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ABSTRACT

These years much effort has been devoted to improving the ac-
curacy or relevance of the recommendation system. Diversity, a
crucial factor which measures the dissimilarity among the recom-
mended items, received rather little scrutiny. Directly related to user
satisfaction, diversification is usually taken into consideration after
generating the candidate items. However, this decoupled design of
diversification and candidate generation makes the whole system
suboptimal. In this paper, we aim at pushing the diversification to
the upstream candidate generation stage, with the help of Graph
Convolutional Networks (GCN). Although GCN based recommen-
dation algorithms have shown great power in modeling complex
collaborative filtering effect to improve the accuracy of recommen-
dation, how diversity changes is ignored in those advanced works.
We propose to perform rebalanced neighbor discovering, category-
boosted negative sampling and adversarial learning on top of GCN.
We conduct extensive experiments on real-world datasets. Experi-
mental results verify the effectiveness of our proposed method on
diversification. Further ablation studies validate that our proposed
method significantly alleviates the accuracy-diversity dilemma.
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1 INTRODUCTION

With the rapid development of the WEB, an intelligent algorithm
called Recommendation System was proposed to overcome the
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information overflow problem [46]. The success of recommenda-
tion system has been verified in a number of scenarios including
e-commerce [27, 38], online news [57, 58] and multimedia contents
[9]. With the advancement of recommendation algorithms, much
effort has been devoted to improving the accuracy of the recom-
mended items. In other words, the accuracy serves as the dominant
target or even the only target in most of the recent research. Chasing
for higher accuracy, more attributes are incorporated [25, 28, 37, 44],
and more complicated models are proposed [13, 24, 40, 65].

However, an accurate recommendation is not necessarily a satis-
factory one [66]. When users access the web, finding the exactly
accurate contents is just one of their many needs. For example,
users spend much time in browsing news-feed applications for
discovering something novel [32]. From the angle of user satis-
faction, relevance is never the only rule of thumb. Many factors
other than relevance, also influence how users perceive the recom-
mennded contents, such as freshness, diversity, explainability and
so on. Among those metrics affecting user satisfaction, diversity
directly determines user engagement in recommendation scenar-
ios [56]. Specifically, not only the similarity between the user and
the recommended items matters, but the dissimilarity among the
recommended items reflects the recommendation effect as well.
Without the diversity of the recommended items, users are likely to
be exposed of repetitive items. That is to say, although the informa-
tion overload problem is alleviated, another problem of information
redundancy is brought in by recommendation system [56].

In order to guarantee user satisfaction, three directions of ap-
proaches, namely post-processing, Determinantal Point Process
(DPP) and Learning To Rank (LTR), have been proposed to improve
the diversity of the recommended results [60]. In the early stage of
diversified recommendation, a re-rank or post-processing module
is appended after the generation of recommended candidates. The
order of the items is determined by heuristics to balance between
relevance and diversity. A bunch of solutions in this research line
were proposed [3, 6-8, 41, 48, 69]. Independent with candidate gen-
eration, the re-rank strategy is decoupled from the optimization
of the recommendation model. Thus the diversification signal is
not reflected in upstream relevance matching models, which in-
creases the risk of the final recommendation being suboptimal.
Recently, another direction of research takes advantage of DPP
[11, 19, 21, 22, 55, 56] to replace the heuristics in post-processing
based mothods, but the diversification process of DPP is still con-
ducted after the generation stage. To address this problem, a series
of methods based on LTR [12, 36] were proposed which target on
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directly generating an ordered list of items rather than a candi-
date set. However, it is tricky to construct an appropriate listwise
dataset for such methods. To summarize, existing solutions based
on post-processing or DPP aim to improve the diversity leaving the
matching process untouched. However, the overall performance
of a recommendation system greatly depends on the representa-
tions of users and items learned in the matching process. Thus it
remains uncertain whether the decoupled design diversifies the
recommendation with acceptable loss in accuracy. In terms of LTR
based methods, practical issues exist because of the difficulty in
collecting feasible datasets.

Since the interactions between users and items can be naturally
represented as a heterogeneous graph (a bipartite of users and
items), a number of graph based recommendation algorithms were
proposed which either utilize rather simple random walk [16, 30]
or more complicated methods like GCN [52-54, 61, 63]. In terms
of the user-item bipartite graph, higher order neighbors of a user
tend to cover more diverse items, because these neighbors contain
not only the given user’s interacted items, but also other similar
users’ preferred items. Therefore, it is advantageous to perform
diversification on a graph, since the high order connectivity makes
diverse items more reachable. Furthermore, performing diversifica-
tion in GCN also alleviates the aforementioned problem of existing
works which separate diversification from the upstream relevance
matching model. However, without specific designs for diversity,
those high order connections might not be automatically utilized to
find items which are not similar to each other. For example, the rec-
ommendation system can easily learn to provide items of the most
interacted categories because they take up the majority of the edges
on the graph. Nevertheless, those GCN based algorithms mainly
focus on improving the accuracy, while ignoring how diversity is
impacted by the much more complicated GCN model.

In our work, we focus on category diversification in recommen-
dation with the help of GCN. We develop rebalanced neighbor
discovering for GCN to make items of disadvantaged categories
more reachable. We make adjustments to the negative sampling
process to boost the probability of sampling similar but negative
items. Furthermore, we employ adversarial learning to distill the im-
plicit category preference in the learned embedding space. Through
these special designs, we push the diversification process upstream
into the matching stage and propose an end-to-end model called
Diversified recommendation with Graph Convolutional Networks
(DGCN). The main contributions of this paper are three-fold:

e We analyze the effect of existing diversification algorithms and
propose a novel method to combine diversification with matching.
The integrity of our method overcomes the problem of decoupled
structure in existing works.

o Aiming to generate diverse and relevant items, we carefully de-
sign rebalanced neighbor discovering, category-boosted negative
sampling and adversarial learning for GCN. An end-to-end model
is developed for diversified recommendation.

e We utilize real-world datasets to evaluate the effectiveness of
our proposed method. Experimental results demonstrate that
diversity of recommendation is validly improved by our method.
Furthermore, we conduct ablation studies to confirm the impor-
tance of each proposed component.
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The remainder of the paper is organized as follows. First, we
introduce a few preliminaries in Section 2. Then we elaborate our
design of DGCN in Section 3 and conduct experiments in Section 4.
After reviewing related work in Section 5, we make some discus-
sions and conclude the paper in Section 6.

2 PRELIMINARIES
2.1 Diversity

As a matter of fact, diversity of recommendation can be either intra-
user level or inter-user level [10]. Intra-user level diversity measures
the dissimilarity of the recommended items of an individual user,
while inter-user level focuses on the provided contents for differ-
ent users. In this paper, we target on improving intra-user level
diversi’[yl as most of the related research, and leave inter-user level
diverisity (also known as decentration or long-tail recommendation)
for future work.

Diversity is often mixed up with serendipity or novelty. For
example, suppose 70% of the purchased items for a user are elec-
tronic devices, 20% are clothes and the other 10% are drinks. Then
a recommended list of 10 items including five or more electronic
devices, one or two clothes and one or two drinks is a much more
diverse result than recommending ten electronic devices. Moreover,
even though the user did not purchase any books in her interaction
history, she might still have interests in reading, and serendipity
stands for the capability of the recommendation system to provide
items appealing to users but not realized by themselves (books for
the user in this case).

In this paper, we focus on category diversification [69]. When
users browse the recommended items, it is not user-friendly to
provide a large amount of items belonging to the same category.
We utilize three widely adopted metrics for diversity in our experi-
ments:

e coverage: this metric measures the number of recommended
categories. Coverage reflects the holistic and overall diversity of
a recommendation system.

e entropy: this one focuses on the distribution on different cat-
egories. Using the previous example, the entropy value of four
electronic devices, three clothes and three drinks is higher than
recommending seven electronic devices and three drinks.

e gini index: this index is popularly adopted in economics to
measure the wealth or income inequality, and it was further
adapted and introduced to recommendation by [2]. The number
of items belonging to a specific category can be explained as the
wealth of that category.

Note that in terms of coverage and entropy, higher value means
stronger diversity, while for gini index it is the opposite (lower is
better).

2.2 Recommendation Pipeline

As illustrated in Figure 1, a typical pipeline for a recommender
system is composed of three stages: (1) matching (candidate genera-
tion), (2) scoring, and (3) re-ranking. Several hundreds of items are
selected in matching stage from a large item pool. Then, usually
complicated deep learning models are adopted in scoring stage to

Lin this paper, diversity refers to intra-user level diversity for simplicity
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Figure 1: A typical recommendation pipeline.
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Figure 2: The accuracy-diversity dilemma.

estimate interaction probability and the top dozens of items are
selected. In re-ranking, selected items are re-arranged to satisfy
additional constraints.

With respect to diversity, it is widely adopted to impose heuris-
tic rules in the re-ranking stage to diversify recommended items.
Different re-ranking methods were proposed to balance between
relevance and diversity [3, 7, 8, 56]. However, diversification in
re-ranking is independent with upstream matching and scoring
models, which makes the whole system suboptimal. Furthermore,
with matching models unaware of diversification signals, the re-
trieved items from matching can be already redundant, which limits
diversity from the source. In this paper, we aim at pushing diversi-
fication upwards. Specifically, we take diversity into consideration
during matching, and propose an end-to-end method to provide
diverse recommendation.

2.3 Accuracy-Diversity dilemma

Generally, when considering diversity, it is not easy to get rid of
the so called accuracy-diversity dilemma [66], especially in offline
evaluations. That is, higher accuracy often means losing diversity
to some extent. We compared several recommendation algorithms
(random, matrix factorization [35] and neural graph collaborative
filtering [54]), as well as a bunch of diversification algorithms (MMR
[8], DUM [3], PMF+a+p and DPP [20]), utilizing a real world e-
commerce dataset collected from Taobao?, which is the largest e-
commerce platform in China. In order to verify the tradeoff between
the two metrics, we plot the results of these methods in Figure 2
with accuracy and diversity as the two axes.

From Figure 2 we can observe that, with the recommendation al-
gorithm getting more complicated, though more relevant products
are provided, less categories are presented to customers. After in-
troducing these diversification strategies, the diversity indeed gets
promoted, while the accuracy is not guaranteed. Although there

2www.taobao.com
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exist certain hyper-parameters in these diversification methods to
balance the bias, later experiments show that it is rather difficult to
find a satisfactory point.

3 METHOD

3.1 Overview

As introduced previously, we incorporate diversification into the
matching process with GCN. We aim at providing items correlated
with users’ interests while dissimilar with each other (diversity).
Figure 3 illustrates the holistic structure of our proposed DGCN.

In real-world recommendation scenarios, the interactive behav-
iors between users and items are always the strongest signals with
respect to user preference modeling. Thus we first construct a
graph to represent the interactions, which consists of two types of
nodes (users and items), and edges between them stand for those
behaviors. It is worthwhile to state that edges are undirected in
our constructed bipartite graph. We propose rebalanced neighbor
discovering to solve the problem of inconsistency between different
categories. By applying GCN on top of the the sampled sub-graph,
node features propagate back and forth between users and items,
which accurately simulates the collaborative filtering effect. With
the goal of making diverse categories more accessible, we make
adjustments to the negative sampling process, boosting the proba-
bility of selecting similar items. Furthermore, we add an adversarial
task of item category classification to strengthen the diversity.

Our proposed method is featured with the following three spe-
cial designs targeting on diversification: (1) Rebalanced Neighbor
Discovering, (2) Category-Boosted Negative Sampling and (3) Ad-
versarial Learning.

e Rebalanced Neighbor Discovering To discover more diverse
items on the graph, we design a neighbor sampler based on
the distribution of the neighbors. We increase the probability of
selecting items of disadvantaged categories, and limit the effect
of those dominant categories. With the guidance of the neighbor
sampler, items of multiple categories are more reachable.

o Category-Boosted Negative Sampling Unlike random nega-
tive sampling, we propose to choose those similar but negative
items with a boosted higher probability. By distorting the distri-
bution of negative samples, representations for users and items
are learned in a finer level, where the recommendation system
can determinate the user preferences among similar items.

o Adversarial Learning We leverage the technique of adversarial
learning, playing a min-max game on item category classifica-
tion. With an extra adversarial task, we distill users’ category
preferences from item preferences, which makes the learned
embeddings category-free. And consequently, neighbors in this
embedding space will cover more categories.

In the following sections, we first introduce the architecture
of the adopted GCN, and then we elaborate on the three special
designs for diversity one after another.

3.2 GCN

Our GCN is composed of an embedding layer and a stack of graph
convolutional layers, where each graph convolutional layer con-
tains a broadcast operation and an aggregation operation.
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Figure 3: Overview of our proposed DGCN.
3.2.1 Embedding Layer. Inspired by representations for words and probability:
phrases [39], the embedding technique has been successfully em- pui =< hK, th >, (3)

ployed in recommendation system [24]. In our work, the inputs
of GCN are simply ID features for users and items. Following the
widely adopted embedding strategy, we transform the one-hot ID
feature to a dense vector, thus we have the following embedding
look-up table:

E= [eul’-- "7eiN]’ (l)

where M is the number of users, and N is the numberof items. We
represent each node with a separate embedding e € R4, in which d
is the embedding size. It is worthwhile to note that the embeddings
are learnable parameters and further fed into GCN for message
passing on the graph. Thus the embedding can be regarded as the
node feature at layer 0, i.e. h(l), which will be introduced later.

"euMyei1a~

3.2.2  Graph Convolutional Layer. We perform embedding broad-
cast and aggregation in the graph convolutional layer. In other
words, within a graph convolutional layer, each node broadcasts
its current embedding to all its neighbors and aggregates all the
messages sent to it to update its embedding. In terms of neighbor
aggregation, we utilize average pooling combined with a feature
transform matrix and a nonlinear activation function. Formally, we
denote the feature vector of node v at the k-th layer as hf,, and the
update rules are illustrated as follows:

k
hAG G

hE = tanh(Wknk

=MEAN(h;‘-1, Vje N(v)), @
GG)

where N(v) represents the set for sampled neighbors of node v. As
investigated in [59], adding self loops is of crucial importance in
graph convolutional networks, since it compresses the spectrum of
the normalized Laplacian. Therefore, we also insert node v itself
into N (v). In this way, node embeddings propagate on the graph
in a layer-wise manner.

3.2.3 Interaction Modeling. With respect to interaction modeling
in the matching stage, heavy computation such as the inference
computing of neural networks is impractical due to the large item
pool and the strict latency requirements. For embedding based
matching model, inner product and L2 distance are widely used.
Furthermore, at online serving time, these simple rather effective
interaction modeling methods can be greatly accelerated with the
help of nearest neighbor search algorithms. Therefore, we use the
representations of users and items at the last graph convolutional
layer and take inner product of them to estimate the interaction

where K is the depth of the graph neural networks. During evalua-
tions, top items with respect to p,,, ; are selected as recommended
items for a given user u.

3.24 Prevent Overfitting. To prevent our model from overfitting,
we perform dropout [49] on the feature level. To be specific, we
randomly drop the intermediate node embeddings between consec-
utive graph convolutional layers with probability p, where p is a
hyper-parameter in our method.

With great capability in learning representations for graph struc-
tures, GCN has been shown effective to capture the collaborative
effect on the user-item bipartite graph, which improves the accu-
racy significantly. However, utilizing the high order connectivity
for diversification has received little scrutiny. We then introduce
our special designs for diversity in the proposed DGCN.

3.3 Rebalanced Neighbor Discovering

In the matching stage, usually the recommendation system retrieves
items from a large corpus which is of million-scale or even billion-
scale [63]. Feeding the whole graph consisting of millions of nodes
to a GCN suffers from highly inefficient computation and heavy
resources usage. Moreover, it is difficult to implement mini-batch
training on the whole graph. Thus a neighbor sampler is often
employed to sample a sub-graph from the original large one for effi-
cient training [26]. With the help of the neighbor sampler, inductive
learning on the graph is accomplished and it has been proved scal-
able to billion-scale graphs [63]. Specifically, the neighbor sampler
generates a Node Flow, which is a sub-graph with multiple layers,
where edges only exist in consecutive layers.

Figure 4 serves as a toy example for neighbor discovering. Specif-
ically, during the training process, a mini-batch consists of a certain
number (i.e. batchsize) of users and items, and these user nodes
and item nodes in a single batch form the set of seed nodes. The
neighbor sampler randomly selects their neighbors and extracts the
sub-graph. For GCN deeper than one layer, this neighbor discover-
ing process will repeat recursively, which means the sampled neigh-
bors become seed nodes for the next hop. It is clearly illustrated in
Figure 4 that edges exist in consecutive layers and connected layers
form a block. Graph convolutional operations are performed block
by block, where each graph convolutional layer corresponds with
one block.

However, the above neighbor discovering strategy leaves aside
the problem of diversity. In real-world recommendation scenarios,
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(b) sampled node flow

block 2 |

(a) user-item bipartite

Figure 4: Node Flow generated by the neighbor sampler for
a 2-layer GCN. In this example, node A and node B are the
initial seed nodes. For each node, the neighbor sampler ran-
domly samples two neighbors. The first GCN layer performs
convolution in block 1, and all the activated neighbors in
block 1 form the seed nodes for sampling block 2, which cor-
responds to the second GCN layer.

items of distinct categories are supposed to be regarded differently
because users perceive them differently. In other words, there exist
dominant categories and disadvantaged categories according to
users’ interaction history, where users engage more with items
of dominant categories and spend much less time in disadvan-
taged categories. A diversified recommendation system is capable
of providing items from not only dominant categories but also
disadvantaged categories. From the view of the graph, dominant
categories of a user become the mainstream in the message flow
on the graph, because they take up most of the in-edges to the
user node. Thus, without distinguishing between dominant cate-
gories and disadvantaged categories in neighbor discovering, the
learned user embeddings are likely to be too close to items embed-
dings of dominant categories, which makes it rather difficult to
retrieve items from other categories, and thus limits the diveristy
of recommendation.

In our work, we make adjustments to the neighbor discovering
process, with special emphasis on category diversification. Specif-
ically, we boost the probability of sampling items from disadvan-
taged categories and restrict the number of selected items from
dominant categories. The rebalanced neighbor discovering algo-
rithm is illustrated in Algorithm 1 and 2. Due to space limit, we omit
the descriptions for GetNeighbors and SampleWithProbability
in Algorithm 1, which are simple look-up operations in the adja-
cency list and random choice with a given distribution. For a user
node, we first conduct histogram of item categories to find dom-
inant ones and disadvantaged ones. By taking the inverse of the
histogram, we boost the probability of sampling disadvantaged cat-
egories and lower the priority for dominant categories. A rebalance
weight « is introduced to control the bias. For an item node, we
equally treat all the user nodes linked to it and sample its neighbors
uniformly. Through rebalanced neighbor discovering, items of more
categories are selected, which in turn makes the user embeddings
absorb more diverse item embeddings according to the logic of
GCN. Therefore, items of superior diversity are recommended by
retrieving items from the embedding space with the learned user
embedding as the query vector.

WWW ’21, April 19-23, 2021, Ljubljana, Slovenia

Algorithm 1 Rebalanced Neighbor Discovering

INPUT: Graph G(V, E); GCN depth K; seed nodes set S; number
of neighbors to sample n; item-category table C; rebalance weight
a

OUTPUT: Node Flow £

1: L « EmptyList()

2: for k « 1toK do

3: £k — EmptySet()

4 for all node v € S do

5 N(v) < GetNeighbors(G, v)
6: if v is a user node then
7
8
9

p « HistogramAndRebalance(N (v), C, @)

else if v is an item node then

: p < UniformDistribution()
10: end if

11: LX — SampleWithProbability(N (v), n, p)
12: L* « Union(Lk, £F)

13: end for

14: append set £¥ to £

15: end for

16: return £

Algorithm 2 HistogramAndRebalance

INPUT: User node u’s neighbors N(u); item-category table C;
rebalance weight a
OUTPUT: Sample probability over node v’s neighbors p

1: H « ComputeCategoryHistogram(N (v), C)
2: for all node i € N(u) do
3 p(i) < 1/H(C()
s pli) — pli)®
5. end for

6: p < Normalize(p)
7: return p

3.4 Category-Boosted Negative Sampling

One of the main challenges for matching is the so called implicit
feedback [45]. That is, only positive samples are accessible to the
recommendation system while negative samples are inferred from
the uninteracted items. This implicit protocol means negative sam-
ples are not necessarily the ones users truly dislike. In practice,
negative instances are generated by randomly sampling from those
uninteracted items. When training recommendation models, each
positive sample is paired with a certain number (i.e. negative sample
rate) of negative samples. By optimizing with pointwise [29] or
pairwise [45] loss function, positive item embeddings are learned
to be close to user embeddings, while negative item embeddings
are pushed off to the opposite direction.

Several works were proposed to improve the design of the neg-
ative sampler [14, 15], aiming at promoting the recommendation
accuracy. Nevertheless, few works investigate the potential of nega-
tive sampling in diversification. In our work, we propose to choose
those similar but negative items, which means items of the same
category with the positive sample. By sampling negative items from
the positive category, the recommendation model is optimized to
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Algorithm 3 Category-Boosted Negative Sampling

INPUT: Positive samples P; item set I; negative sample rate T;
item-category table C; similar sampling weight f
OUTPUT: Training samples Q

1: QP

2: for all positive sample (u, i, True) € P do
3: N1 \ i

4 Se—1Icup\i

5 fort « 1toT do

6: r < RandomFloat(0, 1)
7: if r < f then

8 iy « Sample(S)

9 else

10: iy < Sample(N)
1t end if

12 Q «— Q + (u, iy, False)
13: end for

14: end for
15: return Q

distinguish users’ preference within a category. And those negative
items in the same category are less likely to be retrieved, which
increases the possibility of recommending items from other more
diverse categories. The negative sampling strategy is explained in
Algorithm 3.

A hyper-parameter f is introduced to manage the proportion of
samples from similar items. With more similar but negative items in
training samples, the representations of user and items are learned
in a finer level, which empowers the recommendation system to
capture users’ interests from more diverse categories. As illustrated
in Figure 5, items from positive categories are sampled more as
negative instances, which increases the possibility for positive items
from negative categories to be recommended and thus more diverse
candidates are generated.

3.5 Adversarial Learning

With respect to model training, most recommendation models are
trained with a single target concerning accuracy. Though the multi-
task framework has been applied in recommendation for multi-
behavior modeling [18], relevance of the results still served as the
core goal and diversity of recommendation was ignored. With only
one optimization object of accuracy, users’ category preference is
implicitly learned from users’ item preference. Taking the same ex-
ample utilized in Section 2, the recommendation system might learn
the user’s interests on the whole category (i.e. electronic devices),
while fails to distinguish between the user’s specific preference on
different electronic devices.

Without distillation of the implicit category preference captured
in the recommendation model, more items of the positive categories
will be recommended, which limits the chance for more diverse
items to be exposed to users. Inspired by the progress made in
generative models [23, 42], we propose to add an extra adversarial
task of item category classification to achieve the goal of distillation
and further enhance the diversity. Specifically, we augment the
recommendation model with a classifier based on the learned item

positive items

items of positive categories

items of negative categories

Figure 5: An illustration of the sample space. Negative in-
stances are sampled from outside positive items. We propose
category-boosted negative sampling which boosts the prob-
ability of sampling from items of positive categories (the
light green area).

embeddings. We hope the classifier to predict the category of the
item from the item embedding as accurate as possible, and expect
the recommendation model to generate item embeddings which
best fool the classifier.

In our experiments, we adopt a fully connected layer as the clas-
sifier and use cross entropy loss for optimization. With respect to
recommendation, we use log loss [29] which is shown effective in
experiments. Take a single training sample (u, i, y, c) as an exam-
ple, where y is either 0 or 1 represents the user-item interaction
groundtruth and c is item i’s corresponding category. The loss
function for recommendation is formulated as follows:

§=<hX nK >

4
Ly(u,i,y) =—[y-logo(@) + (1 —y) - logo(1 - 9], @

where h{f and hf( are the representations learned by GCN (at the
last layer). The loss function for item category classification is:

¢=WhX
Le(i ) = = &lc] +log () exp(clj]) ®
J

Under the setting of adversarial learning, the object for the item
category classifier is to minimize L., and the object for the recom-
mendation model is to minimize L, — yL., where y is introduced
to balance the main task and the additional adversarial task.

With respect to the classifier, the classification loss is minimized
by finding clusters of item embeddings. While for the recommen-
dation model, the classification loss is reversed which pushes item
embeddings of the same category far from each other and not to
form clusters. Meanwhile, the main task of minimizing the recom-
mendation loss forces the learned embedding space to retain user
preference semantics.

In terms of implementation, adversarial learning can be elegantly
accomplished by inserting a Gradient Reversal Layer (GRL) in the
middle of the back propagation process, which was first introduced
in Domain Adaptation Networks (DAN) [17]. We adopt this strat-
egy in our work. Using the same notations of the previous section,
we expect the classifier to minimize L., while force the GCN to
maximize L.. As illustrated in Figure 6, we insert a GRL in between
of the learned item embeddings from GCN and the fully connected
classifier. During the back propagation process, the gradients for
minimizing the classification loss flow backward through the clas-
sifier, and after the GRL, the gradients will be reversed, which
further flow to GCN. That is, we perform gradient descent on the
parameters of the classifier, while perform gradient ascent on the
parameters of GCN, with respect to L. For L,, gradient descent
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Figure 6: Implementaion of adversarial learning. Gradients
are shown in boxes.

is applied to GCN. Through this subtle design, we successfully
implement the adversarial learning task.

With the help of adversarial learning, the learned representations
of users and items to great extent reserve the item-level interests
while squeeze out the category-level interests. Therefore, positive
items from negative categories are drawn near to users, and negative
items from positive categories are pushed away. Consequently,
neighbors in the embedding space will cover items of more diverse
categories.

4 EXPERIMENTS

In this section, we conduct experiments to answer the following
research questions:

e RQ1: How does the proposed method perform compared with
other diversified recommendation algorithms?

e RQ2: What is the effect of each proposed component in DGCN?

e RQ3: How to perform trade-off between accuracy and diversity
using DGCN?

4.1 Experimental Settings

4.1.1 Datasets and Evaluation Protocols. To evaluate the perfor-
mance of our proposed method, we utilize three real-world datasets:
Taobao, Beibei and Million Song Dataset (MSD). The three datasets
vary in scale and density. Basic statistics of the datasets are sum-
marized in Table 1.

e Taobao: This dataset [67, 68] contains the behaviors of users
on taobao.com including click, purchase, adding item to shop-
ping cart and item favoring during November 25 to December
03, 2017, which was provided by Alimama®. We regard all the
aforementioned behaviors as positive samples and randomly se-
lect about 10% users with uniform probability. We adopt 10-core
settings which means only retaining users and items with at least
10 interactions.

o Beibei: This dataset [18] is collected from one of the largest
e-commerce platforms* in China which records the purchase
behaviors during July 1 to July 31, 2017. We also utilize the 10-
core settings to guarantee the data quality.

e MSD: This dataset [5] contains the listening history for 1M users,
and is has been utilized to evaluate diversified music recommen-
dation algorithms [11]. We extract a subset of the dataset and
use 10-core settings to filter out inactive entities.

3https://tianchi.aliyun.com/dataset/dataDetail?datald=649
“https://www.beibei.com
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Table 1: Statistics of the datasets.

dataset users items categories interactions

Taobao 82633 136710 3108 4230631
Beibei 19140 17196 110 265110
MSD 65269 40109 15 2423262

For each dataset, we first rank the records according to times-
tamps, then we select the early 60% as training set. We divide the last
40% into two halves. The first 20% used for validation and hyper-
parameter search, and we reserve the last 20% for performance
comparison. To measure the top-K recommendation performance
of our proposed method in consideration of both accuracy and
diversity, we utilize a bunch of metrics including recall, hit ratio,
coverage, entropy and gini index, while the first two metrics are
about accuracy and the last three concerns diversity.

4.1.2  Baselines. To verify the effectiveness of our proposed DGCN,
we compare the performance with several diversification methods
as follows:

e MMR [8]: Maximal Marginal Relevance (MMR) is a pioneer work
for diversification in search engines and is further adapted to
recommendation systems [69]. This method re-ranks the contents
based on greedy algorithms to minimize redundancy.

e DUM [3]: This method is also a greedy approach for diversifica-
tion which aims at maximizing the utility of the items subject to
the increase in their diversity.

o PMF+a+p [48]: This work formalizes the problem as a combina-
tion of three aspects: the relevance of the items, the coverage of
the user’s interest, and the diversity between them. Two hyper-
parameters (« and f) are introduced to balance the three parts.

e DPP [11]: Sourced from mathematics and quantum physics, De-
terminantal Point Process (DPP) is recently leveraged in machine
learning research, serving as an parametric model to provide
a diverse subset of items from a larger pool of retrieved items.
Several methods [11, 19, 21, 22, 55] were proposed to accelerate
the computation of DPP.

4.1.3  Parameter Settings. We adopt log loss [29] for all methods
and fix the embedding size as 32. The AMSGrad [43] variant of
Adam [33] is utilized for optimization. The negative sample rate is
set to 4. We train each model until convergence and utilize the early
stopping technique to avoid overfitting. We perform grid search
to find the best hyper-parameters. Results are averaged over all
the users. We implement our proposed method with PyTorch®, and
codes are available at https://github.com/tsinghua-fib-lab/DGCN.

4.1.4  Evaluations. Since our work directly uses inner product to
estimate the interaction probability, maximum inner product search
can be easily integrated into the system, and we use Faiss [31] to
generate candidates for evaluation which greatly reduces the time
cost. During evaluation, we construct a search index (IndexFlatIP®
for efficient nearest neighbor search based on inner product) in

Shttps://pytorch.org
®https://github.com/facebookresearch/faiss
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Table 2: Overall Performance on Taobao dataset and Beibei dataset. (TopK = 300)
dataset Taobao Beibei
metrics recall hitratio coverage entropy giniindex | recall hitratio coverage entropy giniindex
MMR 0.0544  0.0453 74.5460 3.4931 0.5825 0.1097  0.1036 77.016 4.0184 0.4373
DUM 0.0495  0.0497 126.6621  4.1051 0.4587 0.0746  0.0724 84.3044 4.0389 0.4599
PMF + a + | 0.0473  0.0435 125.5600  4.3725 0.4648 0.1092  0.1054 73.4675 3.7528 0.5127
DPP 0.0633  0.0485 79.1154 3.3904 0.6096 0.0751  0.0745 69.3416 3.7545 0.5078
DGCN 0.0776  0.0783 84.6685 3.5779 0.5583 0.1212  0.1278 71.8546 3.7149 0.5279
Faiss using the learned item embeddings, and feed the user embed- 0.060 ‘
dings to the search index as query vectors. Items of the maximum —-S-DPP
inner products with the query vector will be retrieved, and recom- —*~DGCN
mendation metrics are further calculated based on the retrieved 0.055 |
items. Moreover,evaluations are conducted in batch style and on Fry
GPUs for further acceleration. With the help of efficient nearest g 0.050 - ,
neighbor search, we successfully reduce the time cost for evaluation §
to a few seconds.
0.045 - b
4.2 Overall Performance (RQ1)
We compare our proposed method with several baseline algorithms O'O4$_35 1_,‘;0 1_45 1_50 1_;-,5 1.60
introduced previously. For each baseline method, we tuned it to diversity

be on par with our proposed method in one aspect (accuracy or
diversity), and compared the effects of the other aspect, on account
of the aforementioned accuracy-diversity tradeoff. Since we incor-
porate diversification into the matching stage, we use relatively
high values of topK (300) to measure the performance of matching.
Results on the Taobao and Beibei datasets are illustrated in Table 2.
From the results, we have several observations:

o The accuracy-diversity tradeoff exists widely. In our exper-
iments, three of the baseline methods (MMR, DUM, PMF+a+f)
are based on greedy algorithms, and the other one (DPP) is based
on a probability model. Comparing across different methods,
generally more diverse methods provide less relevant items. For
example, PMF+a+f achieves much more diverse results than
DPP on Taobao dataset with over 50% relative improvement in
terms of coverage, but the accuracy of PMF+a+f is much inferior
to DPP. Similarly, DUM achieves the most diverse results on both
datasets, however, the relevance of the recommended items by
DUM is greatly damaged by diversification.

o It is more difficult to balance the two aspects for greedy
algorithms. Although there exist certain hyper-parameters in
greedy algorithms to balance the weight for accuracy and diver-
sity, the slope or exchange rate of the two aspects tends to be
rather large. In other words, greedy algorithms turn out to be
more aggressive on diversification which makes the accuracy
unacceptable. DUM is such an example which usually generates
highly diverse results with relatively poor relevance.

e Our proposed DGCN achieves a better overall performance.

Generally, DGCN generates more diverse items with reasonable
relevance. Compared with DPP, our method attains a better per-
formance with respect to both diversity and accuracy on two
datasets. In comparison with MMR, our method outperforms on
both diversity and accuracy on Taobao dataset, and performs
roughly the same with respect to diversity on Beibei dataset, but

Figure 7: Accuracy-diversity curve of DPP and DGCN on
MSD dataset.

with better relevance. Though DUM provides extremely diverse
items on two datasets, the relevance of the recommended con-
tents is not qualified enough compared with our method. As for
PMF+a+f, our method attains much better accuracy on both
datasets, and achieves comparable diversity on Beibei dataset.

To illustrate that our proposed DGCN attains a better overall
performance considering both accuracy and diversity, we further
conduct experiments on the benchmark MSD dataset, and plot the
whole accuracy-diversity curve against the state-of-the-art DPP
approach [11]. We tune the tradeoff parameters of DPP and DGCN
to obtain recommended items with different accuracy and diver-
sity. Figure 7 demonstrates the results on the MSD dataset. We can
observe that the accuracy-diversity curve of the proposed DGCN
is closer to the top-right corner than DPP. In other words, con-
ditioned on equal accuracy, DGCN achieves better diversity than
DPP. Meanwhile, with comparable diversity, the proposed DGCN
can provide much more accurate recommendation. Therefore, the
proposed DGCN achieves better overall performance compared
with DPP.

4.3 Study on DGCN (RQ2)

In this section, we conduct ablation studies on each of our pro-
posed components in DGCN. We compare the performance of our
proposed method with and without the special design on rebal-
anced neighbor discovering, category-boosted negative sampling
and adversarial learning. Table 3 illustrates the results of GCN with-
out diversificaiton, GCN with only one diversification component
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Table 3: Ablation study on Taobao dataset.

method ‘ recall coverage
DPP | 0.0633  79.1154
GCN 0.1013  61.9111
Rebalance Neighbor Sampling | 0.0939  71.2528
Boost Negative Sampling 0.0954  76.7391
Adversarial Learning 0.0846  79.0722
DGCN 0.0776  84.6685

and GCN with all the three components (DGCN). We also com-
pare the results with DPP, which is widely adopted for diversified
recommendation.

From the results we can observe that each component alone
contributes to improve diversity, and combining the three special
designs achieves the most diverse recommendation. Specifically, a
single GCN without diversification significantly outperforms DPP
with respect to accuracy, however, it sacrifices the diversity which
can lead to suboptimal user satisfaction. After we incorporate rebal-
anced neighbor discovering or category-boosted negative sampling,
the diversity of our model gets promoted effectively and the model
still maintains a relatively high accuracy. Moreover, combining
adversarial learning with GCN achieves comparable diversity with
DPP, and the recommended items are much more relevant to users’
interests. According to the results in Table 3, our proposed DGCN
provides the most diverse contents. In summary, without losing
the superior capability of GCN, our proposed DGCN is featured
of three special designs for diversification on top of GCN, which
greatly improves the diversity and also guarantees the relevance of
the recommended items.

We employ adversarial learning to distill users’ category pref-
erences from item preferences, aiming to make the learned repre-
sentations to some extent category-free, which in turn increases
the probability of recommending items from more diverse cate-
gories. We add an adversarial task of item category classification
to fulfill this job. The object of the classifier is to maximize the
accuracy of predicting items’ categories according the learned item
embeddings, while the recommendation model aims to fool the
classifier as much as possible. In our experiments, we accomplish
the task of adversarial training by inserting a Gradient Reversal
Layer (GRL). We compare the performance of our model with and
without inserting the GRL. Results are shown in Table 4. Without
adversarial learning, the learned item embeddings form clusters
where items of the same category are near in the embedding space,
which is verified by the high category classification accuracy. Most
importantly, the diversity of recommendation is rather poor, lead-
ing to the problem of information redundancy. After inserting the
GRL to perform adversarial learning on category classification, we
distill the category information in the embedding space. Thus it be-
comes much difficult to predict the category from item embeddings.
According to the results, the accuracy of category classification
drops drastically from 25% to 6%, which verifies the effect of the
distillation process. Most importantly, with the help of adversarial
learning, the recommendation diversity improves significantly with
a rather acceptable accuracy.
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Table 4: Ablation study of adversarial learning on Taobao
dataset.

method ‘ RSacc RS diversity Classifier acc
GCN w/o GRL | 0.1041 55.6591 25%
GCN w/ GRL | 0.0739 80.4894 6%

4.4 Trade-off between Accuracy and Diversity

(RQ3)
In the proposed framework, we introduce two hyper-parameters,
a and f, to control the strength of rebalanced neighbor discover-
ing and category-boosted negative sampling. We now investigate
whether these two hyper-parameters can be used to perform trade-
off between accuracy and diversity.

44.1 Rebalanced Neighbor Discovering. We conduct experi-
ments to study the effect of rebalanced neighbor discovering. Re-
sults of different values of « are illustrated in Figure 8. In neighbor
discovering, we boost the probability of sampling from those disad-
vantaged categories, while limit the chances of those dominant cat-
egories. With larger «, we impose stronger boost on disadvantaged
categories and perform more forceful rebalance across categories.
As shown in Figure 8, the diversity of recommendation increases
constantly with the growth of a. Moreover, the accuracy also gets
promoted at relatively lower & and finally drops when o becomes
to large, which contradicts the previously introduced accuracy-
diversity tradeoff. This phenomenon of attaining improvements in
both accuracy and diversity has also been observed in related diver-
sification literatures [11, 56], which validates that diversification
serves as an effective strategy to enhance user satisfaction.

44.2 Category-Boosted Negative Sampling. Experiments are
conducted over different values of f. In our work, we make adjust-
ments to the negative sampling process, where we aim to find
thosesimilar but negative items. Specifically, we sample from pos-
itive categories with probability § which is much larger than the
probability by random sampling. By selecting more negative items
from positive categories, the learned representations capture users’
interest across categories and items of more diverse categories are
recommended. Figure 9 illustrates the performance on different
P with respect to accuracy and diversity. Similar to the previous
experiments on neighbor discovering, the diversity of recommen-
dation improves as we increase the probability of sampling from
similar items. In addition, the accuracy is rather stable on small §
and decreases when it gets too large. Through category-boosted
negative sampling, our proposed DGCN provides more diverse
items and guarantees the relevance of the recommended contents.
In summary, we conduct extensive experiments to evaluate our
proposed DGCN with special emphasis on diversification. Over-
all performance on real-world datasets confirms the effectiveness
of our method on improving diversity. Ablation studies of DGCN
verify the function of each component. Further experiments demon-
strate that trade-off between accuracy and diversity can be smoothly
performed by tuning the introduced hyper-parameters.
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5 RELATED WORK

Diversified Recommendation Research on diversification in rec-
ommendation was first introduced by Ziegler et al. [69], which
leveraged a greedy algorithm [8] from the field of information
retrieval. After that, a series of post processing methods were pro-
posed to diversify the recommendation results. Qin et al. [41] tack-
led the problem by performing a linear combination of the rating
function and a entropy regularizer. Ashkan et al. [3] replaced the
weighted sum object in greedy solutions with multiplication, thus
removed a tuned parameter for balancing utility and diversity. Sha
et al. [48] developed a framework combining relevance, coverage
of user interests and diversity. Two hyper-parameters, ¢ and f,
were introduced to balance the object. Other than reranking based
methods, a series of solutions called learning to rank (LTR) were
proposed to generate the recommended list directly. Cheng et al.
[12] developed a learning-based diversification method by cou-
pling the recommendation model with a structural SVM [51]. Li
et al.[36] proposed a ranking model and utilized a score function
with the form of the product of the estimated interaction proba-
bility and category preference. Factorized category features were
leveraged for optimization. Recently, Determinantal Point Process
(DPP) was introduced to recommendation to generate diverse items.
Several algorithms [11, 19, 21, 22, 55, 56] were proposed to reduce
the heavy computation of DPP with the help of EM algorithms,
greedy algorithms or tensor factorization. Unlike existing works
that mainly perform diversification after matching, our proposed
method combines diversification and matching with an end-to-end
GCN model.

GCN based Recommendation In recent years, Graph Convolu-
tional Networks (GCN) has made great progress in network rep-
resentation learning tasks including node classification and link
prediction [26, 34, 62]. Several works [4, 52-54, 63, 64] have taken
advantage of GCN to learn more robust latent representations for
users and items in recommendation systems. With more advanced
capacity in learning graph representations, GCN has also been
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shown effective and efficient to be deployed in web-scale recom-
mendation applications [63]. By applying GCN [34] on the user-
item interaction bipartite graph, Berg et al. [4] transformed the
matrix completion task in recommendation to link prediction on
the graph. Ying et al. [63] further extended the inductive learning
idea introduced in [26] to practical recommendation scenario, and
proposed a scalable algorithm called PinSage. Both offline and on-
line evaluations confirm the effectiveness of GCN in modeling user
preference. Wang et al. [54] developed a framework which per-
forms embedding propagation on the user-item integration graph
based on GCN to model the high-order connectivity. Experimental
results illustrated that the accuracy of recommendation has been
successfully improved by utilizing GCN to perform representation
learning. However, how diversity is impacted by the complicated
GCN model remains uncertain. In our work, we focus on diversified
recommendation with the help of GCN.

6 CONCLUSION

In this work, we investigated existing diversification solutions and
pointed out the challenge that the decoupled design of diversifica-
tion and matching could lead to suboptimal performance. Based on
our analysis, we aimed to push the diversification process upwards
into the matching stage, and proposed an end-to-end diversified
recommendation model based on GCN with several special designs
on diversity. We conducted extensive experiments on real-world
datasets. Experimental results validated the effectiveness of our
proposed method on improving diversity. Further ablation studies
confirmed that our proposed DGCN provides diverse and relevant
contents to meet users’ needs.

Although the accuracy-diversity tradeoff still exists in our pro-
posed method, it has been shown that improving the diversity does
not necessarily lead to inferior accuracy [11, 50, 56]. Especially
in online scenarios, promoting the diversity of the recommended
contents yields substantial increases in user engagement [56]. The
conflict of diversity and accuracy to some extent results from the
differences between offline evaluation and online evaluation, as well
as the causality of the system [47], which we believe are quite inter-
esting and important research questions. One step further, distinct
users might regard diversity differently, and the diversification pro-
cess might also be personalized (i.e. personalized personalization)
[1], which is also a promising future direction.
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