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ABSTRACT
Daily activity data that records individuals’ various types of ac-

tivities in daily life are widely used in many applications such as

activity scheduling, activity recommendation, and policymaking.

Though with high value, its accessibility is limited due to high

collection costs and potential privacy issues. Therefore, simulat-

ing human activities to produce massive high-quality data is of

great importance to benefit practical applications. However, ex-

isting solutions, including rule-based methods with simplified as-

sumptions of human behavior and data-driven methods directly
fitting real-world data, both cannot fully qualify for matching re-

ality. In this paper, motivated by the classic psychological theory,

Maslow’s need theory describing human motivation, we propose

a knowledge-driven simulation framework based on generative

adversarial imitation learning. To enhance the fidelity and utility

of the generated activity data, our core idea is to model the evo-

lution of human needs as the underlying mechanism that drives

activity generation in the simulation model. Specifically, this is

achieved by a hierarchical model structure that disentangles dif-

ferent need levels, and the use of neural stochastic differential

equations that successfully captures piecewise-continuous char-

acteristics of need dynamics. Extensive experiments demonstrate

that our framework outperforms the state-of-the-art baselines in

terms of data fidelity and utility. Besides, we present the insight-

ful interpretability of the need modeling. The code is available at

https://github.com/tsinghua-fib-lab/Activity-Simulation-SAND.

CCS CONCEPTS
• Computing methodologies → Modeling methodologies;
Modeling and simulation; • Computing methodologiFes→
Model development and analysis;

KEYWORDS
Daily activities, Simulation, Human needs, GAIL

ACM Reference Format:
Yuan Yuan, Huandong Wang, Jingtao Ding

∗
, Depeng Jin, and Yong Li. 2023.

Learning to Simulate Daily Activities via Modeling Dynamic Human Needs.

In Proceedings of the ACM Web Conference 2023 (WWW ’23), May 1–5, 2023,

∗
Jingtao Ding is the corresponding author (dingjt15@tsinghua.org.cn).

Austin, TX, USA. ACM, New York, NY, USA, 11 pages. https://doi.org/10.

1145/3543507.3583276

. . .
Timestamp

Activity

Go 
shopping

Go to the
concertHome Work at

the company

Figure 1: An example of activity sequences, where each entry
contains information of the timestamp and activity type.

1 INTRODUCTION
Web applications such as Yelp

1
andMeituan

2
have greatly improved

the quality of people’s daily life, and at the same time make it possi-

ble to record fine-grained activity data. For example, as illustrated

in Figure 1, daily life of an individual is usually logged as an activity

sequence, i.e., 𝑆 = [𝑎1, 𝑎2, ..., 𝑎𝑛], where each entry 𝑎𝑖 = (𝑡𝑖 , 𝑘𝑖 )
contains a timestamp 𝑡𝑖 ∈ R+ and a discrete activity type 𝑘𝑖 ∈ C.
Mining activity sequences is valuable for both research and industry

in modeling user behaviors and supporting a wide range of applica-

tions, like activity planning and recommendation [4, 21, 48]. Despite

its high value, only a limited scale of such data is open-sourced for

third-party researchers due to privacy-related restrictions on data

sharing, which largely hinders the development of downstream

applications [23, 24]. Therefore, it is crucial to generate artificial

data of human activities by simulation, which can reduce reliance

on expensive real data and avoid privacy concerns. In this paper,

we study the problem of personalized user activity simulation that

models individuals’ decision process of what activity to perform at

what time, and then generates artificial personalized activity data

correspondingly. In order to be publicly shared and used as real-

world data, the generated data is expected to be dissociated from

real data, i.e., without privacy concerns, and meanwhile capable of

retaining data fidelity and utility.

1
https://www.yelp.com/

2
https://about.meituan.com/

https://github.com/tsinghua-fib-lab/Activity-Simulation-SAND
https://doi.org/10.1145/3543507.3583276
https://doi.org/10.1145/3543507.3583276
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Figure 2: Interval distributions of different activities. Differ-
ent activities inherently have distinct temporal dynamics.

Existing solutions to this problem can be classified into two cate-

gories, i.e., rule-based methods and data-driven methods. Rule-based
methods that simulate for activity scheduling [2, 6, 10, 26] have a ba-

sic assumption that activities can be described by predefined rules

derived from activity theories such as utility maximization [43].

However, real-world sequences exhibit complex transition patterns

between activities with time dependence and high-order correla-

tions, which are difficult to describe with prior simple rules [11].

Therefore, only relying on simplified assumptions makes rule-based
methods less qualified for modeling real-world activity behaviors.

Instead, data-driven methods tackle this problem by directly fit-

ting real-world data. A series of sequential generative methods

have been developed, from classical probability models, such as

Markov models [40], to deep learning models, such as Recurrent

Neural Networks (RNNs) [13] and Generative Adversarial Imitation

Learning (GAIL) [15]. Nevertheless, the above models cannot fully

capture the temporal dynamics underlying human daily activities

due to the unrealistic inductive bias of being time-invariant [41] or

discrete updates only at observed time points [28]. Comparatively,

daily activities are always irregularly sampled and longer time in-

tervals introduce larger uncertainty between observations, which

requires a deeper understanding and fine-grained characterization.

More importantly, there exist complex and various patterns in

terms of temporal dynamics of different activities, which are hard to

discriminate from each other when mixed together. For example, as

Figure 2 illustrates, time intervals of going to the “Concert” exhibit

totally distinct patterns compared with going to the “Workplace”

that is highly similar to “All”. Although individuals lead generally

regular daily routines, some activities still occur occasionally but

cannot be ignored. However, with the overall distribution exhibiting

long-tailed characteristics, the coarse-grained learning paradigm

of state-of-the-art data-driven methods can be easily biased by the

uneven distribution and fail to adequately capture unique patterns

of each activity. Therefore, to generate faithful data that matches

reality, it is better not to solely rely on the observed data that may

possibly reveal an overall but misleading activity pattern.

To address the above issues and achieve a realistic simulation, we

propose a novel framework informed by psychological theories and

integrate activity-related knowledge into the state-of-the-art GAIL

method. Our key idea is to highlight the intrinsic drives of activity

decisions, namely, human needs, which are well supported by

Maslow’s need theories. Accordingly, human needs can be catego-

rized into three levels: physiological needs, safety needs, and social
needs. Guided by this knowledge, we explicitly model human needs

in a data-driven manner. We disentangle the needs behind daily

activities to fully capture the aforementioned complex patterns in

empirical data. Specifically, we simultaneously model each need

dynamics with an alternating process between spontaneous flow
and instantaneous jump. For example, the accumulation of needs in

evolution (flow) triggers the occurrence of related activities while

the decaying needs after satisfaction (jump) can restrain tendencies

towards specific activities.

In terms of the specific model design, the proposed GAIL-based

framework consists of a discriminator that provides reward signals

and a generator that learns to generate high-quality activities with

a policy network. Particularly, we utilize Maslow’s Theory in our

framework to enhance the activity simulation with need model-

ing from the following two perspectives. First, to overcome the

challenge of complex activity patterns, we design a hierarchical

structure in the modeling to disentangle different need levels and

explicitly incorporate the underlying influence of human needs

on activity decisions. Second, to address the limitations of RNN-

based methods in modeling continuous-time dynamics, we leverage

Neural Stochastic Differential Equations [20] to capture piecewise-

continuous characteristics of need dynamics alternating between

spontaneous flow and instantaneous jump. The above need dynamics

further serve as the states that define the policy function, which

calculates activity intensities based on the current need state and de-

cides the next action accordingly. In conclusion, our contributions

can be summarized as follows:

• We are the first to explicitly model the intrinsic drives of activities,

i.e., human needs, which brings the synergy of psychological

theories and data-driven learning.

• We propose a novel knowledge-driven activity simulation frame-

work based on GAIL, leveraging Maslow’s theory to enhance the

simulation reality by capturing need dynamics.

• Extensive experiments on two real-world datasets show the effec-

tiveness of the framework in generating synthetic data regarding

fidelity, utility, and interpretability.

2 PRELIMINARIES
Problem Statement. Daily activity data can be defined as a tempo-

ral sequence of events 𝑆 = [𝑎1, 𝑎2, ..., 𝑎𝑛], where 𝑎𝑖 is a tuple (𝑡𝑖 , 𝑘𝑖 ),
𝑡𝑖 denotes the timestamp and 𝑘𝑖 is the activity type, e.g., eating at
restaurants, working at companies, playing at sports centers. The

problem of activity simulation can be defined as follows:

Definition 1 (Human Activity Simulation). Given a real-
world activity dataset, generate a realistic activity sequence 𝑆 =

[𝑎1, 𝑎2, ..., 𝑎𝑛] with a parameterized generative model.

Temporal Point Process. A temporal point process (TPP) [32]

can be realized by an event sequenceH𝑇 = {(𝑡1, 𝑘1), ..., (𝑡𝑛, 𝑘𝑛) |𝑡𝑛 <

𝑇 }. Here 𝑡𝑖 represents the arrival time of the event and 𝑘𝑖 is the

event mark. Let H𝑡 denote the history of past events up to time

𝑡 , the conditional intensity function 𝜆∗
𝑘
(𝑡) (the 𝑘𝑡ℎ event category)

is defined as: 𝜆∗
𝑘
(𝑡) = limΔ𝑡→0

+
P(event of type𝑘 in[𝑡,𝑡+Δ𝑡 ] |H𝑡 )

Δ𝑡 . Note
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that 𝜆∗ (𝑡) =
∑
𝜆∗
𝑘
(𝑡) denotes the total conditional intensity, de-

ciding the arrival time without considering event types. Then the

event type is sampled at the probability proportional to 𝜆∗
𝑘
(𝑡).

Neural Ordinary Differential Equations. NODE [8] describes

the evolution of the system state over continuous time 𝑡 ∈ R+ by

modeling the first-order ordinary differential equations with neural

networks. Specifically, the derivative of the latent state is modeled

as: 𝑑h(𝑡) = 𝑓 (h(𝑡), 𝑡 ;𝜃 ) · 𝑑𝑡 , where h(𝑡) is the latent state and 𝑓

parameterized by a neural network describes the derivative at time

𝑡 . The system output at time 𝑡1 can be solved with an initial value

at time 𝑡0 by an ODE solver: h(𝑡1) = h(𝑡0) +
∫ 𝑡1
𝑡0

𝑓 (h(𝑡), 𝑡 ;𝜃 ) · 𝑑𝑡 .
In this work, we take the first attempt to characterize human

needs with neural differential equations.

3 METHOD
We first introduce how we model human needs to motivate the

framework design in Section 3.1, then explain the MDP modeling

of the decision process in Section 3.2, and finally elaborate on the

framework details in Section 3.3.

3.1 Human Needs Modeling
3.1.1 Hierarchy of Needs. According to a classic theory in psy-

chology, i.e., Maslow’s Theory [31], people are motivated to achieve

a hierarchy of needs, including physiological needs, safety needs,
social needs, esteem needs, and self-actualization needs, in a prior-

ity order, where higher levels of need are modeled as long-term

changes such as life stages. With the development of Maslow’s

Theory, the follow-up theories [7, 9, 42] have introduced flexibility

in the hierarchy. For example, different needs can be pursued si-

multaneously, and there exist transition probabilities between any

pair of needs. We do not take the top two need levels for esteem and

self-actualization into consideration because they are too abstract

and their effects can only be observed in a long term.

Here we classify individuals’ activities into three need levels,

including physiological needs (level-1), safety needs (level-2), and
social needs (level-3), which are sufficient to depict patterns of daily

life [22, 23]. These three need levels are often triggered or satisfied

in a short period, which are consistent with daily activities that

happen within a short term (a few hours). We provide descriptions

of each need level as follows:

• Physiological needs refer to biological requirements for survival,

e.g., food, drink, and shelter. The human body cannot function

optimally without satisfying these needs.

• Safety needs refer to requirements for security and safety, e.g.,
education and employment. Besides physiological needs, people

expect their lives to be orderly, regular, and controllable.

• Social needs refer to requirements for spirits, e.g., entertainment

and social relationships. After meeting physiological and safety

needs, people are also striving for spiritual satisfaction.

In our modeling, we follow Maslow’s Theory in a more flexible

way, rather than the original needs pursued in a rigid order. The

fulfillment order can be flexible according to individual preferences

and external circumstances. Based on well-respected need theories,

each activity is explicitly labeled with one of the need levels
3
. The

3
We refer the readers to Section 4.1.2 for more details of the need annotation.

𝒕𝟏 𝒕𝟐 𝒕𝟑 𝒕𝒏. . . Time

Activity
𝒂(𝒕𝟏) 𝒂(𝒕𝟐) 𝒂(𝒕𝟑) 𝒂(𝒕𝒏)

Level-3

Level-2

Level-1
jump

flow

Figure 3: Illustration of the need evolution. Representations
of three-level need states evolve continuously over time un-
til interrupted by a corresponding activity (e.g., 𝑎(𝑡1) corre-
sponds to level-1). Note that the need state is modeled by an
embedding rather than a scalar, thus the jump up and down
do not indicate an increase or decrease.

association between human needs and activities based on expert

knowledge bridges the gap between classic psychological theories

and human behavior modeling, which provides opportunities to

model human needs computationally in a data-driven manner.

3.1.2 Evolution of Needs. In real-world scenarios, human needs

are not static but generally evolve with time dynamically, which not

only derive from spontaneous changes, but also can be interrupted

by happened activities. To better learn sequential activity patterns,

it is essential to capture the underlying mechanism of need dy-

namics. However, it is non-trivial because human needs cannot

be observed explicitly and are affected by various factors, such as

activity relations and periodicity. Besides, different from activities

that happen one by one, need dynamics are more complicated with

synchronicity and competitiveness among different levels.

To effectively capture the underlying need dynamics, we inno-

vatively capture piecewise-continuous dynamics in human needs

including spontaneous flow and instantaneous jump as follows:

• Spontaneous flow denotes the continuous-time flow of need

states. For example, needs for some activities can accumulate

without taking them for a long time. Meanwhile, needs can also

decay gradually as time goes by.

• Instantaneous jump models the influence of activities on the

need states. For instance, the happened activities can immediately

change the evolution trajectory of the corresponding need state.

Naturally, the two kinds of dynamics describe an active process of

need evolution and need satisfaction.

Particularly, the three levels are disentangled in dynamic model-

ing, so they follow distinct evolution laws. Figure 3 illustrates the

two evolution mechanisms of different need levels. Nevertheless, it

is challenging to learn such dynamics since needs are intrinsically

unobserved and stochastic with the coexistence of continuity and

jump. To tackle this problem, we represent human needs with a

stochastic embedding process z(𝑡) defined as follows:

Definition 2 (Need Embedding Process). The need embedding
processes are {z𝑖 (𝑡), 𝑖 ∈ {1, 2, 3}, 𝑡 ≥ 0}, where z𝑖 (𝑡) is the represen-
tation of the 𝑖𝑡ℎ need level at time 𝑡 .
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In the above definition, we depict human needs with an embedding

process z(𝑡) instead of a direct scalar value for stronger representa-

tion capabilities. Particularly, z(𝑡) is composed of three components

z1 (𝑡), z2 (𝑡), z3 (𝑡) that correspond to different need levels. Then

the need embedding process z(𝑡) with both spontaneous flow and

instantaneous jump can be formulated as follows:


z(𝑡 + 𝑑𝑡 ) = z(𝑡 ) + F(𝑡, z(𝑡 ) )𝑑𝑡, no activity in [𝑡, 𝑡 + 𝑑𝑡 ),

lim

Δ𝑡→0
+
z(𝑡𝑖 + Δ𝑡 ) = G(𝑡𝑖 , z(𝑡𝑖 ), 𝑘 (𝑡𝑖 ) ), with activity 𝑘 at the time 𝑡𝑖 ,

(1)

where F and G4
control the spontaneous flow and instantaneous

jump, respectively, and 𝑘 (𝑡𝑖 ) denotes the the occurred activity.

3.2 Sequential Decision Processes
The generation of activity sequences depends on individuals’ de-

cisions on what activity to take based on his/her own need state

step by step. The whole process consists of a sequence of activity

decisions that aim to maximize the total received "reward" along the

process. Here we model the decision process as a Markov decision

process (MDP) [47], and it is described by a 4-tuple < S,A,T ,R >,

where S is the state space,A is the action space, T is the state tran-

sition, and R is reward function. The basic elements of MDPs are :

(i) State represents the current need state. (ii) Action is generated

based on the state by sampling a time interval 𝜏 and an activity type

𝑘 . (iii) Policy function decides the next activity time and type. (iv)

State transition controls how the state updates with two transit

laws, i.e., spontaneous flow and instantaneous jump. (v) Reward
function evaluates the utility of taking the action under the state,

which is unknown and has to be learned from the data.

Given the activity history s𝑡 = {(𝑡𝑖 , 𝑘𝑖 )}𝑡𝑖<𝑡 , the stochastic policy
function 𝜋𝜃 (𝑎 |s𝑡 ) samples an interval time 𝜏 and an activity type

𝑘 to generate the next activity 𝑎 = (𝑡𝑖+1, 𝑘𝑖+1), where 𝑡𝑖+1 = 𝑡𝑖 + 𝜏 .
Then, a reward value is calculated and the state will be updated by

an instantaneous jump. Besides, there are also feedbacks of need

states to the individual over time known as the spontaneous flow.

3.3 Proposed Framework: SAND
In this section, we present a novel framework, SAND,which Simulates

human Activities with Need Dynamics. Overall, it provides the

synergy of need theories and imitation learning in simulating the

activity decision-making process. As shown in Figure 4, it learns the

policy and reward functions adversarially, where the need embed-

ding process z(𝑡) plays an essential role in the loop. We elaborate

on the details of key components in the following sections.

3.3.1 Learning Need Dynamics. To model the need dynamics

including the spontaneous flow and instantaneous jump, we uti-

lize neural stochastic differential equations [20] to describe such

continuity and discontinuity, where the need embedding process

{z𝑖 (𝑡), 𝑖 ∈ {1, 2, 3}, 𝑡 ≥ 0} acts as the latent state. Between activ-

ity observations, each z𝑖 (𝑡) flows continuously over time. Once

an activity happens, the corresponding need embedding process

is interrupted by a state jump. Different from directly modeling

4
The time dependent variables in our modeling are all left continuous in 𝑡 , i.e.,
lim

𝜖→0
+
z(𝑡 − 𝜖 ) = z(𝑡 ) .

Policy Net 𝝅𝒕

Simulator

Generated Activity
Timestamp 𝝉

Activity Type 𝒌

Need-1

Need-2

Need-3

Need Embedding process

Generated State-Action Pair

Expert State-Action Pair

State 𝒛(𝒕)
Action 𝒂(𝒕)

optimize 𝝅𝒕 using the reward
from discriminator

State Transition

Discriminator

Feed-forward flow 
for Discriminator

Reward calculation 
for Policy Net

Activity’s effect on 
the need state 

Figure 4: Illustration of the SAND framework. The policy
and discriminator networks are optimized adversarially, and
the state transition consists of two evolution mechanisms.

the changes of the hidden state like RNNs [50], neural differen-

tial equations model the derivative of z(𝑡) to better capture the

continuous-time characteristics. Specifically, the derivative of the

𝑖𝑡ℎ need state is formulated as follows:

𝑑z𝑖 (𝑡 ) = 𝑓𝑖 (z𝑖 (𝑡 ), 𝑡 ;𝜃𝑖 ) · 𝑑𝑡 +𝜔𝑖 (z𝑖 (𝑡 ), k𝑖 (𝑡 ), 𝑡 ;𝛾𝑖 ) · 𝑑𝑁𝑖 (𝑡 ) , (2)

where 𝑓𝑖 and 𝜔𝑖 are both parameterized by neural networks and

control the spontaneous flow and instantaneous jump of the 𝑖𝑡ℎ need

embedding process, respectively, and 𝑁𝑖 (𝑡) records the number

of activities of the 𝑖𝑡ℎ level up to time 𝑡 . 𝑓 and 𝜔 in Eq. (2) are

implementations of the function F and G defined in Eq. (1). In

particular, each state z𝑖 (𝑡) ∈ R𝑛 is composed of two vectors: (1)

c𝑖 (𝑡) ∈ R𝑛1
encodes the internal need state, and (2) h𝑖 (𝑡) ∈ R𝑛2

encodes effects of the historical activities.

Spontaneous flow. The top part in Figure 5 shows the network

design to model spontaneous flow. The neural function 𝑓𝑖 in Eq. (2)

controls the spontaneous flow of the state z𝑖 (𝑡). Although z𝑖 (𝑡)
contains two vectors c𝑖 (𝑡) and h𝑖 (𝑡), they follow distinct continuous

dynamics due to different encoded information. Specifically, there

is no constraint on the internal evolution of c𝑖 (𝑡), hence we model

𝑑c𝑖 (𝑡 )
𝑑𝑡

by an MLP. Differently, due to the temporal decaying effect

of historical activities, we add constraints to the form of h𝑖 (𝑡) to
model such an effect. Concretely, we use another MLP followed by

a Softplus activation layer to model the decay rate. The modeling

of derivatives can be formulated as follows:

𝑑c𝑖 (𝑡)
𝑑𝑡

= MLP(c𝑖 (𝑡) ⊕ h𝑖 (𝑡)) , (3)

𝛼𝑖 =𝜎 (MLP(c𝑖 (𝑡)) ,
𝑑h𝑖 (𝑡)
𝑑𝑡

= −𝛼𝑖h𝑖 (𝑡) , (4)

where 𝜎 is the Softplus activation function to guarantee a positive

decay rate, and ⊕ denotes the vector concatenation.

Instantaneous jump. The bottom part in Figure 5 illustrates

the network design to model the instantaneous jump introduced by

happened activities. Specifically, the function 𝜔𝑖 in Eq. (2) outputs

the effects of the instantaneous jump, and it is modeled by an MLP

in practice. As discussed before, the vector h𝑖 (𝑡) encodes the activity
memory, and thus it is reasonable that the instantaneous jump will

only affect the vector h𝑖 (𝑡). As a result, an activity of the 𝑖𝑡ℎ need
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MLP

MLP

𝒄𝑖(𝑡)

𝒉𝑖(𝑡)
𝑑𝒄𝑖(𝑡)

𝑑𝑡

𝑑ℎ𝑖(𝑡)

𝑑𝑡

𝒄𝑖(𝑡 + d𝑡 )

𝒉𝑖(𝑡 + dt )

Spontaneous Flow

softplus

negation

multiplication

(a) Spontaneous flow

𝒄𝑖(𝑡)

𝒉𝑖(𝑡)

MLP

Δ𝒉𝑖(𝑡)

Δ𝒄𝑖 𝑡 = 0
𝒄𝑖(𝑡)

𝒉𝑖 𝑡 + Δℎ𝑖(𝑡)
activity 
𝒌(𝑡)

Instantaneous Jump

plus

(b) Instantaneous jump

Figure 5: Network architecture to learn need dynamics with
both spontaneous flow and instantaneous jump.

level gives rise to a change Δh𝑖 (𝑡) only to the corresponding activity
memory embedding h𝑖 (𝑡), i.e., Δh𝑗 (𝑡) = 0,∀𝑗 ≠ 𝑖 and Δc𝑖 (𝑡) = 0,∀𝑖 .
The MLP takes in the concatenation of the activity embedding k(𝑡)
and the internal state c𝑖 (𝑡), and outputs the variation Δh𝑖 (𝑡) in the

memory embedding h𝑖 (𝑡), which is formulated as follows:

Δh𝑖 (𝑡) = MLP(k(𝑡) ⊕ c𝑖 (𝑡)) , (5)

lim

𝜖→0
+
h𝑖 (𝑡 + 𝜖) = h𝑖 (𝑡) + Δh𝑖 (𝑡) , (6)

where k(𝑡) denotes the activity associated with the 𝑖
th
need level.

3.3.2 Policy Function. Based on the activity intensity function

𝜆𝑘 (𝑡), the probability of activity type 𝑘 happens within the time

interval [𝑡, 𝑡 +𝑑𝑡) is as: 𝑃{activity 𝑘 happens in[𝑡, 𝑡 +𝑑𝑡)} = 𝜆𝑘 (𝑡) ·
𝑑𝑡 . The policy function is a mapping from the state to action that

generates the arrival of the next activity with the type conditioned

on the current state. With the modeling of activity intensities, the

goal of the policy function is to generate intensities based on the

need states z(𝑡). Figure 6 shows the network design of the policy

function. Although the three need levels control specific activities,

they are not independent and can be pursued simultaneously, which

may give rise to competing activity choices. Therefore, the states of

the three levels all affect the generation of the next activity. In other

words, the activity intensity 𝜆∗
𝑘
(𝑡) is conditioned on embedding

processes of all need levels. To model the interactions between

different levels in determining the next activity, we concatenate

the three embedding processes z𝑖 (𝑡), 𝑖 ∈ {1, 2, 3} and leverage an

MLP to obtain conditional activity intensities. Here we perform the

sampling to obtain the time interval and the activity type based on

the total condition intensity and type distribution as:

𝜆∗ (𝑡) =
𝑀∑︁
𝑘=1

𝜆𝑘 (𝑡), 𝑝 (𝑘 |𝑡) = 𝜆𝑘 (𝑡)∑𝑀
𝑘=1

𝜆𝑘 (𝑡)
(7)

where𝑀 is the number of activity types.

𝒄!(𝑡) 𝒉!(𝑡)

M
LP

Generating intensities based on 𝑧(𝑡) Sampling

𝒄"(𝑡) 𝒉"(𝑡)

𝒄#(𝑡) 𝒉#(𝑡)

......

Figure 6: Network architecture of the policy function.

3.3.3 Reward Function. GAIL uses a reward function to evaluate
the actions by comparing the generated state-action pairs with the

real pairs, which is modeled by a discriminator network 𝐷𝜙 . To

compare the real and policy-generated pairs more effectively, we

also utilize the historical sequence information, thus, the state in

the discriminator is defined as 𝑠𝑑 = (z(𝑡), S). For the sequence S =

[𝑥1, 𝑥2, ..., 𝑥𝑛], 𝑥𝑖 contains the information of the time interval 𝜏𝑖 ,

hour ℎ𝑖 , weekday𝑤𝑖 , activity type 𝑘𝑖 , and need level 𝑛𝑖 . In addition,

the action 𝑎 is set as the time interval 𝜏 since the last activity to

the current one, i.e., 𝑎 = (𝜏, 𝑘). Based on the above notations, the

output of the discriminator can be defined as 𝐷𝜙 (𝑠𝑑 , 𝑎).
Through an embedding layer, we first transform 𝑠𝑑 and 𝑎 into

embeddings. Then we leverage an attention mechanism to aggre-

gate the sequential features. The concatenation of the sequential

embedding, state z(𝑡), and action embedding is fed into an MLP

with a sigmoid activation function. Thus, the reward function can

be expressed as: 𝑅(𝑠, 𝑎) = log𝐷𝜙 (𝑠𝑑 , 𝑎).
Appendix C introduces the training and simulation procedures.

4 EXPERIMENTS
In this section, we conduct extensive experiments to investigate

the following research problems:

• RQ1: How does SAND perform in retaining the data fidelity

compared with baseline solutions?

• RQ2: How do different components of SAND contribute to the

final performance?

• RQ3: Can SAND generate high-quality synthetic data that benefit

practical applications?

• RQ4: Can SAND provide insightful interpretations on modeling

daily activities?

4.1 Experimental Settings
4.1.1 Datasets. . We conduct extensive experiments on two real-

world datasets. (1) Foursquare-NYC [51] dataset contains checkin

activities to various POIs collected from 2000 users with 14 activ-

ity labels during the duration from 2012-05-01 to 2012-06-01. (2)

Mobile dataset contains 10000 users with 15 activity labels during

the duration from 2016-09-17 to 2016-10-17, which is collected in

Beijing by a major mobile operator in China. We take careful steps

to consider ethical issues in using data: the research protocol has

been reviewed and approved by our local institutional board and all

research data is sanitized for privacy preservation, with limited ac-

cess to authorized researchers bound by non-disclosure agreements.

More details of the datasets are provided in Appendix A.
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Table 1: Overall performance of SAND and baselines in terms of the JSD-based metrics, and lower results are better. Bold
denotes the best results and underline denotes the second-best results. The improvements are significant (p-value<0.05).

Dataset Mobile Operator Foursquare
Metrics (JSD) MacroInt MicroInt DailyAct ActType Weekday Hour MacroInt MicroInt DailyAct ActType Weekday Hour

Semi-Markov 0.291 0.158 0.439 0.471 0.0042 0.051 0.334 0.055 0.485 0.101 0.0032 0.051

Hawkes 0.276 0.151 0.542 0.123 0.0039 0.051 0.073 0.024 0.530 0.026 0.0024 0.047

Neural Hawkes 0.026 0.143 0.125 0.0063 0.0036 0.052 0.072 0.041 0.119 0.012 0.0040 0.047

Neural JSDE 0.014 0.106 0.138 0.048 0.0033 0.051 0.041 0.033 0.056 0.0072 0.0022 0.046

THP 0.167 0.111 0.058 0.098 0.005 0.040 0.331 0.035 0.095 0.003 0.013 0.047

LSTM 0.110 0.136 0.513 0.342 0.0041 0.050 0.249 0.217 0.628 0.073 0.0033 0.051

SeqGAN 0.143 0.128 0.047 0.054 0.022 0.072 0.225 0.178 0.627 0.065 0.0034 0.051

GAIL 0.089 0.120 0.040 0.231 0.005 0.050 0.226 0.118 0.167 0.087 0.0049 0.062

SAND 0.0096 0.084 0.025 0.036 0.002 0.009 0.018 0.014 0.062 0.0044 0.00032 0.0069

4.1.2 Need Annotation. According to the definition and description
of each need level in Section 3.1, we ask three annotators to label

each activity with one of the need levels. To ensure that correct

expert knowledge is utilized, the three annotators all have expertise

in related knowledge, including a senior Ph.D. candidate and two

postdocs with a background in psychology and behavioral sciences.

If the three experts disagree on the label, we will invite another

expert and start a discussion. Through this process, all activities

obtain consistent labels. The annotation approach has satisfied

the requirement of our problem settings due to the small scale of

activity types. We also provide scalable methods in Appendix C.1

4.1.3 Baselines. To evaluate the performance of the SAND frame-

work, we compare it against state-of-the-art baselinemethods: Semi-

Markov [29], a classical probability model; Hawkes Process [27], a

representative point process model; Neural Hawkes Process [32],

the neural extension to the Hawkes process; Transformer Hawkes

Process [57] (THP) is another neural extension to the Hawkes pro-

cess, which utilizes the self-attention mechanism to capture long-

term dependencies; Neural JSDE [8], the state-of-the-art method

to learn continuous and discrete dynamic behavior; LSTM [16], a

widely used model in sequence prediction; SeqGAN [54], the state-

of-the-art model for discrete sequence generation; TrajGAIL [15], a

model-free imitation learning algorithm in trajectory generation.

4.1.4 Metrics. We measure whether synthetic data accurately

reflects crucial characteristics of the original, real-world data. Fol-

lowing the mainstream practice in previous works [11, 37], we use

essential metrics to describe activity patterns for comparing the sta-

tistical similarity between the generated data and real-world data,

including (1) ActInt: time intervals between activities, including

type-free intervals (MacroInt) and type-aware intervals (MicroInt);

(2) DailyAct: daily happened activities. It is the number of activities

in one day for each individual; (3) ActType: the overall distribu-

tion over different activity types; (4) Weekday: the overall time

distribution over the seven days; (5) Hour: the overall time distri-

bution over the twenty-four hours. To get the quantitative evalua-

tions on the fidelity of generated data, we use Jensen–Shannon

divergence (𝐽𝑆𝐷) to measure the distribution similarity of the

above patterns between the generated data and real-world data:

JSD(𝑃 | |𝑄) = 𝐻 (𝑀) − 1

2
(𝐻 (𝑃) + 𝐻 (𝑄)), where 𝐻 is the Shannon

entropy, 𝑝 and 𝑞 are two distributions, and 𝑀 =
𝑝+𝑞
2
. Lower JSD

denotes a closer distribution between synthetic data and real data,

indicating a better generative model.

4.2 Overall Performance (RQ1)
Table 1 reports the performance in retaining the data fidelity of our

framework and the eight competitive baselines on two real-world

datasets. From the results, we have the following findings:

• Our framework steadily achieves the best performance.
SAND achieves the best performance on the mobile operator

dataset, by ranking first on five metrics and second on one metric.

For five metrics that rank 1st, SAND reduces the JSD by over

20%. It also shows superior performance on most of the metrics

on the Foursquare dataset, which ranks first on five metrics by

reducing JSD by over 40%. Meanwhile, it achieves comparable

performance with the best baseline on the second-rank metric.

• Time-invariant model performs poorly in simulating hu-
man activities. Semi-Markov performs the worst in most cases.

which indicates that the time-invariant assumption fails to de-

scribe behavior transition laws due to the existence of complex

temporal patterns in daily activities.

• Learning from raw data alone is insufficient for a realistic
simulation. The LSTM model has a poor performance on the

metrics of DailyAct and ActType, which means errors can be accu-

mulated in the step-by-step generation process. By contrast, Seq-

GAN and GAIL improve the performance by using reinforcement

learning and adversarial learning. For the Foursquare dataset that

is more sparse, their superiority is lost, which further suggests

the instability of purely data-driven methods.

• It is essential to model dynamic human needs. The neural
Hawkes, THP, and neural JSDE almost achieve the sub-optimal

results on the two datasets, indicating the rationality of charac-

terizing events in continuous time by temporal point processes.

However, without investigating the deeper mechanism behind

observed activities, their performance is still limited.

4.3 Ablation Studies (RQ2)
The proposed SAND framework consists of two key components:

modeling need dynamics and solving the MDPs with GAIL. Be-

sides, we also use the pre-training mechanism. To further validate

whether they are indeed crucial for the final performance, we con-

duct ablation studies on two datasets by comparing the performance



Learning to Simulate Daily Activities via Modeling Dynamic Human Needs WWW ’23, May 1–5, 2023, Austin, TX, USA

Table 2: Ablation study on SAND variants. Bold denotes the best results and underline denotes the second-best results.

Dataset Mobile Operator Foursquare
Metrics (JSD) MacroInt MicroInt DailyAct ActType Weekday Hour MacroInt MicroInt DailyAct ActType Weekday Hour

SAND 0.013 0.084 0.025 0.036 0.002 0.009 0.018 0.014 0.062 0.0044 0.00032 0.0069
SAND - GAIL 0.013 0.116 0.085 0.040 0.0031 0.051 0.039 0.028 0.202 0.0051 0.0018 0.0092

SAND - need 0.014 0.116 0.085 0.039 0.0035 0.050 0.019 0.030 0.0085 0.0072 0.0021 0.048

SAND - pretrain 0.015 0.110 0.059 0.190 0.004 0.048 0.070 0.025 0.161 0.064 0.0020 0.044
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Figure 7: Activity prediction in the fully synthetic scenario.
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(a) Mobile Operator Dataset.
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(b) Foursquare Dataset.

Figure 8: Activity prediction in the hybrid scenario. For a
different number of real-world sequences, i.e., 50, 100, 1000,
we all add 1000 generated sequences for data augmentation.

of three variants of SAND, including SAND - need, SAND - GAIL,
SAND - pretrain. Specifically, SAND - need calculates the latent state

as [20] without modeling hierarchical human needs, SAND - GAIL
removes the GAIL training framework, and SAND - pretrain starts

training from raw data without the pre-training mechanism.

The evaluation results are reported in Table 2. We can observe

that SAND delivers the best performance on five metrics compared

with the variants that are removed with specific designs. Without

modeling need dynamics, the performance is reduced significantly,

indicating the necessity to consider the intrinsic motivation in

human activity simulation. Besides, removing the GAIL framework

also reduces the data fidelity, which suggests the strong modeling

capabilities of generative adversarial mechanisms. In addition, the

pre-training mechanism facilitates making full use of the activity

data and enables our framework to preview the dependencies and

regularities of daily activities before GAIL training, thus it also

contributes to the final performance.

4.4 Practical Applications (RQ3)
In user-based applications, real-world activity records usually can-

not be directly shared due to privacy issues. Under this circum-

stance, SAND can be used to generate synthetic data to mask sen-

sitive information while retaining the usability of real data. To

examine the utility of the generated synthetic data, we perform

experiments with synthetic data of two categories:

• Fully synthetic scenario; Only synthetic data is used in appli-

cations, which provides a more robust privacy protection.

• Hybrid scenario; It combines real and synthetic data, which is

widely used in data augmentation settings.

We select two representative applications [18, 33] based on the

activity data: (1) activity prediction and (2) interval estimation,

which are fundamental to many activity-related problems, such as

activity recommendation and planning.

We utilize a widely-used model, LSTM with attention mecha-

nism, to predict individuals’ future activity types based on their

historical sequence
5
. As shown in Figure 7, compared with the

best baseline, the prediction performance on the dataset generated

by our framework is much closer to the performance on the real

data, showing the retained utility of the generated data. Figure 8

illustrates that the model trained on the augmented data exhibits

significantly better performance than that only trained on the real-

world data. Meanwhile, the data augmented by SAND outperforms

that by the best baseline. Moreover, the augmented data becomes

more useful when the real-world data is of small scale, e.g., only
with 50 or 100 real-world sequences. These results validate the

practical value of the synthetic data.

4.5 Interpretability of Dynamic Needs (RQ4)
To validate whether SAND can provide insightful interpretability,

we perform a case study on the learned intensity values of dif-

ferent need levels in the simulation process. Figure 9 illustrates

the simulated activity sequences of two individuals for one week,

together with the corresponding intensity values of three need

levels. In terms of the model interpretability, we have two main

observations. First, the proposed SAND can generate distinct but

lifelike activity sequences that are hard to tell apart from real-world

data. Specifically, comparing Figure 9(a) and (b), the two synthetic

individuals lead quite personalized lifestyles. Individual 1 follows

regular working routines with the intensity dynamics of the level-2

need varying periodically, while individual 2 enjoys more freedom

without working, showing a constantly low intensity of the level-2

need. Second, SAND can simulate human daily activity in an in-

terpretable way with need modeling. As observed from Figure 9,

5
Due to the page limit, we leave the interval estimation in Appendix D.
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Figure 9: Case study of two generated activity sequences and the learned intensity of different need levels. We select two
representative individuals with different activity patterns.

the occurrence of activity not only changes the intensity of the

corresponding need level but also affects other levels, indicating

that different need levels are interconnected by intensities derived

from need states and trigger activities in a cooperative manner. In

summary, the above observations demonstrate the interpretability

of SAND for simulation outcomes, which is equally important in

real-life applications.

5 RELATEDWORK
5.1 Human activity simulation
Solutions for activity simulation are mainly agent-based model-

ing [30] with rule-based methods [22–24, 34, 35, 39]. Specifically,

these methods assume that human activities can be described by

limited parameters with explicit physical meaning and are governed

by transition rules based on psychology and social science theories.

With simplified assumptions of human behaviors, agents in the

system can be assigned different goals, then they take actions to

maximize different attributes. For example, Kim et al. [24] propose

that human actions are triggered by a cause and give rise to corre-

sponding effects. Besides, considering the multiple behaviors, the

priorities of behaviors are determined based on Maslow’s hierarchy

of needs [22–24]. Despite the promising performance under some

circumstances, rule-based methods fail to capture complicated ac-

tivity patterns due to relying on simplified assumptions and thus

usually fail to simulate activities in reality. The purpose of activity

simulation is different from that of activity prediction [18, 33, 53].

The former emphasizes the simulation results to reproduce and

reflect characteristics of real data, but should not be too similar

to real data with the goal of protecting user privacy, while the lat-

ter highlights to what extent the model can recover the real data.

Although deep learning approaches are proposed for activity pre-

diction [19, 36], the problem of simulating daily activities has been

barely explored.

5.2 Deep generative models for activity
simulation

Deep generative models, such as generative adversarial networks

(GAN) [12] and variational autoencoder (VAE) [25], are promising

solutions to simulation. Previous studies [17, 38, 46, 49, 56] have

also explored the ability of Generative adversarial Imitation Learn-

ing (GAIL) to simulate human decision process. Besides, a series

of neural temporal point process models [8, 32, 55, 57] are pro-

posed to model discrete events. Although these models are mainly

for discrete event prediction, the learned probability distribution

provides opportunities to perform event generation by the sam-

pling operation. Recently, Gupta et al. [14] propose attention-based

temporal point process flows to model goal-directed activity se-

quences. However, it is not appropriate for our research problems as

daily activities cannot be represented as a sequence of actions per-

formed to achieve an explicit goal. We propose a knowledge-driven

framework based on GAIL, and the incorporation of psychological

knowledge is realized by leveraging an ODE-based temporal point

process.

6 CONCLUSION
In this paper, we investigate the individual activity simulation prob-

lem by proposing a novel framework SAND, which integrates deep

generative models with well-respected psychological theories. Ex-

tensive experiments on two real-world datasets show the superior

performance of the proposed framework. Our framework is not

strictly limited to Maslow’s theories, instead, what we highlight is

leveraging neural networks to learn the driving force behind human

daily activities, and the choice of knowledge or theory related to

such driving force is quite flexible. For example, ERF theory [1]

claims that there exist three levels behind activities, including exis-

tence, relatedness, and growth; some other theories [44] propose

that several specific travel purposes lead to daily activities. Im-

portantly, effective modeling of human needs makes it possible

to understand human behaviors at a deeper level, which not only

benefits the activity simulation in this work but also contributes to

many other problems of psychology-informed user modeling. In

terms of limitations, we recognize that data-driven models largely

depend on high-quality datasets. For example, the shortage of long-

term and fine-grained datasets hinders the modeling of needs for

esteem and self-actualization.
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