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Abstract—Privacy leakage of Internet of Things (IoT) has become a great challenge with the popularity of loT services through mobile
networks, such as smart homes, wearables, and healthcare. While previous work summarized general structures to analyze loT
privacy and provide case studies of specific devices or scenarios, it is still challenging to conduct a comprehensive and systematic
quantification study of large-scale IoT privacy leakage in real world. To combine systematic analyses with real-world measurements,
we provide a method to quantify IoT privacy leakage on a large-scale mobile network traffic dataset containing 47,651 loT devices. We
generate privacy fingerprints, and attribute them to a privacy quantification framework. The framework is constructed based on the
semantics of multiple privacy sensitive markers selected from the traffic along with the involved network entity types in IoT (i.e., user,
device, and platform), and the fingerprints are generated from sensitive information extracted in the traffic via their markers. Our
quantification shows that IoT users, devices, and platforms have considerable risks respectively. Moreover, loT devices have a larger
scale of privacy leakage than users and platforms, and they perform different daily patterns on privacy leakage following their working

conditions. In addition, we present three case studies on the leakage of location information, application calling, and voice service,
which illustrate that a third party can profile a network entity in both cyberspace and physical space.

Index Terms—IoT, privacy, security, mobile network.

1 INTRODUCTION

INTERNET of Things (IoT) brings great convenience to
users by connecting various devices to the Internet and
enabling them to perform their functions independently and
even intelligently. These sensors, actuators, or computing
devices connected to IoT and remotely controlled through
the Internet are defined as IoT devices. With the rapid
proliferation of IoT, increasing devices join the network, and
Cisco forecasts that machine-to-machine (M2M) connections
will grow to 14.6 billion by 2022, with 1.8 M2M connections
for each member of the global population [1]. Through
IoT, the devices and operators are collecting, transmitting,
processing, and storing all kinds of data, which probably
contains sensitive information and thus leads to privacy
leakage. For instance, motivated by the growing number of
Internet-connected TV devices, Moghaddam et al. [2] found
that 89% of Amazon Fire TV channels and 69% of Roku
channels have trackers to collect users” viewing habits and
preferences. In addition, Celik et al. [3] identified sensitive
data flows in 138 of 230 SmartThings market applications
(60%). Wood et al. [4] also detected cleartext information that
may reveal sensitive medical conditions in network traffic of
four popular consumer medical IoT devices.

Meanwhile, even small embedded IoT devices with sen-
sors (e.g., wearable devices) are continuously collecting all
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kinds of information from its surroundings and transmitting
it to remote servers for further analysis [5]. Sikder et al. [6]
found that the sensors on IoT devices can reveal sensitive
data like passwords, secret keys of a cryptographic system,
credit card information, etc, which can be used directly to
violate user privacy or for future attacks. Apthorpe et al. [7]
also demonstrated that an Internet service provider (ISP) or
other possible attackers can infer privacy sensitive in-home
activities by analyzing the changes of Internet traffic rates
from several smart home devices even when these devices
encrypted their traffic. Moreover, Ling et al. [8] found that
launching different kinds of attacks can help obtain the user
authentication credentials of a smart plug system, which
can lead to both security and privacy concerns. Under this
circumstance, IoT privacy gains increasing attention.

More extensive than the traditional definition of human
privacy, IoT privacy is the ability to dispose the sensitive or
valuable information collected, processed, and transmitted
by IoT from individuals, groups, environments, workplaces,
etc. Concerning privacy issues in IoT and the methods to
figure them out, a number of analysis studies have been
done from different perspectives. As privacy issues origi-
nate from security problems in most cases, some researchers
started to mention IoT privacy leakage in their study on IoT
security at first: Kozlov et al. [9] analyzed the known and
new threats for the security, privacy and trust at different
IoT architecture levels; Zhao et al. [10] and Mahmoud ef al.
[11] discussed the IoT typical architecture of three layers,
i.e., perception, network, and application layers. Further,
Roman et al. [12] expounded the challenges of IoT security
and privacy under different distributed approaches of ar-
chitecture and attack models. For IoT privacy respectively,
Porambage et al. [13] explored IoT privacy concerns on
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multiple IoT applications (e.g., healthcare, smart homes,
public safety, supply management), presented four key IoT
privacy aspects of user privacy, data mining, underlying
technologies, and legal regulations. Apart from the litera-
ture above, privacy analyses on real-world IoT devices and
traffic become popular, especially the devices interacting
with users directly. Loi et al. [14] developed a systematic
method to identify the security and privacy disadvantages
of various consumer IoT devices by a test suite including
lightbulb, switch, camera, printer, smoke alarm, and sleep
monitor in smart homes; and Chu et al. [15] investigated the
security and privacy of Internet-connected smart toys for
children via case studies on three commercial products.

The literature above provides general structures and de-
tailed instances on IoT privacy, but there are still some hur-
dles to conduct a large-scale and systematic quantification
study of IoT privacy leakage. The general analyses above
presented the security vulnerabilities or attacks leading to
privacy leakage in IoT, and found the privacy risks under
multiple IoT applications or scenarios. However, they lack
support from accurate measurement experiments. The de-
tailed instances illustrated privacy issues for specific kinds
of IoT service or device via tests or case studies, but failed
to quantify privacy leakage in universal IoT from macro
perspective. To fill this gap, we intend to combine a system-
atic framework with quantitative measurements, which give
consideration to both macro structure and accurate details
of IoT privacy leakage.

The network nodes in IoT, which are electronic devices
or communication endpoints attached to IoT, are creating,
transmitting, or receiving privacy information through
network. Moreover, most nodes in IoT tend to access the
mobile network for its ubiquity and convenience, which
leads to a potential danger for sensitive data to be captured
by a third party along with the space-time coordinates
of these nodes from GPS or base stations. Xia et al. [16]
illustrated that third parties (e.g., hackers, cyber criminals,
rogue employees in a cellular service provider (CSP) or ISP)
can crawl data and gather digital footprints from mobile
network users not simply by tapping into the wire directly,
but by extracting information from the Web. Especially for
IoT, the data generated by IoT devices usage is gathered
and processed by third parties for all kinds of services
(e.g., advertising and tracking) without being fully aware
[17], [18], [19], and an attacker may eavesdrop on the
communication of IoT nodes and extract the available
unencrypted contents in the traffic [17], [20]. Then, not
only service providers, but also malicious third parties,
can collect the footprints in both cyberspace and physical
space to profile a node in the IoT, which results in illegal
monitoring, financial risks or even personal safety threats.
Consequently, we propose to quantify IoT privacy leakage
systematically from the traffic, and reveal the privacy risks
to IoT consumers. Based on the previous works and their
limitations, we find the following challenges of conducting
a large-scale and real-world quantification:

e Multifarious IoT services, applications, devices and
scenarios lead to various privacy sensitive informa-
tion, which brings difficulty to construct a complete
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framework to quantify them coherently. The typical
IoT architechture is better suited to security analysis,
but unapplicable to privacy quantification. Mean-
while, considering from dozens of IoT applications or
devices can hardly contain all of the privacy issues.

o We lack the knowledge of IoT privacy without direct
interaction in human activities. In addition to the
human-involved scenarios like smart home, privacy
risks exist in many other IoT scenarios, such as
smart agriculture, automated manufacturing, geo-
logical prospecting, safety monitoring, etc. However,
most of the existing research focuses on human pri-
vacy, and it is hard to describe privacy in unmanned
IoT intuitively.

In this paper, we provide a method to quantify real-
world IoT privacy leakage in large-scale mobile network
traffic systematically. With a three-day IoT traffic dataset
containing 47,651 IoT devices from a mobile network oper-
ator in China, we generate traffic blocks and select privacy
sensitive markers from them. Then, we extract sensitive in-
formation via these markers to collect fingerprints involved
in the privacy of different IoT network entities. A network
entity means a thing connected to the network that has
separate and distinct existence and objective or conceptual
reality, we find three major types of IoT network entities in
our dataset, i.e., user, device, and platform. Based on these
three types of entities, we construct a systematic framework
to quantificationally analyze IoT privacy leakage through
the fingerprints, which contains the basic information, at-
tributes, and behaviors in both cyberspace and physical
space. We find that the fingerprints can be used to profile
users, devices or platforms in IoT, and present three case
studies for instances, i.e., the privacy issues in location
service, application calling, and voice service.

Our work reveals some regularities of IoT privacy and
studies IoT privacy macroscopically. In conclusion, our con-
tributions are summarized as follows:

o We use a semantic method to extract sensitive infor-
mation from the real-world IoT traffic dataset, which
implies that real information from IoT users, devices
and platforms can be extracted and intelligently
collected by any third party eavesdropping the IoT
traffic.

e Based on the semantics of sensitive information and
different IoT entities, we build a systematic frame-
work and generate privacy fingerprints. For IoT
users, we consider their basic information like name
and gender, and the behaviors of using applications,
shopping, travel, and entertainment; for devices, we
consider their identifiers, spatio-temporal activities,
network access, and data usage information; for plat-
forms, we consider their services, data storage, and
log records.

o We quantify the privacy leakage through our frame-
work and fingerprints, analyze the quantification
results, and present case studies. Our quantification
shows that IoT devices have a larger scale of privacy
leakage than other network entities (i.e., platforms,
users). However, the leakage of several privacy is-
sues with small scales (e.g., user password) can

2327-4662 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: Tsinghua University. Downloaded on March 08,2021 at 05:16:15 UTC from IEEE Xplore. Restrictions apply.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JI0T.2020.3038639, IEEE Internet of

Things Journal

lead to badly high risks. The case studies on the
leakage of location information, application calling,
and voice service data demonstrate that a third party
can profile a network entity in both cyberspace and
physical space via the aggregation of their privacy
fingerprints.

The rest of this paper is organized as follows. First, we
introduce some preliminaries, and give an overview of our
problem and dataset in Section 2. Next, we present our
method of extracting sensitive information about privacy in
Section 3, and quantify and analyze IoT privacy leakage in
Section 4. Finally, we review related works in Section 5 and
conclude our work in Section 6.

2 PROBLEM FORMULATION

Notation Definition
TF Traffic flow
P; Content of the i-th packet
t; Arrival time of the i-th packet
N Number of packets
b;; B The i-th traffic block; collection of b;
T Threshold of interval between the arrival
time of two packets in each traffic block
si; S The i-th piece of sensitive information; col-
lection of s;
k; K Marker that represents the specific type of

s;; collection of k
v Content gathering from the network traffic
of s; corresponding to k

fi, F The i-th privacy fingerprint; collection of f;

TABLE 1: Summary of the main notations.

2.1 Preliminaries

In order to process IoT traffic collected from the mobile
networks, we define Traffic Flow and Traffic Block at first,
then we define Sensitive Information to describe IoT privacy
and define Privacy Fingerprint as the basic unit to quantify
privacy leakage. Table 1 presents the main notations.

Traffic Flow. The traffic flow, which contains a sequence
of Internet packets, is denoted as a set TF = {(t;, P)}Y 4,
where N is the total number of packets, t; is the arrival time
of the i-th packet, and P; is the content of the i-th packet.

Traffic Block. We segment the traffic flow into traf-
fic blocks, and the i-th traffic block is denoted as a set
b, = {P; };V:"l, where N, is the total number of packets in
traffic block b; and P; is the content of j-th packet. The
packets in each traffic block b; belong to the same network
entity and relevant to the same IoT service. A network entity
means a thing connected to the network that has separate
and distinct existence and objective or conceptual reality.
For IoT, there are three basic types of network entities: user,
device, and platform. An IoT service means a specific task
or operation in IoT, such as subscribe to a message, give
a command, and upload data. These packets satisfy the
following principles: 1) packets in the same traffic block
have the same source IP address, destination IP address,
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and transport protocol; 2) each pair of packets (P;, P;) in
the same traffic block have an interval less than T, ie.,
|ti—t;| < T, wheret; and t; are the arrival time of packet P;
and P;, T is a parameter depending on the service duration
and dynamic IP assignment scheme used by the network
service provider; 3) TCP packets in the same traffic block
belong to the same TCP connection. Particularly, we denote
the set of traffic block as B.

Sensitive Information. Sensitive information is data that
the unauthorized accessing can incur privacy or security
risks of an individual or organization. We formulate the i-th
piece of sensitive information as a key-value pair denoted
as s; = (k,v), where key k is a marker that represents a
specific type of sensitive information, and value v is the
corresponding content gathering from the network traffic. In
particular, we denote the set of sensitive information pieces
as S and the set of markers as K.

Privacy Fingerprint. We denote the IoT privacy finger-
prints in network traffic as a set F' = {f;}, where each
privacy fingerprint f; = {s; };\/:1 contains several pieces
of sensitive information s;, where N; is the total number
of sensitive information pieces in privacy fingerprint f;.
In a given privacy fingerprint f;, the sensitive information
pieces s; are generated from the same traffic block b;, and
associated with the same sub-class of markers K.

2.2 Problem Overview

In order to quantify the privacy leakage of IoT in mobile
network systematically, we collect IoT traffic from the mo-
bile network and divide the problem into the following two
major tasks as shown in Figure 1:

' Sensitive Information Extraction N
,{ Traffic Block

Sensitive Marker
Generation Selection

(o am| I ]

loT Traffic Flow \_ | Sensitive Ilnformation |/
1

4 " )

Privacy Fingerprints

h 4
[ loT Privacy Analysis Framework ]
Quantification Case
Result Study

Privacy Leakage Quantification

\-

Fig. 1: The quantification framework overview.

/

1) Sensitive Information Extraction.

With a given IoT traffic flow T'F, we firstly generate NV
traffic blocks B = {b;} | by segmenting the packets in T'F
according to the definition of traffic block. Then, we provide
a semantic method to gather sensitive markers into a set K,
through which we extract L; pieces of sensitive information
S = {s; }f;'l from each traffic block b;. The details of our
semantic method are presented in Section 3.2.

2)Privacy Leakage Quantification.
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Based on the semantics of sensitive information markers
K, we divide these markers into different privacy issues,
and construct a framework to systematize them according
to the network entities of user, device, and platform. Then,
we generate M; privacy fingerprints F; = {f;} ]Ail from the
sensitive information S; extracted from each traffic block
b; considering privacy issues and network entities, conduct
quantitative analyses by attributing the privacy fingerprints
to the framework and discuss typical case studies.

2.3 Dataset

We obtain a dataset which contains three-day IloT traffic
flow from a mobile network operator in China. The dataset
covers multiple IoT applications and services. To identify
the IoT devices in our dataset, we make reference to their
Type Allocation Code (TAC) allocated by the Global System
for Mobile Communications Alliance (GSMA). In addition,
the product descriptions on relevant websites of IoT devices
are highly correlated with their device type information
[21]. We also refer to the official documents or user guides
provided by the manufacturers of these IoT devices, and the
product descriptions or instructions given by distributors.
We identify 47,651 devices including locating and navigat-
ing instruments, monitoring equipment, on-board tablets,
industrial sensors, vending machines, POS terminals, wear-
ables, etc. These devices are connected to 37 different IoT
platforms, such as logistics and vehicle management plat-
forms, the communication between devices and platforms
generates 22,121,216 packets in total. We find all kinds
of readable contents in the payload of packets, including
the basic information of users, devices, and platforms, the
details of instructions, etc. We classify the devices into ten
categories, as shown in Table 2, which cover the commonly
used functions of IoT devices.

3 SENSITIVE INFORMATION EXTRACTION

We generate traffic blocks from the IoT traffic flow from our
dataset, and design a semantic method to select markers
for sensitive information. Based on these markers, we extract
sensitive information from traffic blocks and give the mea-
surement results.

3.1 Traffic Block Generation

We generate traffic blocks to gather the packets from the
same network entity and involved in the same IoT service
together, so as to maintain the integrality of sensitive infor-
mation. In addition, due to the limitation of the Maximum
Transmission Unit (MTU), a piece of message may be cut
into several different packets in the traffic flow, which need
to be solved by traffic block generation.

Firstly, we carry out deep packet inspection (DPI) on
the packets to extract key information from each network
layer, such as IP quintet (i.e., source and destination IP
address, source and destination port, transport layer pro-
tocol) from IP layer header, TCP flags and sequence number
from transport layer header, and payload from application
layer. Then these packets are divided into different blocks
according to the definition of traffic block in Section 2.1. We
assign T' = 5 minutes as the maximum interval of packets
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in each block, and 12,634,271 traffic blocks are generated.
We concatenate the payloads of packets in the same block,
and use the payload contents of unencrypted protocols (e.g.
HTTP and MQTT) for sensitive information extraction.

3.2 Selection of Sensitive Information Markers

Ve
i

~
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Sensitive Marker Selection

Traffic Block Attributes of Functions of
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4
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Sensitive Information Pieces |

Fig. 2: Extraction of sensitive information.

Figure 2 presents an overview of sensitive information
extraction. As shown in the figure, we firstly search for
sensitive issues in the traffic blocks manually. Due to the lack
of privacy standards of IoT devices and platforms, we search
the online services and functions provided by common IoT
operators, and collect 86 information fields associated with
IoT users, devices, and platforms. Based on these fields, we
use the method of approximate string matching to narrow
the selection of keywords in the unencrypted payload of
each traffic block. Then, taking the attributes of IoT network
entities and the functions of IoT services into considera-
tion, we collect a number of keywords that are relevant
to some specific types of sensitive issues respectively, some
keywords also provide indications of certain services in IoT
scenarios. Hence, we set these keywords as traffic markers,
and aggregate the similar forms of them, such as 'deviceid’,
'device_id', 'devicel D', and 'equipid’ . Finally, we collect all
the markers as a semantic diction for sensitive information,
and combine them with Subsequence-Preserving Sampling
Algorithm [22] to extract sensitive information from each
traffic block. Thus we acquire a large set of sensitive infor-
mation pieces, the subsets of which are expected to profile
the related network entities.

We look into our semantic diction, and measure the
distribution of markers in the sensitive information pieces.
More than 50 categories of traffic markers are selected,
including identities or attributes of IoT users and devices,
spatial-temporal information, application types, etc. For
instance, marker 'imsi’ falls into the category 'TM ST,
its corresponding sensitive information is the 'International
Mobile Subscriber Identity’, which is a unique number to
distinguish each mobile user; the other markers in the
category 'IMSI’' add some prefixes or suffixes to the core
"imsi’ marker for deeper filtering, such as 'device_imsi’,
"imsi_code’, "imsicode’, etc. Table 3 shows several top
coverage sensitive markers in our dataset. All of them are
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Category ]%i::;et Description
Locating 9897  An IoT device which locates objects like parcels and cargo containers remotely
Monitoring 1339  An IoT device which monitors remotely and uploads data streams
Portable 256 A handheld IoT device like card scanner
Router 1496  An IoT device which performs the function of routing
Vehicle 545 An on-broad IoT device used for driving assistance, recording data, or entertainment
Dongle 8737  AnIoT device which is inserted into another device to provide network connectivity
Module 1809  An IoT device which works as a part of a system or machine
Modem 365 An JoT device which connects one system to another using a telephone line
Terminal 132 An IoT device that joins users or environments to the central system
Others 23075  IoT devices in other categories (e.g., POS terminal, Bluetooth Audio, Metering)
TABLE 2: Details of the dataset.
Marker Where to find Coverage entities, which is conducive to the sensitive information
loc HTTP: payload, json, name  28.47%  collection and behavior profile of corresponding network
platform name HTTP: payload, URL 7.86% entity. Figure 3 shows the occurrence numbers of ten typical
imsi HTTP: payload, json, name 4.79% sensitive markers in the uplink and downlink traffic blocks.
imei HTTP: payload, json, name 3.33% As shown in Figure 3, the markers relevant to basic infor-
userid HTTP: payload, json, name 3.05% mation and identity authentication, like ‘"manu facture’ and
appname HTTP: payload, json, name 2.75% "userid’, occur more frequently in the uplink traffic; while

TABLE 3: Top 6 coverage sensitive information markers.
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Fig. 3: Occurrences of sensitive markers in the uplink and
downlink traffic.

found in the HTTP payload of packets, and the payload is
obtained by DPI, as discussed in Section 3.1. Specifically,
the marker 'plat form name’ is found in the URL in HTTP
payload, and the other five markers are found in the names
of name/value pairs in json data in HTTP payload. The
coverage of each marker means the proportion of traffic
blocks containing the marker among all the blocks. We find
that marker 'loc’ has the topmost coverage of 28.47%, which
implies that sensitive information leakage on location” can
be serious; and the other top coverage sensitive markers
are relevant to the identity or name of different network

the markers like ‘mp3’ and ’ filename’ tend to appear in the
downlink traffic, which implies that these markers represent
the feedback data for users. Moreover, we find that the
occurrences of sensitive markers vary between the uplink
traffic and downlink traffic, with the uplink traffic sent by
devices or users and received by platforms or servers, and
downlink traffic on the contrary.

4 PRIVACY LEAKAGE QUANTIFICATION

We design a quantification framework for IoT privacy leak-
age based on the semantics of sensitive information markers
selected from mobile network traffic and the three major
types of network entities of user, device, and platform.
Then privacy fingerprints are generated from the sensitive
information pieces of each traffic block, and attributed to
the framework to quantify privacy leakage. At last, we
discuss instances of privacy leakage on location information,
application calling, and voice service.

4.1

As shown in Table 4, we classify the sensitive informa-
tion markers into different privacy issues based on their
semantics, and systematize them by multiple attributes or
behaviors of network entities in IoT.

User. 10T users have the most types of privacy issues,
we consider their basic information and the behaviors of
using applications, shopping, travel, and entertainment. The
basic information includes their identifier, name, gender,
address, email, phone number, and even password, which
can be used to distinguish a user in cyberspace or physical
world. Then, the distinguished users can be associated with
privacy sensitive data of their behaviors, such as the calling
sequences of the applications they used, their payment
information in shopping, the time they went out, and their
preferred entertainments.

loT Privacy Framework Design
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Entity 10T Privacy Classes Sub-classes
Address Name Email Gender Password
User Info 7782/0.09% 4269/0.048% 99/0.00047% 66/0.00075% 1/0.00001%
5/44.7984 5/41.7928 5/23.0258 5/21.0324 5/3.4657
App name Calling sequence App identifier Key
Application 576205/6.52% 101497/1.14% 76872/0.87% 24127/0.27%
PP 3/39.7926 3/345833 4/44.9996 4/40.3645
Purchase Payment Bank identifier Customer identifier
User Shopping 28498/0.32% 2030/0.023% 9/0.0001% 4/0.000045%
3/30.7728 4/30.4651 5/11.5129 4/6.4377
Speed Car phone Traffic information Drive Fuel consumption
Travel 30582/0.34% 15350/0.17% 5636/0.064% 1513/0.017% 17/0.00019%
3/30.9845 4/38.5557 5/43.1855 3/21.9675 5/14.4518
Music Game News Video Wechat Book
Entertainment 80085/0.91% 17027/0.19% 11789/0.13% 6257/0.07% 5539/0.062% 46/0.00052%
4/45.1634 4/38.9704 4/37.5000 4/34.9664 4/34.4789 4/15.4005
Client identifier Device identifier Manufacturer
Device Info 127995/1.44% 106249/1.20% 39606/0.45%
3/35.2792 3/34.7206 3/31.7602
Latitude Longitude City Device shutdown Device startup Coordinate conversion
Spatio-temporal Activi 120467/1.36% 50572/0.57% 57266/0.65% 33928/0.38% 30076/0.34% 4829/0.054%
P P ty 4/46.7965 4/43.3246 3/32.8664 3/31.2960 3/30.9345 3/25.4478
Device Channel Voice UMID Mp3
Device data 1038928/11.75% 114253/1.29% 49457/0.56% 39626/0.49%
3/41.5611 2/23.2923 3/32.4266 2/21.1745
User-agent Network-type Network mode Network operator High risk
Access 437646/4.94% 10465/0.12% 465/0.0052% 462/0.0052% sh s
> 3/38.9675 2/18.5117 2/12.2884 2/12.2754
Platform service Firmware upgrade Cloud api SMS verification Medium risk
Platform Info/Service 184890/2.09% 121293/1.37% 107021/1.21% 50/0.00056%
4/48.5101 3/35.1179 3/34.7423 2/7.8637
Platform Platform log Command exchange Session identifier Data storage Low risk
Platform data 248533/2.81% 208474/2.35% 25423/0.29% 13506/0.15%
4/49.6933 3/36.7427 3/30.4303 4/38.0438

TABLE 4: Framework for IoT privacy leakage quantification.

Device. Similarly, an IoT device can be distinguished
by the hardware and firmware information, including In-
ternational Mobile Subscriber Identity (IMSI) number, In-
ternational Mobile Equipment Identity (IMEI) number, cus-
tomized client or device identifier, and manufacture. Then,
we consider their spatio-temporal activities, data informa-
tion, and the access to mobile networks. In detail, the spatio-
temporal activities focus on the whereabouts and working
time. The data information includes data channel, filename,
Unique Material Identifier (UMID), and specially marked
voice data. The access to mobile networks refers to user
agent, network operator, and network type.

Platform. Compared with users and devices, IoT plat-
forms have less types of privacy issues, including the plat-
form name, the services and data information. Particularly,
for the services of platforms, we find privacy issues on
firmware upgrade, Application Program Interface (API),
and Short Messaging Service (SMS) verification. Then, the
other private data of platforms includes logs, command
exchange details, session identifier, and data storage details.

4.2 |oT Privacy Leakage Quantification

As discussed in Section 2, we use privacy fingerprint as
the basic unit to quantify privacy leakage, and each privacy
fingerprint contains several pieces of sensitive information,
which are extracted from the same traffic block and as-
sociated with the same sub-class of markers. In order to
conduct quantification analysis, we generate privacy finger-
prints from the sensitive information pieces in each traffic
block via attributing their markers to different sub-classes
of privacy issues in Table 4 based on the semantics. For
example, in a given traffic block, the sensitive informa-
tion pieces with markers ’'deviceid’, 'device_id','devicel D',
or 'equipid’ generate a privacy fingerprint of the sub-
class 'Device identifier’, and the sensitive information
pieces with markers 'imsi’, 'device_imsi’, 'imsi_code’, or
"imsicode’ generate a privacy fingerprint of the sub-class
'IMSI'. Then, we count the number of privacy fingerprints
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Fig. 4: Number of privacy fingerprints in each IoT privacy
class.

in each sub-class and calculate their proportions in all fin-
gerprints. In particular, we capture 8,843,245 fingerprints in
total, and part of them are associated to several different
sub-classes at the same time on account of the multiple
markers they contain.

Figure 4 shows the number of privacy fingerprints rele-
vant to each IoT privacy class. For IoT users, the numbers
of fingerprints on their basic information and the applica-
tions they used are both over 700,000, and the numbers of
fingerprints on their shopping, travel, and entertainment
behaviors are fewer, but still over 30,000 as well. For IoT
devices, the numbers of fingerprints on the hardware and
firmware information, spatio-temporal activity, and device
data reach up to one million, the number of fingerprints
on the access to network also reaches 449,038. For IoT
platforms, the numbers of fingerprints on the platform basic
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Fig. 5: Daily Patterns of privacy leakage for each type of
network entities.

information or service is 2,057,907, and the numbers of
fingerprints on the platform data is 495,936. IoT devices
have a larger scale of privacy leakage than platforms and
users, especially their spatio-temporal activities.

Figure 5 plots the average number of privacy finger-
prints at different times of a day for each type of network
entities. IoT users, devices, and platforms have different
daily patterns on privacy leakage. We count the number
of fingerprints in each two-hour consecutive interval, and
calculate the average of each time period in three days. IoT
users leak 96,210 privacy fingerprints per hour in average,
and leak most fingerprints around 17:00. IoT devices leak
108,980 fingerprints and platforms leak 18,801 fingerprints
per hour in average, and they both leak most fingerprints
around midnight. We observe that IoT users leave more
fingerprints off from work than at work, and devices tend
to work round the clock in three shifts, but the two peaks of
the number of platforms’ privacy leakage appear in midday
and midnight each. The above patterns of users and devices
imply that the number of fingerprints represents the inter-
activity between different network entities to some extent.
In addition, to understand the two peaks of platforms’
privacy leakage, we look into the semantics of their privacy
fingerprints in the day and night respectively. We find that
the services for users are more active during the daytime,
while the upgrade and maintenance are more active at night.

Table 4 presents the number of privacy fingerprints and
risk level relevant to all the sub-classes. In each cell of
Table 4, the first line shows the name of sub-class, and
the second line shows the number of privacy fingerprints
and the corresponding proportion in all 8,843,245 privacy
fingerprints. We put the sub-classes in each IoT privacy
class by their proportions from left to right, and the sum
of these proportions does not add to 100% because part of
fingerprints are associated to several different sub-classes
at the same time by the multiple markers they contain. In
addition to the leakage quantity, the closeness of the corre-
lation between each privacy sub-class and IoT entity makes
a difference to the risk level. As shown in the third line of
each cell in Table 4, we measure the closeness of correlation
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in values from 1 to 5, and calculate the risk score of each
sub-class by multiplying the logarithm of the number of
privacy fingerprints by this closeness value. According to
the risk scores, we divided all the IoT privacy sub-classes
into three risk levels in different colors. The sub-classes with
risk scores higher than 50 are marked as high risk in red
color, the sub-classes with risk scores less than 50 and higher
than 30 are marked as medium risk in yellow color, and the
sub-classes with risk scores less than 30 are marked as low
risk in green color. We observe that IoT users, devices, and
platforms have considerable risks respectively: (i) For IoT
users, the most serious privacy leakage appear in the sub-
classes of user identifier, application name, and application
calling sequence, the numbers of privacy fingerprints in
these sub-classes are over 0.1 million, and their proportions
are all over 1%. User identifier and phone number have
high privacy risk on account of their large leakage scales
and close correlations with users. Meanwhile, although the
leakage scales of several privacy sub-classes for users are
small, the information can lead high risks to a particular
user, for example, user password leakage surrenders the
whole account to others. (ii) For IoT devices, IMSI, location,
and channel of device data have largest scales of leakage,
with the numbers of fingerprints over one million and the
proportions over 10%. Most of the other sub-classes also
leak a lot on the spatio-temporal activity, data, and network
access of devices, with seven sub-classes have proportions
over 1%. IMSI, IMEI, location, and the file name of device
data have high privacy risk, which warns us that the IoT
devices have privacy risks no less than users. (iii) For IoT
platforms, the number of privacy fingerprints of their names
is 1.64 million, with the largest proportion of 18.60%, which
leads to high risk. In addition, the leakage proportions of
platform service, firmware upgrade, API, log, and command
exchange are over 1%.

In general, IoT devices have the largest number of leaked
privacy fingerprints, which remind us to pay more attention
on preventing device privacy leakage. Then, the privacy
leakage of users has a smaller amount, because human
privacy gains more concern from both developers and users,
and receives more protection as a result. Meanwhile, the
privacy sensitive data of platforms found in our dataset is so
homogeneous as to fall into limited sub-classes. In consider-
ation of the three-day duration of our dataset, collecting IoT
traffic in mobile networks for a longer duration can reveal
more privacy risks.

4.3 Case Study

As the privacy fingerprints on location information of IoT
devices and application calling of IoT users are both abun-
dant and perceptible, we choose them as the first two cases.
For the last case, we find a voice service platform which
leaks user information along with their speech content, then
provides convenient access to users’ daily life for eavesdrop-
pers.

Location Information. Location information leakage has
the largest number of privacy fingerprints. We find all
kinds of location information, including the longitude and
latitude, the city name, and specific address. The locations
are relevant to the vehicle trajectories, real-time locations
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and delivery addresses of logistics, starting and destination
points in navigation services, correspondence address main-
tained at the bank, etc. The snippet below is an example of
specific address leakage, the address content is encoded in
UTE-8.

<PAYLOAD:***+{_..

“locationInfo”:{“longitude” ## #HH#Ht,
“latitude” :## #HHHHH,
”address”:>(->(->(->(->{->(->(->(—>(->{->(->(->(—>(—} . } >

For instance, on an IoT cloud platform for vehicles, more
than 100 users’ tracks are exposed in the form of longitude
and latitude. We glean the privacy fingerprints of a selected
user, and the snippets below are part of the footprints in the
tracks:

<PAYLOAD:***+{
“cmd”:”overspeed”,
“param”:{"1limit”:40,

"speed”:41,

Vlat” #i# I,

"Ing” #H# H##,

"Hime” A} } >

<PAYLOAD:****{
“cmd”:” overspeed”,
“param”:{"1limit”:50,

“speed”:64,

Vlat”

"Ing” #H# H##,

"Hime” AR} } >

We plot one of his tracks during 16/10/2018 09:08:11 and
16/10/2018 11:03:24 in Figure 6, where warmer color rep-
resent higher speed as shown in the colorbar. This track
is 57.37 kilometers long and passed through five towns in
Hubei Province, the average speed is 48 km/h.
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Fig. 6: One of the leaked tracks of a selected user.

Application Calling. We observe a large number of
privacy fingerprints on application calling in our dataset.
The following application calling list is an example, and we
cover the details of corresponding user and platform for
privacy protection:

“param”:[

8
1 {"dev”:"livebroadcast”,”type”:"***" " cap”:"#" }
2 {"dev”:"com.autonavi.amapautolite”,” cap” #H##},
3 {"dev”:"com.aliyun.bluetoothphone”,” cap”#},
4 {"dev”:"com.i*****" " cap” ##},
5 {"dev”:"com.android.settings”,” cap” ###HHH#HH |,
6 {"dev”:"com.android.settings”,” cap” ###HH#HH |,
7 {"dev"”:"com.yunosdcar.update”,” cap” #iH##H#},
8 {"dev"”:"com.yunos.weatherservice”,” cap” ###},
9 {"dev”:"com.mediatek.filemanager”,” cap” #},
10 {"dev”:"com.ximalaya.ting.android.car”,” cap” #},
11 {"dev":"com.i*****” " cap”#},
12 {"dev”:"com.aliyun.filemanager”,” cap” #},
13 {"dev":"com.i*****” " cap” ###},
14 {"dev”:"com.yunosdcar.music”,” cap”:##},
15 {"dev”:"com.i**.updater”,” cap”:##},
16 {"dev”:"com.aispeech.aios”,” cap” ###},
17 {"dev":"com.aispeech.aios.wechat”,” cap” ##},
18 {"dev”:"com.i*****" " cap”#},
19 {"dev”:"com.i*****" " cap” ##},
20 {"dev"”:"cloudapi”,” cap”:"##"},
21 {"dev”:”_adas”,”cap”:"none”},
22 {"dev”:”_bluetooth”,”cap”:"none” },
23 {"dev”:”_voice”,”cap”:"none” },
24 {"type”:"general”,”dev”:"**" }]

The application callings containing keywords ” android”
and ”"car” tell us this is an android on-board device; then
keywords "aliyun” and "yunos” represent services from
Aliyun (https://cn.aliyun.com), i.e., a Chinese company
which provides cloud computing services to online busi-
nesses; ”autonavi’ (https://www.autonavi.com) is a Chi-
nese web mapping, navigation and location-based services
software; and "ximalaya” (https://www.ximalaya.com/)
is a Chinese online audio sharing platform; while ”_adas”,
7 _bluetooth”, and ”_voice” are system applications. Refer-
ring to the hidden details, we speculate that the above list is
a sequence of test application calling behavior from a new
user or developers. In practice, a single privacy fingerprint
of application calling list tends to contain less applications,
but we can concatenate the privacy fingerprints from the
same user to trace the temporal behaviors of real application
calling.

Voice Service. We find a cloud platform that provides
voice services through intelligent devices, e.g., smartphones,
on-board tablets. The traffic contains both user information
and texts converted from human speeches, which reveal all
kinds of users’ interactions. For instance, a user requests
the navigation service and set her destination in the first
text, then requests the weather service to obtain the weather
information of her destination place in the next text. At last,
the weather forecast for the following three days is fed back.
The snippets below are part of her requests:

<PAYLOAD:*#*{...
“speakerResult”:{”message”:"success”,
“minAge” ##,
"gender”:”female”,
"ageGroups”:”senior”,
"code” " #itHH#",
”“operator”:"recognize” },
”htmISUrl” : /’************$**”/

“semantic”:{”intent”:{"name”:"***”,
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b
<PAYLOAD:*+{__.

T gervice”” Cn. HEREER KAk
en. . ,
”COde”:”ANSWER”,
"general”:{"quitDialog”:"true”,

Iltype//:I/TI/,

7+ 7. ’

title” R RE* s

"text”.”>(~>(->6>(->(->6>(-*********************’l
: 7

//urlll:ll 553 3 3 3 S e 6 6363635635 5 ”,},
“responseld”:FrpERER | 1

5 RELATED WORKS

Privacy is defined on account of users customarily. With
regard to IoT, following the traditional definition, Ziegeldorf
et al. [23] defined privacy as “the threefold guarantee to
the subject for: 1) awareness of privacy risks imposed by
smart things and services surrounding the data subject;
2) individual control over the collection and processing of
personal information by the surrounding smart things; 3)
awareness and control of subsequent use and dissemination
of personal information by those entities to any entity out-
side the subject’s personal control sphere”. Alpar et al. [24]
also present that "IoT privacy is the right of individuals to
determine for themselves when, how and to what extent
information about them is collected, processed and com-
municated”. In their definition, individuals not only have
the right to determine these aspects within their control
area, but also trust their right to be respected when control
is not available. Similar to their definitions, IoT privacy is
regarded as the extension of human privacy in most works.
Hence, literature on universal privacy leakage quantification
provides us experience to analyze IoT privacy leakage. In
addition to analysis studies, increasing researchers devote
to preventing privacy leakage in IoT, which inspires us
to figure out the weak points and conduct corresponding
analysis.

5.1 Privacy Leakage Quantification in Mobile Networks

Most of the previous works quantified privacy leakage in
mobile networks based on mobile services and mobile de-
vices, the typical examples are online social network (OSN)
and smartphone.

Mobile Service based Quantification. With the ubiqui-
tous use of mobile devices, European regulators warned of
higher privacy losses as a result of searching in the mobile
Internet, Krishnamurthy et al. [25] started to examine the
privacy leakage in mobile network from mobile OSNs. They
collected data by creating accounts on some mobile OSNs
and observing the private information requested by each
mobile OSN. Then, they presented a taxonomy of ways to
study privacy leakage, and reported on the current status
of existing leakages. Their report shows that mobile OSNs
exhibit private information to third parties. Later, Xia et
al. [16] extended the dataset by collecting traffic from a
CSP and called more attention to the privacy leakage in
mobile network data than OSN. They sorted and organized
the traffic into groups according to the users’ names and
personal information (e.g., political views, browsing habits,
favorite apps with the users). Then they quantified privacy
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leakage in mobile networks based on these sorted groups.
Their methodologies of generating privacy fingerprints and
classifying OSN privacy leakage provide us the instances of
sensitive information extraction and the framework of user
privacy depicting.

Mobile Device based Quantification. Apart from OSN
in mobile network, Yang et al. [26] presented an analy-
sis framework called Applntent to analyze sensitive data
transmission and detect privacy leakage in android, they
considered sensitive data from device ID, phone informa-
tion, location, contacts, and short message service (SMS);
Das et al. [27] conducted a measurement study on privacy
leakage of BLE communication between smartphone and
fitness tracker, they found that the fitness trackers traffic is
correlated with user’s activity and can be used to speculate
user’s gait. Their works show us privacy leakage samples
from android smartphone and wearable devices.

In addition, some researches also concentrated on spe-
cific mobile network access methods to privacy leakage like
public hotspots [28] and certain categories of privacy such
as geographical locations [29], [30]. Unlike the studies on
mobile OSN, smartphone, or wearable device, our work
focuses on privacy leakage in IoT mobile network, and give
comprehensive quantification and analysis for the privacy.

5.2 Preserving loT Privacy

Various methods were proposed to preserve privacy in IoT,
including cyber-attack detection, and sensitive data man-
agement.

Cyber-attack Detection. Most IoT devices are designed
to execute tasks or feed information back by remote control
with low cost and computing power, which leads to the na-
ture that they are easily attacked and result in sensitive data
leakage at large scale [31]. Hence, a number of studies pre-
served IoT privacy via detecting or preventing IoT devices
from DDoS attack [32], [33], [34], [35] or unauthorized access
[36], [371, [38], [39], [40], a large proportion of them focused
on designing secure architectures and protocols. Moreover,
Sha et al. [41] detected privacy leakage scenarios of IoT by
measuring security degree of sensitive information. Then,
they proposed attack-defense and fix-distribution mecha-
nisms to reject sensitive information leverage attack based
on selected taint tracking and real-time memory modifica-
tion.

Sensitive Data Management. However, we pay more
attention to the management of privacy sensitive data than
security guarantee structures. To preserve privacy for fog
computing-enhanced IoT by data aggregation, Lu et al.
[42] presented a scheme named LPDA, which employs
the homomorphic Paillier encryption, one-way hash chain
techniques, and Chinese Remainder Theorem. The scheme
aggregated hybrid IoT devices” data into one, and filtered
injected false data at the network edge early. Their security
analysis proved that the scheme satisfies differential pri-
vacy constraint. Yin ef al. [43] also used differential privacy
techniques to protect location data privacy in Industrial IoT,
while maximizing the utility of algorithm and data. Except
for differential privacy, Liu et al. [44] used a K-anonymity
method to preserve data privacy for wearable IoT devices
while guaranteeing the data usability. The above methods
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preserve the privacy of each individual by aggregating data
or clustering devices, which prevents others from profiling
one person or device. However, the sensitive attributes of
groups are still unprotected, which inspires us to compare
between the privacy of individuals and groups in the future
work.

6 CONCLUSION AND FUTURE WORK

In this paper, we quantify IoT privacy leakage in mobile
networks systematically. We combine systematic analyses
with real-world measurements by generating privacy fin-
gerprints from the network traffic and attributing them
to a privacy quantification framework. Our quantitative
analyses and case studies present that the behaviors and
attributes can be associated with the basic information to
profile an IoT network entity in both cyberspace and physi-
cal space, which leads to high risks.

As the future work, we plan to extend the time duration
of our dataset and consider more platforms in our study,
while going deep into significant privacy issues. The case
studies inspire us to associate the basic information with
muti-platform behaviors. For example, proceeding from the
application calling list, activities of the same user can be
traced in different services. Then, we can aggregate all kinds
of privacy sensitive data, e.g., purchase record and vehicle
tracks.
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