as shown in Figure 10 (b). Our UbiAir
estimation method using Gaussian processing of the nine sampling data from each trajectory is compared with
another three methods, namely Mean (averaging the nine sampling data), Random (randomly selection from the
nine sampling data), and The Nearest (sampling data closest to the reference point).

Figure 10 (b) presents the average performance of the absolute errors of PM5 estimations from the 342 reference
point. As we can see from the results, when the distance from the reference point increases, the absolute error
increases, indicating that it is not accurate to sample on a trajectory that is too far away such as the trajectory 4.
That is why we set the sampling circle to exclude the trajectory that is distant from the emission source point,
and only the sampling data from the trajectory inside the circle can be used to estimate the air quality. In addition,
when the trajectory is close to the reference point such as the trajectory 1, the absolute error of the nearest
method is the smallest as 4.0 µ�/m3. This is because when the sampled position is close enough to the reference
point, the value of this position will be almost equal to the reference value, and introducing the other 8 sampling
data may cause estimation deviation from the reference value. For this case, the performance of our UbiAir is
second only to the nearest method but still good. Furthermore, as the distance increases, UbiAir method stars to
perform better than the nearest method. Though the average method also achieves good performance, when
the trajectory is closer to the reference point, it is not as good as UbiAir. Overall, we conclude that our software
calibration method in UbiAir is robust enough to various conditions and can present better performance than
other methods.

7.4 Adaptive BCS based Red Envelope Deployment
In order to evaluate the e�ciency of our proposed adaptive BCS algorithm on data recovery, we compare the
adaptive BCS with other three methods on selecting sampling positions and deploying red envelopes, namely
random deployment, open-loop entropy and open-loop mutual information. The random deployment method
selects the data sampling positions randomly; this process is easy to understand. The open-loop entropy and
open-loop mutual information methods are speci�cally introduced as follows.
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Fig. 11. The comparison of di�erent deployments on data reconstruction map.

7.4.1 Open-Loop Entropy Approach. “Entropy” is a widely used measure of the uncertainty in the information
theory and many other areas. In this open-loop entropy approach, the entropies of all possible red envelope
positions are calculated and we deploy the next red envelope to the position with the highest entropy. The
entropy in this approach is described in [17]. If we denote � as one of all possible red envelope positions and A as
the set of the positions that have been sensed, as the distance between � and A increases so does the entropy
value. Thus, far apart positions tend to give high entropies.

7.4.2 Open-Loop Mutual Information Approach. The open-loop entropy criterion tends to deploy the red
envelope along the boundary of the monitored region, resulting in a sensor carried by the sharing bike on the
boundary cannot detect the data out of the region and may waste sensed information. This problem was noticed
and can be solved by that the mutual information (MI ) criterion [30]. Based on this approach, we could maximize
the mutual information criterion to estimate the optimal red envelope positions.

7.4.3 Evaluation Results. In our evaluations for these algorithms, the comparison experiments are performed
with PM5 as the pollutant data over a grid map with 32 ⇥ 32 grid cells. The BCS inference model as explained
in Section 6.1 is used in all the methods for data reconstruction, but their red envelop deployment strategies
are di�erent. Figure 11 (a) shows the distribution map of the sampling data collected at all the grid points. The
performance on data reconstruction with the random red envelope deployment method, the open-loop entropy
method, the open-loop mutual information method and the adaptive BCS method are presented in Figure 11 (b),
(c), (d) and (e), respectively, for comparison. As can be seen from Figure 11, with the same number of selected
measurements (100 calibrated data), the reconstructed data over the grid map with adaptive BCS approach is
closer to the original sampling data collected from all the grid points than the other three deployment methods.
The reconstruction error is 4.12% for the random red envelope deployment, 4.00% for the open-loop entropy,
3.16% for the open-loop mutual information, and 2.35% for the adaptive BCS, respectively. The performance of our
approach is signi�cantly lower than that of the other three approaches because the adaptive BCS enables us to
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Fig. 12. The comparison of di�erent deployments on data reconstruction error.

adaptively estimate the optimal next projection to be added into the measurement matrix, which makes it possible
to sample data selectively at the most informative positions rather than others. Therefore, our evaluation veri�es
that the adaptive BCS algorithm can e�ectively improve the data recovery accuracy of air quality monitoring.
Furthermore, we studied the relationship between the number of model’s input data and the reconstruction

error, by comparing adaptive BCS with the other three methods. It can be clearly seen from the Figure 12 that
no matter which red envelope deployment algorithm is used, the reconstruction error decreases as the number
of the input data increases. But after the number of the input data reaches a certain level, the reconstruction
error does not decrease signi�cantly. In addition, the e�ects of di�erent algorithms vary on reconstruction errors.
Speci�cally, the curve of the random deployment algorithm is highly �uctuated along with the increased number
of input data, because the input data selected by the algorithm each time is random (i.e., the position of the red
envelope deployment is random). The randomness makes the performance of BCS inference model unstable
on red envelope deployment. Compared with the randomly deployment, the open-loop entropy and open-loop
mutual information (MI) algorithms will calculate the information gain of the red envelope deployment position
and carefully select the position that brings better bene�ts to the BCS inference model, so as to reduce the
reconstruction error of the BCS inference model. The selection of the red envelope positions by the Open-loop
MI or the Open-loop Entropy greatly improves the performance of the BCS inference model. Also, we can see
that the Open-loop Entropy is better than Open-loop MI on reducing the reconstruction error, because the
Open-MI tends to deploy red envelope along boundaries very well. This will result in very little data collected
at the non-boundaries, a�ecting the performance of the BCS inference model. In addition, we can observe that
the reconstruction error of our adaptive BCS converges to almost the same value as the reconstruction error
of the Open-loop Entropy, so the adaptive BCS can also bring similar performance enhancements to the BCS
inference model as the Open-loop Entropy. Meanwhile, the complexity of the adaptive BCS is lower than that of
the Open-loop Entropy, therefore it tends to be the best algorithm for red envelope deployment among these
methods.

8 USER FEEDBACKS AND FUTURE WORKS
We have held discussions with some of the test users of UbiAir system. Speci�cally, we �rst inquire what they
learn form this work that they didn’t know before. Their answers can be categorized as four aspects: 1) During
the data collection process, they are aware that the ambient air quality might change frequently due to the
spatial-temporal complexity, which was not well-known to some people used to trust the publicly-available
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macro-scale and coarse-grained air quality data. So they agree with the importance of micro-scale and �ne-grained
air quality monitoring, and would love to see applications such as our UbiAir. 2) Most of our test users didnt
believe the low-cost sensors can accurately estimate the concentration of di�erent air pollutants, but are �nally
convinced by their experience with the UbiAir box that �ne-grained air quality monitoring can be achieved
through the coupling e�ects between sensor calibration and data reconstruction. 3) The implementation and
deployment of UbiAir system has inspired our users that the sharing economy and the deployment of IoT can be
naturally coexisted to support many sustainable applications, due to their common characteristics, e.g. low-cost,
large-scale and replaceable. 4) Surprisingly, many users tell us that since the red envelope incentive of our UbiAir
application encourages them to share and compare the rewards with each other, their awareness of environmental
protection has been built or strengthen during this process as well. Therefore, they are happy to see interesting
and practical incentive schemes with positive impacts to keep human in the loop.

In addition, we further discuss with these users about what we can do to further improve the performance and
user experience of our UbiAir system. The feedbacks are collected and summarized as follows. We also give our
solutions as future works.

• In practical operation of data collection, the generated sampling positions with red envelopes might be
located in areas that cannot be reached or easily accessed by sharing bikes (e.g. indoor area, caves and
tunnels, lakes and rivers). To guarantee the overall performance of the UbiAir system, we could design
more advanced estimation method based on the proposed software calibration [43]. Considering current
software calibration is inherently an o�ine operation run on the UbiAir server side and need the client side
to geotap the data with geographical information such as GPS. For the cases without positioning signals, we
could extend the estimation to be an online operation with self-calibration based on the real-time sampling
data along the biking trajectory [19]. In addition, other shared IoT platforms could be deployed and used
to collect data for those areas. For example, we could deploy a small number of public sensors �xed on
these areas as an open testbed, customize the UbiAir box on existing shared electric scooters to get more
convenient access, and use �ying drones attached with sensors for near-surface monitoring.

• The data collected by our UbiAir box are transmitted to mobile phone and cached during the biking trip.
After the trip �nished, the UbiAir mobile application can upload the cached data to the server. During
this process, the battery power of mobile phone is consumed during the biking trip. Also, some users are
reluctant to spend their data plan to upload data [42]. To solve these issues, we could compensate users
by crediting their usage of mobile phone based on the mileage of their biking trip participating in the
data collection. The users also could choose to upload the cached data to the server only when WiFi is
detected and connected nearby [41]. In addition, in order to obtain timely air pollutant data for �ne-grained
monitoring, UbiAir users could be encouraged by rewarding if they use data plan to immediately upload
collected data through cellular tra�c.

• User privacy is a critical problem that we need to pay attention to during the usage of UbiAir system [38].
Some users may not want us to get their private information, such as biking trip details and identity
information. To solve these issues, we could use the blockchain technology to block sensitive information
on user side and only keep the air pollutant data information [33]. For example, the users could use their
own key pairs to upload data without their identity information, and smart contract could be designed
to ensure the user’s privacy will not be leaked during rewarding process. In addition, the collected data
could also be encrypted and traded over blockchain platform as a sustainable business model to run UbiAir,
where the inherently distributed features of blockchain could be used to di�erentiate the sensitive levels of
various data and separate the storage and transaction of these data.
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9 CONCLUSIONS
UbiAir has been designed and implemented as a mobile crowdsensing system for �ne-grained air quality
monitoring. The system can greatly reduce the number of sensors and resource consumption by utilizing the
mobility of sharing bikes attached with customized IoT sensing devices. It only needs to sample a small number
of air pollutant data by cyclists as the crowd workers, and the air pollutant data of the entire monitoring area
can be recovered with high spatial resolution. UbiAir exploits grid-based region partitioning method, a red
envelope incentive method, and a data calibration method to improve the recovery accuracy. Furthermore, an
adaptive BCS model is proposed to select grid positions for red envelope deployment during data sampling so
that the �nal reconstruction error of air quality data can be greatly reduced. Therefore, UbiAir is a light-weight,
low-cost, accurate and scalable system, presenting promising performance and usability on combining mobile
crowdsensing with sharing economy for �ne-grained air quality monitoring.
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