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With the rapid development of Internet services and mobile devices, nowadays, users can connect to online services anytime
and anywhere. Naturally, user’s online activity behavior is coupled with time and location contexts and highly influenced by
them. Therefore, personalized context-aware online activity modelling and prediction is very meaningful and necessary but
also very challenging, due to the complicated relationship between users, activities, spatial and temporal contexts and data
sparsity issues. To tackle the challenges, we introduce offline check-in data as auxiliary data and build a user-location-time-
activity 4D-tensor and a location-time-POI 3D-tensor, aiming to model the relationship between different entities and transfer
semantic features of time and location contexts among them. Accordingly, in this paper we propose a transfer learning
based collaborative tensor factorization method to achieve personalized context-aware online activity prediction. Based on
real-world datasets, we compare the performance of our method with several state-of-the-arts and demonstrate that our
method can provide more effective prediction results in the high sparsity scenario. With only 30% of observed time and
location contexts, our solution can achieve 40% improvement in predicting user’s Top5 activity behavior in new time and
location scenarios. Our study is the first step forward for transferring knowledge learned from offline check-in behavior to
online activity prediction to provide better personalized context-aware recommendation services for mobile users.
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1 INTRODUCTION
With increasing prevalence of mobile devices, nowadays users can connect to Internet services anytime and
anywhere, thus generating a large amount of online activity data. Such data records users’ activity behaviors
interacting with the Internet, such as web browsing behavior and app usage behavior. Naturally, individual online
activity contains spatial and temporal information and is highly influenced by these two contexts [54, 72]. For
example, for mobile app usage behavior, which is the most representative online activity, in the morning users
may use news apps more often while preferring video apps in the evening. As for location context, users are likely
to use travel apps in scenic spots while using educational apps more frequently in campus. Since users tend to
have different activity behaviors in different locations or at different time periods, context-aware online activity
modelling and prediction becomes very necessary. Different from pure activity prediction, context-aware online
activity prediction requires a better understanding of user’s activity behavior at fine-grained level to provide
accurate and customized prediction results. Absolutely, it will benefit mobile operators and app developers for
guiding them to provide higher-quality online services and personalized recommendations [9, 78, 79].

In this paper, we focus on this important research question and aim to study personalized context-aware online
activity prediction problem. More specifically, based on user online activity history with time and location context
information, we want to predict his/her online activity in new scenarios, in other words, predict the user’s activity
under new time and location contexts. Though achieving this goal is quite meaningful, solving this problem is
actually very difficult because online activity behavior is influenced by three different factors, i.e., user interest,
temporal context and spatial context. Considering all the factors together to make accurate prediction faces two
critical challenges. First, spatial and temporal contexts jointly influence user’s online activity behavior [54, 72],
and their impacts are nonlinear and even not independent. It means that we need to consider time and location
contexts at the same time and learn their coupling impact on online activity behavior. Second, context-aware
activity prediction task needs to face worse data sparsity situation. On the one hand, for activity behavior, we
may only observe a small part of online activity for each user, the sparsity of observed activity makes it very
hard to learn user interest accurately. On the other hand, when further considering time and location features,
the behavior data becomes sparser that each user’s records only cover a small part of scenarios (i.e., location and
time pairs) compared with all the possible scenarios. Therefore, such high sparsity leads to great difficulty in
learning user interest, spatial semantics and temporal semantics as well.
In order to tackle above challenges, in this paper we propose a transfer learning based collaborative tensor

factorization method to achieve personalized context-aware online activity prediction. Specifically, for our first
challenge, we build a user-location-time-activity 4D-tensor, a higher-order matrix, to model the relationship
between multiple dimensions of users, locations, time periods and activities. And then we utilize tensor factoriza-
tion [3, 80], a prevalent multi-dimensional collaborative recommendation method, to learn user interest, activity
features, time and location semantics, and finally model the coupling impact of location and time contexts towards
activity behavior. As for the second challenge, to make up for data sparsity problem, we find offline check-in data
is very suitable to serve as auxiliary data, and help solve context-aware online activity prediction problem. Note
that "offline" means offline activity. Besides, we regard the check-in data as offline activity because it records
users’ behaviors in the real physical world, i.e., check-in data records users’ visiting behaviors towards different
POIs in specific locations and time slots. In our task, utilizing offline check-in data has many advantages: on the
one hand, it records user’s POI visiting behavior with time and location information [72], which makes it possible
to learn semantics of location and time periods and transfer such knowledge to help our prediction task; on the
other hand, it is public and easy to access, which means utilizing additional check-in data is a practical solution.
Based on offline check-in data, we can also build a location-time-POI 3D-tensor. Combining 4D-tensor from
online activity data with 3D-tensor from offline check-in data, we propose a collaborative tensor factorization
method to learn latent feature matrices of users, locations, time slots, activities and POIs, by sharing the features

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 3, No. 4, Article 132. Publication date: December 2019.



Personalized Context-aware Collaborative Online Activity Prediction • 132:3

of locations and time slots and transferring knowledge among them. Utilizing those latent matrices to reconstruct
the targeted 4D-tensor, we are able to make predictions of activity behavior for each user under new time and
location contexts. To sum up, the main contributions of this work are three-fold:

• To the best of our knowledge, we are the first to introduce offline check-in data as auxiliary data to learn
semantic information of location and time contexts, to solve personalized context-aware online activity
prediction problem, which helps predict online activity behavior of individuals under different contexts
more accurately.

• Based on online activity data and offline check-in data, we propose a transfer learning based collaborative
tensor factorization method to achieve personalized context-aware activity prediction, which jointly models
the relationship of different entities and learns their latent feature matrices.

• Based on real world datasets, we evaluate our method’s performance and demonstrate that our method
outperforms the other state-of-the-arts in high sparsity scenario, i .e ., with 30% of observed time and
location contexts, our solution can achieve 40% improvement than other baselines in predicting Top5
activity behavior under new time and location contexts. In addition, we also demonstrate that user factor,
time and location contexts have quite different impacts on online activity prediction performance.

The rest of the paper is organized as follows. First we introduce related work in Section 2. Then Section 3
defines our investigated problem and motivates our study. Section 4 introduces our methodology and Section 5
evaluates its performance. Finally, Section 6 discusses its implication, and Section 7 concludes the paper.

2 RELATED WORK

2.1 Online Activity Modelling
In our daily life, there are many kinds of online activity for users and a variety of works focus on online activity
modelling and behavior analysis. For email interaction [13, 39], Elsweiler et al. [13] presented a longitudinal,
naturalistic study of email behavior and succeeded in isolating and understanding re-finding behavior in the email
interaction logs. In addition, for social communication [18, 30], Kuan-Yu et al. [30] applied network externalities
and motivation theory to explain why people continue to join SNS. As for web browsing behavior [12, 14, 49, 68],
Su et al. [49] showed that it is possible to de-anonymize web browsing users with social networks.

Recently, with the highly convenience of mobile devices, many works have studied how individuals use their
mobile phones as well as the mobile apps. Existing works focus on various dimensions such as user interactions
[15, 46], network traffic [27, 52], and energy drain [10, 24]. A study [15] shows immense diversity of usage
activities among users. Some works aim to find app usage patterns according to their app usage records [66, 78].
What’s more, other works focus on app prediction or recommendation problems [22, 63, 69]. They generally
make app recommendations to users based on their historical interactions with apps [7, 59, 64]. Besides, some
researchers tend to satisfy extra requirements to make specific app recommendations, such as novelty and
temptation [16, 70], privacy protecion [31, 83]. However, due to the large amount of apps, sparsity becomes a
challenging problem when making personalized app prediction and recommendation. To solve this problem,
one of the effective strategies is to introduce auxiliary information from other data sources, such as social
relationship [11, 17, 29], user profiles [5, 28, 32], app’s content description [2] and so on. For example, Costa
et al. [17] considered the records of users sharing apps with others to see what apps are hot and should be
recommended. Lin et al. [29] utilized social information from Twitter followers to solve the cold-start problem in
the app recommendation task.

Different from existing works, we introduce a new kind of data, i.e., offline check-in activity data as auxiliary
information to tackle the sparsity challenge in personalized context-aware app prediction task. Indeed, many
studies have shown that online activity behavior [36, 57] and offline behavior [41, 81] have certain correlations
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for they both reflect users’ habits, lifestyles, interests. Therefore, our study aims to take a further step to better
understand and predict user’s online preferences with the help of offline behaviors.

2.2 Context-aware Recommendation
A context-aware recommendation is usually achieved by using additional information of location, time, and
activity, etc [25, 33, 44, 80, 82]. Indeed, context information plays an important role in prediction and recom-
mendation tasks. In many practical scenarios, prediction and recommendation tasks are often very complex
because a variety of contexts need to be considered, e.g., time, location, friends, ect. Related with our targeted
problem, here we mainly focus on context-aware app recommendation studies. Many works study how to
recommend suitable apps with a high likelihood of installation to users. Enrique et al. [7] presented an integrated
app recommendation system by considering app ratings and tags, and contexts of location, time and weather.
Wolfgang et al. [59] designed a hybrid system which recommends mobile apps to users based on what other
users have installed in a similar context with location and POI information. Kuifei et al. [73] proposed to mine
common context-aware preferences from many users’ context logs through topic models and represent each
user’s personal context-aware preferences as a distribution of the mined common context-aware preferences,
and then achieved personalized context-aware recommendation. Bohmer et al. [5] presented a system AppFunnel
to track the performance of different recommender engines and found that a context-aware (e.g., time, location
and social network) recommender engine performs better in recommendation tasks for short-term usage.

In addition, some studies pay attention to app usage behavior, rather than installation behavior, and propose a
variety of context-aware prediction methods. Within our scope, we mainly focus on spatiotemporal context-aware
works [19, 25, 47, 72, 77]. Some researchers only consider one of spatial context and temporal context [47, 72, 77].
Shi et al. [47] considered location context information and proposed a context-aware recommendation approach
based on tensor factorization for MAP maximization. Zhao et al. [77] considered temporal context and proposed
a framework for next app usage prediction. Yu et al. [72] utilized static POI information in each location to help
predict its app usage behavior at the group level. In addition, some other works considered both spatial context
and temporal context. Han et al. [19] integrated the spatiotemporal information of app usage logs into a topic
distribution model to recommend apps appropriate to current time and location of a user. Karatzoglou et al. [25]
introduced a spatiotemporal context-aware algorithm for implicit feedback data.
However, the available data will become sparser when considering more dimensional context information,

which makes it harder to learn the complex hidden correlation between app usage behavior and contextual
factors. Thus it is important and necessary to consider how to make up for sparsity problem in such prediction
tasks. Motivated by this, different from the works [19] and [25], we consider transfer extra spatiotemporal
contextual knowledge from another data source (i.e., offline check-in behavior) to further improve the prediction
performance.

2.3 Tensor Factorization
Tensor is often utilized to solve context-aware prediction or recommendation problems [4, 8, 23, 37, 42, 51, 71, 80].
Zheng et al. [80] modeled the user-location-activity relations with a tensor representation to provide activity
recommendations in certain locations for users. Yao et al. [67] exploited a tensor to model multi-dimensional
contextual information to predict user’s preferences towards POIs with the help of social regularization. Hong et
al. [23] constructed a social context based tensor to discover latent interests of users in order to provide better
movie recommendation. Ying et al. [71] took temporal factors into consideration in their POI recommendation
system, where the temporal information is stored in a tensor. From these recent works, we can see that a great
number of human activities are related to context information, such as temporal, spatial and social information.
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Tensor is regarded as an efficient strategy to store context information and represent complex relationship among
multiple dimensions.
In tensor factorization models, sparsity is always a challenging problem [23, 53, 74, 80], especially in the

case that more than one type of context need to be considered [3]. To solve this problem, many researchers
introduce context information from other data resources, such as introducing social context information from
social networks [67] and introducing location context information from Foursquare [3]. Based on these external
information, they usually construct an additional matrix, containing one type of context, to join the tensor
factorization.
However, in our case, user’s online activity is influenced by both spatial and temporal contexts. To solve the

sparsity problem, different from existing works, we construct another tensor containing both spatial and temporal
contexts, to help solve our context-aware prediction task. Specifically speaking, we propose a new collaborative
tensor factorization method to handle both constructed tensors and transfer knowledge among them.

3 PRELIMINARIES
In this section, we first introduce two datasets utilized in our study, then we provide a detailed description about
our investigated problem, i.e., personalized context-aware online activity prediction. After that, we discuss its
potential challenges and come up with feasible strategies to overcome them accordingly, which motivates our
proposed prediction model in next section.

3.1 Dataset
Telecom Dataset. This dataset is collected from a major mobile network operator in China, which contains the
access records of the users when they issue a connection request to the cellular towers in a major metropolitan
city of China. It records individual mobile app usage behaviors (online activities) under a variety of spatiotemporal
scenarios. It covers 1.37 million users and 9.4 billion records during one week period on April 20-26, 2016. Each
record contains the following information: anonymous user ID, timestamp, connected cellular tower ID and its
GPS coordinates, and the used app ID and its category. What needs to be noted in particular is that, for privacy
issues, these recorded users are anonymous, which means we researchers are unable to directly identify who the
user is. In addition, all the used apps recorded in this dataset cover the most popular 2,000 apps across App Store
and Google Play. Therefore, we can get information about spatiotemporal online activities among a large number
of apps. In addition, this dataset is released in http://fi.ee.tsinghua.edu.cn/appusage/ and it has been utilized in
previous researches [54, 62, 72].
Check-in Dataset. This dataset is collected from one of the most popular location-based service providers in

China, which records a user’s activity of visiting a specific location. It contains over 40 million records collected in
Shanghai during three months. Each check-in record consists of anonymous user ID, check-in timestamp, check-in
POI-category and its POI’s GPS coordinate, where POIs are categorized into 16 categories, including Shopping,
Residence, Tourism, Education, Life-Service, Industry, Restaurant, Business, Medical-Service, Culture, Government,
Hotel, Transportation, Entertainment, Fitness and Landmark. It has been utilized in previous work [60].
Since we have a lot of terms to describe our datasets, in order to avoid confusion, we list the definitions of

several terms used frequently in the whole paper as follows. For the Telecom Dataset, app means a specific
app name, such as Wechat and Weibo. location means the area covered by an individual cellular tower. For
the Check-in Dataset, POI means a specific POI, such as a specific school, but it is not recorded in this dataset.
POI-category means the category of a POI, such as Shopping and Residence, which is recorded in this dataset.
In addition, time means the timestamp in each record of both datasets, such as 20160420 15:15:15.

Ethics.When it comes to protecting privacy of mobile users, we also want to point out that we have taken
active measures to realize it. First, before processing these two datasets, we have received the approval from
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their providers and signed a strict non-disclosure agreement. All of our processing procedure of these datasets is
within the scope of the agreement and all the researchers take responsibility for the user’s privacy. Moreover,
these two datasets are stored in our private server protected by authentication mechanisms and firewalls, which
physically guarantee their privacy. Second, these two datasets do not contain any personally identification
information. In Telecom Dataset, the user ID has been anonymous (replaced with a random string) by our data
providers, and we have no access to the true user ID. While in Check-in Dataset, we don’t have the field of user
ID. Third, for Check-in Dataset, in fact, the spatiotemporal information is shared by users themselves, which
means they do not worry that such information will be seen by others. This further indicates that such check-in
data does not threaten their true sensitive privacy (e.g. income, health) indeed. In addition, there are also some
public check-in datasets, such as Gowalla and Foursquare. These check-in datasets are easy to access, which
means utilizing additional check-in data is a practical solution. In a short summary, our processing of these two
datasets is carried out with the agreement of users and we can not access the information of users’ true ID at any
time. Consequently, user privacy is well protected throughout our experiment.

3.2 Problem Definition
With the rapid development of Internet technology and mobile devices, nowadays we can get access to the online
services anytime and anywhere through a variety of mobile apps. For example, we get fresh information through
news apps, obtain route guidance through navigation apps, relax ourselves through music apps, etc. Indeed,
mobile devices such as smartphones, have become the most important carrier to record online activity behavior of
individuals, and one fundamental online activity is user mobile app usage, i.e., when and where a user uses which
app. For mobile app usage, generally speaking, users may use different apps in different locations or at different
time periods, e.g., in the morning users use weather apps more frequently while using more entertainment apps
in the evening, and users often use shopping apps in shopping malls while using game apps at home. In other
words, contexts of spatial and temporal information influence user’s mobile app usage behavior a lot. Therefore,
understanding context-aware app usage behavior and making the corresponding context-aware recommendation
is very important, which benefits traffic resource allocation [50] and personalized recommendation [78].
In this paper, we take mobile app usage (i.e., the most representative online activity) as a typical case and

study personalized context-aware online activity prediction problem. Specifically, suppose we have collected
some user’s online activity records with context information, then we need to predict each user’s online activity
behavior under other unobserved contexts. In our case, the context refers to spatial and temporal information of
online app usage behavior. Formally, we define our investigated problem as follows:
Suppose there are NU users and we have observed part of their online (app) activity behavior, denoted as

R = {R1,R2, ...,RNU },Ri = {(Rli j ,R
t
i j ,R

a
i j )}, where Ri represents the i-th user’s app usage records and Rli j ,Rti j ,Rai j

represent location, time and used app of the j-th record from the i-th user, respectively. Suppose all the records
contain NL different locations, NT time slots and NA distinctive apps. Then, we can construct a 4D-tensor to fully
represent the observed online activity of users. Specifically, the user-location-time-activity tensor can be denoted
as X = {Xu,l,t,a}, with Xu,l,t,a representing the usage frequency of app a in location l at time slot t for user u.
When Xu,l,t,a = 0, it means that we haven’t observed user u’s usage of app a in location l at time slot t . For a user,
note that wemay only observe his/her online activity in very limited scenarios(i.e., specific time and location pairs),
thus online his/her activity in other new scenarios remains unknown and needs to be predicted. Specifically, since
we have NL different locations and NT different time slots, we utilize Call = {(l , t)|l = 1, ...,NL, t = 1, ...,NT }

to represent all the scenarios, and for user u, we utilize Cu = {(l , t)|
∑NA

a=1Xu,l,t,a > 0} and Cu = Call − Cu to
represent all the observed scenarios and unobserved scenarios, respectively. Then the input and output of our
targeted personalized context-aware online activity prediction problem are as follows:
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Input: User online activity behavior in observed scenarios(i.e., specific time and location pairs), denoted by
the original user-location-time-activity tensor X = {Xu,l,t,a |u = 1, ...,NU ,a = 1, ...,NA, (l , t) ∈ Cu }.
Output: User online activity behavior in unobserved scenarios, denoted by the recovered user-location-

time-activity tensor = {X̂u,l,t,a |u = 1, ...,NU ,a = 1, ...,NA, (l , t) ∈ Cu }.

3.3 Challenges
Though personalized context-aware online activity prediction is very meaningful, solving this problem faces two
critical challenges, i.e., the complicated interaction between user activity and spatiotemporal contexts, and the
data sparsity issues. Now we provide detailed descriptions about these two challenges.
First, user’s online activity behavior is naturally correlated with time and location contexts [54, 72]. For

example, we often use shopping apps in shopping malls while using game apps at home, and we often use weather
apps in the morning while using video apps in the evening. Since spatial and temporal contexts have an impact
on user online activity behavior, context-aware online activity prediction becomes very necessary and we must
fully understand the semantic meaning of spatial and temporal contexts to figure out how they influence user’s
online activity behavior, besides learning user interest and preference. Therefore, it will be difficult to build an
effective prediction model when such multidimensional information needs to be considered and dealt with.
In order to better illustrate this challenge, we empirically analyze how different location and time contexts

influence user’s online activity behavior by utilizing a large-scale app usage dataset as a typical case. Specifically,
we analyse the correlation between user’s app usage behavior and three different kinds of contexts (i.e., location
context, time context, and both location and time contexts). The results are shown in Figure 1 (a)-(c) that we
demonstrate the app usage frequency under different contexts. Note that we simply label each location by the
most prevalent POI category within its coverage. In addition, for time context, we generally divide one day into
four periods, i.e., night 0:00-6:00, morning 6:00-12:00, afternoon 12:00-18:00 and evening 18:00-24:00. First, for
location context in Figure 1 (a), we can find that finance apps are used the most frequently in business locations,
tourism apps are used the most frequently in scenic locations and reading apps have the highest usage frequency
in government locations. Note that we get these judgments just from the probability perspective. It doesn’t
mean that they will absolutely happen, but there is a high probability. For instance, based on the statistic results
in Figure 1 (a), we find that users are more likely to use finance apps in business locations compared to other
functional locations. However, we can not guarantee that users absolutely use finance apps in business locations.
Obviously, app usage patterns are various and quite different in locations with different functions. Second, for
time context in Figure 1 (b), likewise, we can find that e-commerce apps are used the most frequently at night,
probably because people have some spare time shopping online before sleep. In addition, music apps are used
very frequently in the morning, probably because people want to get rid of fatigue and get pleasure by listening to
music in the morning. These results are consistent with user’s daily habits. Third, when considering both location
and time contexts, we choose two types of locations and two time periods and compare the difference of app
usage behavior in different contexts, the results are shown in Figure 1 (c). Note that “Sce” means “Scenic”, “Gov”
means “Government”, “Mor” means “Morning” and “Eve” means “Evening”. From the figure, we can find that
even with the same type of location, app usage pattern in the morning is quite different from that in the evening,
so as the situation in different types of locations at the same time period. For example, for government location,
reading apps are used more frequently in the morning, while travel apps are used more frequently in the evening.
Moreover, in the morning, tourism apps are used more frequently in scenic locations, while news apps are used
more frequently in government locations. What’s more, with a fixed pair of time and location contexts, Figure 1
(d) plots the Cumulative Distribution Function (CDF) of Jaccard Distance [58] between pairwise users regarding
their app usage behavior, including the difference of their app lists and category-level app lists. From the figure, as
the red line shows, we can see that more than 90% pairwise users have a Jaccard Distance higher than 0.8, which
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Fig. 1. (a)-(c) Illustration of the relationship between user’s online activity behavior and location and time contexts. (d)
Difference of online activity behavior between users under certain location and time contexts.

means they have more than 80% different apps. Even considering category-level app usage, there exists great
difference between pairwise users that 75% users have a Jaccard distance more than 0.6. Different from Figure 1
(a)-(c), Figure 1 (d) shows that a single user’s app usage behavior is quite different from that of others even under
the same time and location contexts, showing the impact of user interest on app usage behavior besides the time
and location contexts. All the results demonstrate the necessity of studying personalized context-aware online
activity prediction problem, which means we should take fully consideration of user interest, time and location
contexts to make the final decision. Absolutely, due to the complicated interaction among user app usage and
contexts, it is a very challenging task to make accurate prediction for individual online activity.
Second, recorded online activity behavior of users is usually very sparse, the sparsity problem will become

even worse when we consider more contexts such as time and location information. On the one hand, we can
only observe a small part of used apps for each user, which makes it hard to learn user interest from such
limited information. On the other hand, as for context-aware app usage behavior, indeed we only observe user’s
interaction with apps in very limited scenarios, which means that we need to predict user’s app usage preference
in unobserved scenarios with new time and location contexts just based on limited user app usage behavior under
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observed time and location contexts. Therefore, the sparsity issue is actually a critical challenge in context-aware
online app activity prediction task, which prevents us from fully understanding user preference thus makes us
unable to provide accurate prediction result.

Empirically, based on a real-world app usage dataset, we measure the sparsity level of the data from above two
aspects. First, we calculate the percentage of observed scenarios (i.e., the time and location pairs) for each user
and plot its cumulative distribution in Figure 2 (a). Here we consider 7000∼ different locations and 10 distinctive
time slots, so the number of different pairs is 70000∼. From the figure, we can see that the percentage of observed
scenarios is quite low, i.e., for 56% of users, their observed scenarios only cover less than 0.1% of all the possible
pairs. In addition, the highest coverage rate is about 0.3%. Such sparsity level shows that the recorded interaction
between a specific user and time and location contexts is very limited, which makes context-aware app usage
prediction very challenging. In addition, Figure 2 (b) demonstrates the cumulative distribution function (CDF) of
percentage of used apps per user in specific time and location contexts. In a scenario with fixed time and location
contexts, we can see that 89% of users have used less than 1% apps in the whole app set. Therefore, the high
sparsity level makes it very difficult to find a user’s app usage preference under specific spatiotemporal context.

To sum up, the complex interaction between user app usage and spatiotemporal contexts and the data sparsity
issue are two critical challenges for our targeted context-aware app usage prediction problem. In order to make
accurate prediction, next we will introduce how we propose effective strategies to overcome these two challenges.
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(a) Sparsity of covered contexts
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(b) Sparsity of used apps in specific contexts

Fig. 2. Illustration of the sparsity level of context-aware online activity data from two aspects.

3.4 Strategies
For our investigated context-aware prediction problem, one difficulty is how to model the complex relationship
among users, activities and time, locations. Without prior knowledge, in fact it is very hard to build a suitable
model to handle such high dimensional information. Recently, tensors, higher-order matrices, are proved to
be able to model the relationship between multiple dimensions and tensor factorization is a prevalent multi-
dimensional collaborative recommendation method [3, 80]. Therefore, we try to adopt tensor factorization to
solve our context-aware prediction problem. In our case, we can build a user-location-time-activity tensor to
model the complex correlation between users, locations, time and activities.

However, such a tensor is quite sparse because each user’s spatiotemporal online activity is very limited, which
makes it hard to learn features of users, activities, locations and time periods. In order to solve this problem, a
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common practice is to find other accessible external dataset and learn helpful knowledge and transfer it to benefit
our prediction task. In our context-aware online activity prediction problem, learning the semantic meaning of
time and location contexts is of essential importance. Therefore, public available check-in data seems to be a
suitable helper. Check-in data records the frequency of category-level check-in POIs [72] in different locations
and at different time periods, which can truly represent the function of different locations as well as its change
during the day. From this aspect, it meets our requirement very well. Utilizing the offline check-in data, we can
also build a location-time-POI tensor and learn useful information of time periods and locations, then transfer
the knowledge to help our tensor factorization mainly based on above user-location-time-activity tensor.

(a) App usage similarity

0 0.2 0.4 0.6 0.8 1

Cosine Similarity
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(b) App usage vs POI visitation

Fig. 3. The correlation between spatiotemporal app usage and POI visitation behavior.

Further, in order to test whether the strategy is feasible, we measure the correlation between online activity
behavior and offline check-in behavior in the same time and location context. First of all, we compute the average
app usage similarity between pairwise contexts in the same type and in different types, where the context refers
to a pair of location and time and the type is assigned by the most popular POI category under the specific context.
To be specific, first, for each scenario (l , t) ∈ Call , we can observe its feature from two aspects. One is from its
app usage behavior (online behavior) based on Telecom Dataset, and the other is from its POI distribution (offline
behavior) based on Check-in Dataset. Second, in order to learn the relationship between these two kinds of
behavior, we first label each scenario (l , t) according to its POI distribution. Then we put all the app usage records
with the same scenario label together as the app usage behavior group with this label. Finally, we compute the
average Jaccard Similarity [58] between two app usage behavior groups with the same scenario label or different
scenario labels. The Jaccard Similarity formulation is as follows:

J
(
V #k1
i ,V

#k2
j

)
=

S#k1i ∩ S#k2j

S#k1i ∪ S#k2j

, (1)

where V#k1
i represents the app usage frequency vector of i-th scenario labeld #k1, and S#k1i represents its

corresponding app set. So as V#k2
j and S#k2j . The result is shown in Figure 3 (a). From the figure, we see that the app

usage similarity in the same context type is higher than that in different context types, i.e., for context type #16,
the app similarity within the same context type is about 0.16, while the similarity decreases to 0.1 when compared
with contexts of different types. Since the same type of context has the same most popular POI category, it shows
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that if two time and location contexts have similar POI visitation behavior, they may also have similar app usage
behavior.
What’s more, we directly measure the similarity between app usage behavior and POI visitation behavior

in the same time and location context. Based on app usage frequency and POI visitation frequency, we utilize
Cosine Similarity [38] to compute app similarity and POI similarity between pairwise contexts, respectively.
In specific, we can obtain app usage behavior under each context (l , t) in Call based on Telecom Dataset, and
also can obtain these contexts’ POI distribution based on Check-in Dataset. Therefore, we can get the Cosine
Similarity between two different contexts (l , t)i and (l , t)j according to their app usage behavior. So as these
two contexts’ POI distribution. We use Ei = {ei j } denoting app similarity between context i and other contexts,
with ei j representing app similarity between context i and j. So as the POI similarity vector Fi = { fi j }. If the
app similarity between context i and context j and their POI similarity are closely related, the app vector Ei
and POI vector Fi , i.e., the distribution of similarity, will have a strong correlation. Thus, to further quantify
the relationship between apps and POIs, we still use Cosine Similarity to compute the correlation between app
similarity vector Ei and POI similarity vector Fi for context i . The correlation Si of Ei and Fi is computed as
follows:

Si = cos(Ei , Fi ),∀i, j = 1, ...,NLNP , (2)
with NLNP representing the total number of contexts. The CDF of S = {Si } is shown in Figure 3 (b). We can
observe that for nearly 60% of contexts, the correlation between their app usage behavior and POI visiting
behavior is more than 70%, which indicates that there is a strong correlation between app usage and POI visitation.
Therefore, with the help of offline check-in data, we are able to learn more knowledge about the semantic
meanings of location and time contexts, so as to make up the sparsity problem in context-aware online activity
behavior.

All the above analysis demonstrates that POI visiting behavior in offline check-in data and app usage behavior
in online activity data are strongly correlated, especially in the same time and location context. Therefore, it is
feasible to predict what apps a user will use when given the time and location contexts with the help of check-in
dataset and tensor factorization.

4 METHODOLOGY
In our study, we aim to solve the context-aware online activity problem. Adopting the strategies discussed in last
section, we propose a transfer learning based collaborative tensor factorization method to solve our targeted
problem. Now we first give an overview about our framework and then discuss the details about our proposed
method.

4.1 Framework Overview
Figure 4 demonstrates our framework for context-aware online activity prediction task. Roughly, it can be divided
into three parts: Data & Input, Generative Model, Features & Output.
Data & Input: In our task, we consider two types of data (i.e., online app data and offline check-in data) as

our system’s input. Specifically, app data records user online activity behavior in the targeted domain, which
contains spatial and temporal app usage behavior of individuals. Based on four dimensional information of user,
location, time and app activity, we can construct a 4D-tensor, denoted as X = {Xu,l,t,a}, where Xu,l,t,a represents
app a’s normalized usage frequency for user u at time slot t in location l . Likewise, check-in data records user
offline activity behavior in the auxiliary domain, which reflects POI visitation behavior in different location and
time scenarios. Based on three dimensional information of location, time and POI, we are able to construct a
3D-tensor, denoted as Y = {Yl,t,p }, where Yl,t,p represents POI category p’s normalized visitation frequency at
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Fig. 4. Illustration of our framework for context-aware online activity prediction task.

time slot t in location l . Note that for tensor Y, we utilize POI visitation behavior in the aggregated level rather
than in the individual level, which means that our method doesn’t necessarily require collecting offline check-in
data from targeted users in the app data. Since we just want to learn semantic meaning of locations and time
periods from check-in data, the aggregated category-level POI visitation behavior is enough and more easy to
obtain in practice.
Generative Model: After obtaining required 4D-tensor X and 3D-tensor Y, a generative model, i.e., Collabora-

tive Tensor Factorization, is used to model the relationship between multiple dimensions and transfer knowledge
among locations and time contexts. The details of this generative model will be introduced later in subsection 4.2.

Features & Output: Learned from above collaborative tensor factorization method, this module receives all
the latent matrices from users, locations, time slots, app activities and POIs, denoted by U , L, T , A and P . By
utilizing these latent matrices, we are able to reconstruct the user-location-time-activity tensor by filling in all
the empty values, and then predict each user’s app preference when given new time and location contexts.

4.2 Prediction Method
In this section, we provide the details of our transfer learning based generative model, i.e., Collaborative Tensor
Factorization. Recently, tensors prove to be effective to model the relationship between multiple dimensions and
tensor factorization is a prevalent multi-dimensional collaborative recommendation method [3, 80]. But existing
tensor factorization models only handle one single tensor, which cannot meet our requirement of addressing
two tensors with different dimensions. Therefore, for our specific task, we propose a novel collaborative tensor
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Fig. 5. Illustration of the generative model.

factorization method, which is able to combine both user-location-time-activity 4D-tensor X and location-time-
POI 3D-tensor Y.
Recall that we have two tensors denoted as X = {Xu,l,t,a},Y = {Yl,t,p },u = 1, ...,NU , l = 1, ...,NL, t =

1, ...,NT ,a = 1, ...,Na ,p = 1, ...,NP , respectively. In detail, Xu,l,t,a represents app a’s normalized usage frequency
for user u at time slot t in location l , and Yl,t,p represents POI category p’s normalized usage frequency at time
slot t in location l .
Combining above two tensors, we propose a transfer learning [40, 61] based generative model, shown in

Figure 5. There are five latent feature vectors: Uu ∈ U ∈ RNU ×H ,Ll ∈ L ∈ RNL×H ,Tt ∈ T ∈ RNT ×H ,Aa ∈ A ∈

RNA×H , Pp ∈ P ∈ RNP×H , whereUu ,Ll ,Tt ,Aa , Pp represent the H -dimensional latent feature vectors of user u,
location l , time t , app activity a and POI p, respectively. Accordingly, U, L, T, A, P are user latent feature matrix,
location latent matrix, time latent matrix, app latent matrix and POI latent matrix, respectively. As shown in
the figure, the idea is to share the latent vectors of locations and time slots (L, T), which aims to transfer the
semantic meanings of locations and time slots between tensor X and Y. Based on this generative model, we learn
all the latent feature matrices by minimizing the following objective function through CANDECOMP/PARAFAC
(CP) [6, 21] decomposition, which is a sum of squared errors with quadratic regularization terms:

L(U, L,T,A, P) = 1
2 ∥X − [[U, L,T,A]] ∥2F +

α
2 ∥Y − [[L,T, P]] ∥2F

+
(
λU
2 ∥U∥2F +

λL
2 ∥L∥2F +

λT
2 ∥T∥2F +

λA
2 ∥A∥2F +

λP
2 ∥P∥2F

)
,

(3)

where all the latent feature matrices can be regarded as the set of column vectors that U = [u1,u2, . . . ,uH ],
L = [l1, l2, . . . , lH ], T = [t1, t2, . . . , tH ], A = [a1,a2, . . . ,aH ], P =

[
p1,p2, . . . ,pH

]
. Then we have [[U, L,T,A]] =

H∑
i=1

ui ◦ l i ◦ t i ◦ ai and [[L,T, P]] =
H∑
i=1

l i ◦ t i ◦ pi , and "◦" means the outer product. In addition, ∥ · ∥2F denotes the

Frobenius norm. For other parameters, α is the transfer weight of location-time-POI tensor, and λU
2 ,

λL
2 ,

λT
2 ,

λA
2 ,

λP
2

are regularization term coefficients for different latent feature matrices accordingly. This loss function consists of
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three parts. In the first part, we decompose the tensorX into four low-dimensional matrices and then calculate the
errors after they are restored. In the second part, we decompose the tensor Y into three low-dimensional matrices
and then also calculate the errors after they are restored. As for the last part, it contains several regularization
terms in order to prevent over-fitting.
Since there are no closed form solution for L(·), we choose to provide a numerical optimal approximation

solution. In order to reduce the time complexity of the model training process, we adopt mini-batch gradient
descent approach to learn the parameters. The first-order derivatives of these five matrices are as follows:

∇UL = −X(1)(A ∗ T ∗ L) + U
[
(A ∗ T ∗ L)T(A ∗ T ∗ L)

]
+ λUU,

∇LL = −X(2)(A ∗ T ∗ U) + L
[
(A ∗ T ∗ U)T(A ∗ T ∗ U)

]
− Y(1)(P ∗ T) + L(P ∗ T)T(P ∗ T) + λLL,

∇TL = −X(3)(A ∗ L ∗ U) + T
[
(A ∗ L ∗ U)T(A ∗ L ∗ U)

]
− Y(2)(P ∗ L) + T(P ∗ L)T(P ∗ L) + λTT,

∇AL = −X(4)(T ∗ L ∗ U) + A
[
(T ∗ L ∗ U)T(T ∗ L ∗ U)

]
+ λAA,

∇PL = −Y(3)(T ∗ L) + P(T ∗ L)T(T ∗ L) + λpP.

(4)

As the same as related work [80], X(k ) denotes the mode-k tensor unfolding, and each element Xi1,i2,i3,i4 in the
tensor X has a corresponding position (i, j) in each mode’s unfolding. To be specific, the size of X(k ) and the
corresponding values of i and j are as follows:

• For mode-1 (i = 1): X(1) ∈ RNU ×(NLNT NA), i = i1, j = (i4 − 1)NTNL + (i3 − 1)NL + i2.
• For mode-2 (i = 2): X(2) ∈ RNL×(NU NT NA), i = i2, j = (i4 − 1)NTNU + (i3 − 1)NU + i1.
• For mode-3 (i = 3): X(3) ∈ RNT ×(NU NLNA), i = i3, j = (i4 − 1)NLNU + (i2 − 1)NU + i1.
• For mode-4 (i = 4): X(4) ∈ RNA×(NU NLNT ), i = i4, j = (i3 − 1)NLNU + (i2 − 1)NU + i1.

Likewise, for the tensor Y , Y(k ) denotes the mode-k tensor unfolding, and each element Yi1,i2,i3 in the tensor Y
has a corresponding position (i, j) in each mode’s unfolding. Likewise, the size of Y(k ) and the corresponding
values of i and j are as follows:

• For mode-1 (i = 1): Y(1) ∈ RNL×(NT NP ), i = i1, j = (i3 − 1)NT + i2.
• For mode-2 (i = 2): Y(2) ∈ RNT ×(NLNP ), i = i2, j = (i3 − 1)NL + i1.
• For mode-3 (i = 3): Y(3) ∈ RNP×(NLNT ), i = i3, j = (i2 − 1)NL + i1.

In addition, "∗" denotes the Khatri-Rao product [26]: for two matrices with the same number of columns A =[
a1,a2, . . . ,a J

]
∈ RV×J and B =

[
b1,b2, . . . ,b J

]
∈ RW ×J , their Khatri-Rao product is defined as A ∗ B =[

a1 ⊗ b1,a2 ⊗ b2, . . . ,a J ⊗ b j
]
∈ RVW ×J , where "⊗" denotes the Kronecker product [56].

The gradient descent process of each matrix is as follows:

U := U − η∇UL, L := L − η∇LL, T := T − η∇TL, A := A − η∇AL, P := P − η∇PL. (5)

In conclusion, we propose a transfer learning based generative model to accomplish the personalized context-
aware online activity prediction goal. After inputting a 4-D user-location-time-activity tensor X and a 3-D
location-time-POI tensor Y, our method can reconstruct a denser 4-D user-location-time-activity tensor X̂ by
sharing the latent feature matrices of location and time contexts.

5 EVALUATION
In this section, to evaluate the performance of our proposed personalized context-aware online activity prediction
model from different aspects, we conduct a series of experiments to answer the following three research questions:

• How will our model perform with different levels of data sparsity, especially compared to a series of
state-of-art algorithms?
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• How the performance of our model will be affected under different hyper-parameter settings, i.e., the
transfer weight of auxiliary Check-in data and the dimension of latent feature vectors.

• What impact of different contexts and factors (i.e., different time periods, location functions and user
attributes) have on the performance of our model?

5.1 Data Pre-processing
In our study, we utilize two datasets to solve the personalized context-aware prediction problem, including the
Telecom dataset and the Check-in dataset, where the latter is used as auxiliary information. Now we introduce
their pre-processing process in details.

In order to construct our targeted tensorX from the Telecom Dataset, we need to do some pre-processing based
on the raw data. First, for time granularity, we divide the time of one day into several time slots for convenience.
In specific, we divide one day into 10 time-slots, i.e., duration 0:00-6:00 is regarded as one time-slot, and the rest
duration 6:00-24:00 is divided into 9 time-slots by two-hour duration. As for location granularity, in this dataset,
our "location" refers to the area covered by each cellular tower. Note that 50% of these locations’ areas are less
than 0.14 km2, and 70% of them are less than 0.4 km2, which means that we need to predict a certain user’s online
activity behavior in very fine-grained location level. Second, because users do not provide any explicit ratings to
smartphone app, in our study, in order to measure the online activity preference of a certain user, we adopt the
frequency metric, i.e., how often the user interacts with a certain app. With above information, we can construct
our targeted tensor X, as mentioned in last section. Further, in order to make sure the range of each element in
tensor X is within [0, 1], we perform normalization to all elements in tensor X. In detail, we choose to perform
normalization in the scenario (i.e., specific spatial and temporal context) level, because our task is to predict
individual online activity preference in unobserved scenarios. The specific formula is as follows:

Xu,l,t,ai :=
log

(
X ∗
u,l,t,ai

)
max

{
log

(
X ∗
u,l,t,aj

)
|j = 1, . . . ,NA

} ,∀i = 1, . . . ,NA, (6)

where X ∗
u,l,t,ai

represents the number of interactions for the i-th app of user u in location l at time slot t , Xu,l,t,ai
represents the corresponding normalized frequency and NA denotes the number of apps.
As for the Check-in Dataset, in order to keep the same location granularity with the Telecom Dataset, we

map each POI’s GPS coordinate to its cellular tower through Voronoi diagram segmentation method [1]. As
for consistent time granularity, the same time division scheme is applied to Check-in dataset. Based on this
dataset, we can learn semantic meanings of locations and time slots, which is helpful to solve sparsity problem
and explore users’ online spatiotemporal activity preference. In addition, as the same as tensor X, for tensor Y,
we also perform normalization on it as follows:

Yl,t,pi :=
log

(
Y ∗
l,t,pi

)
max

{
log

(
Y ∗
l,t,pj

)
|j = 1, . . . ,NP

} ,∀i = 1, . . . ,NP , (7)

with Y ∗
l,t,pi

representing the number of times visited for the i-th POI category in location l at time slot t , Yl,t,pi
representing the corresponding normalized frequency and NP denoting the number of POI categories.
Now we have constructed tensor X and Y, which serve as the inputs of our proposed model. Based on this

data, we are able to evaluate our model’s performance.
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5.2 Metrics and Baselines
In our study, we adopt two prevalent metrics, i .e ., TopK Accuracy, and nDCGK , to evaluate the effectiveness of
prediction results and compare with other baselines.
TopK Accuracy: This is a metric that measures the mean prediction accuracy on TopK prediction of online

activity behavior under each unobserved scenario for each user, which can be expressed as follows:

TopKAccuracy =

∑NU
i=1

[∑NCi
j=1

(
L
p
i, j ∩ Lti, j/K

)
/NC i

]
NU

, (8)

where NU denotes the number of users and NC i
denotes the number of unobserved scenarios of the i-th user. Lpi, j

refers to the set of predicted TopK apps of the i-th user under his j-th unobserved scenario and Lti, j refers to the
corresponding ground truth results in the testing set.
nDCGK : This metric is a common measure of ranking quality for the relevance ofTopK results. In our study, it

can be expressed as follows:

nDCGK =
DCGK

IDCGK
=

NU∑
i=1


NCi∑
j=1

(∑K
k=1 rel

p
k /log2(k + 1)∑K

k=1 rel
t
k/log2(k + 1)

)
/NC i

 /NU , (9)

where relpk denotes the relevance (the normalized usage frequency) of the j-th predicted app and rel tk denotes
the relevance (the normalized usage frequency) of the j-th app in the testing set, for the i-th user under his j-th
unobserved scenario. A higher nDCGK value indicates a better ranking result.
The above two different metrics can evaluate the accuracy and effectiveness of our model from different

perspectives. In order to evaluate the performance of our model, we compare it with other seven state-of-art
algorithms.
SCP [3]: SCP means Standard CP decomposition model, which only takes one tensor to decompose. Here this

tensor refers to X, which is equivalent to our model in the case that α = 0 and λP = 0. Thus, this baseline only
utilizes online activity information without any offline activity information. By compared with our model, we
can further observe what role the external POI visiting information will play in our prediction task.
SoRec [20]: SoRec means Social Recommendation, where the word Social originally refers to social friendship

information among users via a user-user matrix. In our case, to get such a user-user matrix, we first construct
a user-app matrix from the tensor X and then obtain the user-user matrix by calculating the cosine similarity
between pairwise users.
SR-U: SR [35] means Social Regularization, which integrates social information (the user-user matrix) via a

social regularization term rather than a collaborative factorization matrix term. Here the letter U refers to user,
and SR-U means that we utilize user-user information as the same as SoRec.
SR-T: Like SR-U, here the letter T refers to time, and SR-T means that we utilize time-time information obtained

from the tensor Y to replace the social information. Similarly, we first obtain a time-POI matrix from the tensor
Y, and then calculate the cosine similarity between pairwise time slots.

SR-L: Similar to SR-T, we first obtain a location-POI matrix from the tensor Y, then obtain the location-location
matrix to replace the social information.

SoCo [76]: SoCo integrates social and contextual information into recommend system to divide the ratings
in the user-item matrix into several clusters. Therefore, the ratings in the same cluster are more contextually
similar and a new rating’s predicting is only carried out in its contextually nearest cluster.

SVD-MFN [45]: In order to better predict the preference of a user to an item, Singular Value Decomposition
with Multi-Factor Neighborhood (SVD-MFN) considers several context factors to help find the target item’s
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nearest K neighbor items from the target user’s historical interacted items. Here we consider spatial, temporal
and social factors to find neighbors.
KNN: KNN can exploit similarity between users, which means recommending items for a certain user according

to the interaction history of K users who have the closest interests with her. Based on the user-user matrix, for
each user, KNN first finds the nearest K neighbor users, then predicts their TopN most commonly used apps for
her according to the user-app matrix.
POP: POP recommends the most popular items sorted by the training set for a certain user in the testing set.

We obtain the sorted app popularity list according to the total usage frequency of each app in the training set.
From above descriptions, we can see that baselines SCP, SoRec, SR-U, KNN and POP provide prediction only

through the online activity behaviors from the Telecom Dataset. While the other four baselines SR-T, SR-L, SoCo
and SVD-MFN utilize both online activity information and offline activity information. In addition, KNN and
POP can not realize context-aware prediction because they do not utilize any spatiotemporal information.

5.3 Parameter Setting
There are many hyper-parameters in our model: dimension of latent feature vector H , transfer weight for offline
activity information α , regularization coefficients [ λU2 ,

λL
2 ,

λT
2 ,

λA
2 ,

λP
2 ], learning rate η, and maximum iteration

times I .
In order to determine the value of each hyper-parameter, we experiment with a sequence of settings and

select the most appropriate one. In this way, we empirically set H = 10, α = 0.4, η = 0.01, I = 4000 and
[
λU
2 = 0.01, λL2 = 0.04, λT2 = 0.01, λA2 = 0.08, λP2 = 0.01]. In order to keep consistency and guarantee the

comparability of results, for our baselines, we set the same values of hyper-parameters as our model if they have.
More specifically, for SR-T and SR-L, we also set α = 0.4 as their POI information’s contribution. However, for
SoRec and SR-U, the contribution of user-user information is not reflected in our method, so we again empirically
set their weights α1

2 = 0.6, α2
2 = 0.1, respectively. In addition, for both SoCo and SVD-MFN, we integrate four

context factors (i.e., app-category, location, time-slot and social relationship) into each of them according to [76]
and [45]. For SoCo, we empirically set the number of decision trees to 4 and the height of each tree to 1. For
SVD-MFN, we empirically set the contribution factors [45] of those four context factors are 0.467, 0.003, 0.031
and 0.755 successively. Besides, for KNN, we set the number of nearest neighbors K = 20. In addition, users
may use some popular apps in different locations during the whole data, like Wechat (the most popular social
communication app in our dataset). Since such app’s usage behavior actually cannot reflect personal interest and
unique spatiotemporal context features, we exclude the top 30 apps and pay more attention to context-aware
app usage behavior prediction. Note that we have 2000 apps in our dataset, so removing the top 30 apps will not
make big difference on our evaluation results.

5.4 Performance in Different Data Sparsity Levels
Before we show the performance of our model in varying data sparsity levels, we first introduce how we divide
our dataset into training set and testing set because the ratio of training set indeed reflects the data sparsity. In
order to assure the fairness of each experiment, we choose to keep the size of testing data the same for different
training ratios. Thus, based on 5-fold cross validation, we randomly split the whole scenarios of each user into 5
folds. Then each time, for one fold, we regard the scenarios in it as the unobserved ones, while the rest 4 folds
data as the 100% training data, from which we randomly choose a certain ratio (e.g., 30% of 100%, while the rest
70% of 100% unused) scenarios as the observed scenarios for training. In our case, our aim is to predict user’s
app usage preference in unobserved scenarios. In order to simulate different levels of data sparsity, we choose
different ratios of observed scenarios to form the training set. In our experiment, we select five different ratios of
training set: 30%, 40%, 50%, 60% and 70%. The smaller the ratio is, the higher the level of data sparsity will be. For
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example, if the ratio of training set (i.e., the ratio of observed data) is 30%, we regard the sparsity level as 70% . To
measure the quality of our prediction, we adopt three metrics, i .e ., Top3 Accuracy, Top5 Accuracy, nDCG5, to
evaluate the performance of our model. The results are shown in Figure 6.
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Fig. 6. The performance comparison between our method and several baselines under different data sparsity levels.

From the results, we can observe that in all sparsity levels, the prediction accuracy of our model (Ours) is
always the highest, showing that our prediction model outperforms other baselines. In Figure 6 (a), taking the
metric Top3 Accuracy for example, our model can achieve at least 23% improvement with 40% sparsity level, 34%
improvement with 50% sparsity level and 45% improvement with 60% sparsity level. Likewise, for Top5 Accuracy,
when the sparsity increases from 40% to 60%, our model’s improvement increases from 20% to 42%. For nDCG5,
our model provides at least 5% improvement with 30% sparsity level and 10% improvement with 50% sparsity
level. Thus, we can see that the prediction performance can get a rapid boost when the data is very sparse. This
trend indicates that our auxiliary offline POI visiting information becomes more helpful in high sparsity scenario.
In addition, comparing SR-T with SR-U and SR-L, we can observe that with 50% sparsity level, Top3 Accuracy of
these three baselines are 24.5%, 16.8% and 14.7%, respectively. The difference between these three baselines is that
they introduce different types of context, i.e., time context, social context and location context. Comparing their
prediction performances, we can find that auxiliary information of different types of context may have different
effects on the prediction quality. According to the results, external time context information seems to be more
useful in our task. Furthermore, the prediction accuracy of each of these three baselines is lower than our model,
indicating that in such multi-context prediction problem, only introducing a single type of external context
information as auxiliary information is not enough. Besides, we also observe that the performances of SoCo and
SVD-MFN are lower than Ours at all sparsity levels. For example, with 50% sparsity level, the Top5 Accuracy of
Ours is 35% higher than SoCo and 1.8 times higher than SVD-MFN. This indicates that it is more effective to
directly integrate the context information into higher-order dimension tensor than just utilize it as an auxiliary
tool for 2D user-item matrix factorization. This also demonstrates that with the same context information, our
model can learn the user preference better.
In addition, in order to show personalization (i.e., the detailed performance of different users), we also show

the distribution of the prediction results for different users. As shown in Figure 7, we present several CDFs from
several different aspects. First, Figure 7 (a) shows the individual’s Top5 Accuracy of our model at three different
sparsity levels. We can observe that theTop5Accuracy value is from 0 (close to 0) to 1 (close to 1), which indicates
that different users have different prediction performance. This shows that for different users, the difficulty to
learn their preference is different. Besides, we can also see that when the sparsity level changes from 30% to
70%, the percentage of users whose Top5 Accuracy is over 60% changes from 60% to 71%. With the sparsity level
increasing, the CDF curve gradually moves up. This shows that it becomes more difficult to learn the user’s

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 3, No. 4, Article 132. Publication date: December 2019.



Personalized Context-aware Collaborative Online Activity Prediction • 132:19

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Top5 Accuracy Per User

C
D

F

 

 

30%
50%
70%

(a) Individual Top5 Accuracy of Our Model

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

nDCG
5
 Per User

C
D

F

 

 

30%
50%
70%

(b) Individual nDCG5 of Our Model

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Top5 Accuracy Per User

C
D

F

 

 

Ours
SCP
SoRec
SR−U
SR−T
SR−L
SoCo
SVD−MFN
KNN
POP

(c) Individual Top5 Accuracy of Different
Models

Fig. 7. Individual performance of different models.

preference with less observed data for training. Second, like Figure 7 (a), Figure 7 (b) shows the individual’s
nDCG5 of our model at three different sparsity levels. We can also see the trend that with the sparsity level
increasing, the CDF curve gradually moves up. For example, when the sparsity level changes from 30% to 70%,
the percentage of users whose nDCG5 is over 80% changes from 40% to 60%. Third, in order to compare the
individual performance of our model with other methods’, we present their CDFs of Top5 Accuracy per user
with 50% sparsity level. We can see that the CDF of our model is at the bottom, which means that with the same
Top5 Accuracy value, we have the most users whose Top5 Accuracy is over it. This indicates that although at
the individual level, our model can provide better prediction quality than other methods. Therefore, from the
perspective of individual prediction performance, our model can also preforms better than other baselines.
In addition, in order to measure the effect of the number of excluded popular apps on the online activity

prediction quality, we also compare the performance of our model (Ours) with SCP in the case that different
numbers of apps are excluded. The results are shown in Table 1. First, when the number of excluded popular
apps ranges from 10 to 30, we can see that our model’s performances are better than SCP with 70% sparsity
level (i.e., 30% observed data). Second, when we exclude top 10 popular apps, our performance gain still exists
with 50% sparsity level. When the number of excluded apps increases to 30, our performance gain still exists
with 30% sparsity level. The performance gain means that auxiliary check-in data has a positive impact in our
online activity prediction task. Since the auxiliary check-in data contains rich semantic information of spatial
and temporal contexts, it is reasonable that the auxiliary data becomes more helpful when we remove a bit more
popular apps and the usage behavior of the rest apps shows a stronger personalized context-aware characteristic.
Above results explicitly show the conditions that our transfer learning model will be more helpful.

In a short summary, the evaluation results have shown that our collaborative tensor factorization model has
the best performance in different sparsity levels. In particular, our performance gain will be larger in higher
sparsity scenario, showing that our auxiliary POI visiting information is helpful to provide external information
of time and location contexts to make up for the sparsity. In addition, we find that when excluding a bit more
popular apps, the auxiliary data will be more helpful to improve the online activity prediction quality, for usage
behavior of the rest apps shows a stronger personalized context-aware characteristic.

5.5 The Impact of Different Hyper-parameters
In our study, there are several hyper-parameters as mentioned before. Here we consider two important hyper-
parameters (α and H ) and evaluate their impact in our model. α reflects the transfer weight of POI information
from Check-in dataset, and H represents the dimension of latent feature vectors. In order to measure the effect of
each hyper-parameter, we experiment with a sequence of settings and compare their corresponding prediction
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Table 1. The comparison of prediction accuracy when excluding different numbers of the most popular apps.

Number of Excluded Apps Method
Top5 Accuracy
Sparsity Level

30% 40% 50% 60% 70%

10 Ours 0.5759 0.5693 0.5558 0.5517 0.5841
SCP 0.5736 0.5658 0.5443 0.5064 0.4612

20 Ours 0.5755 0.5680 0.5605 0.5453 0.5279
SCP 0.5610 0.5576 0.5325 0.4890 0.4172

30 Ours 0.5358 0.5230 0.5140 0.5013 0.4474
SCP 0.4787 0.4360 0.3818 0.2782 0.1721

accuracy. When we change the target hyper-parameter’s value, we keep the values of other hyper-parameters
unchanged. In this experiment, we set the ratio of training set to be 50% and select Top3 Accuracy as the metric.
The results are shown in Figure 8 (a) and Figure 8 (b) to show the impact of α and K , respectively.
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Fig. 8. (a) The impact of transfer weight on the prediction accuracy. (b) The impact of dimension of latent features on the
prediction accuracy.

First, let’s look at Figure 8 (a). We can observe that Top3 Accuracy grows at the beginning then decreases
when α gradually increases from 0 to 10. It may be when α is very small, the model cannot fully utilize the POI
information to capture spatiotemporal semantics and the relationship among different spatiotemporal contexts.
When α becomes larger, the POI information gradually becomes dominate rather than the app usage information.
When α = 0.4, the influence of these two kinds of information becomes balanced and our model achieves the
best performance. Therefore, in our model, we set α = 0.4. Second, Figure 8 (b) shows the effect of the dimension
of latent feature vectors H . We can observe that the Top3 Accuracy does not exhibit significant change when the
value of H varies from 0 to 50 and our model performs equally well under various H values, which indicates the
robustness of our model. Therefore, we roughly choose H = 10 which makes our model work best.
To sum up, in this section we determine our hyper-parameters through experimenting with a sequence of

settings. These experimental results show that POI information is helpful to improve the prediction accuracy and
our model is very robust under various values of dimension of latent vectors.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 3, No. 4, Article 132. Publication date: December 2019.



Personalized Context-aware Collaborative Online Activity Prediction • 132:21

5.6 The Influence of Contexts and User Factor
So far, based on the fine-grained data, we have verified that our proposed model outperforms the state-of-art
algorithms under different sparsity levels, specially in high sparsity scenario. Now we look at the influence of
different contexts and factors on our model. Specifically, how the prediction quality will be for locations with
different functions, different time periods, and different groups of users? Since our data contains information
of multiple dimensions (user, location and time), we extract different contexts and factors from these three
dimensions, and evaluate the prediction performance in different scenarios, the results are shown in Figure 9 and
Figure 10.
First, for users, many previous works have studied the relation between user’s attributes and their mobility

patterns, showing that the user’s habit can be reflected from her mobility pattern. For example, the range of living
area where the user has appeared can reflect her mobility pattern. In detail, if the user lives in the suburbs while
working in the city or if the user likes to participate in a variety of activities, the range of her living area will be
very large. While if her work place is very close to her living place, the range will be very small. According to
the feature, in our study we divide users into several group. Generally, user’s online activity patterns may vary
among people with different moving ranges. For instance, those who have large moving ranges are more likely
to use travel apps and shopping apps. In our experiment, we adopt the metric Radius of Gyration [43] to measure
the living range of a user. For an individual, the Radius of Gyration of her trajectory is calculated as follows:

Rд =

√√√
1
N

N∑
i=1

(ri − r mean ) , (10)

where N denotes the number of the visited locations, ri represents the position of the i-th location and rmean is
the mean position of all the visited locations. Note that a larger radius of gyration value means a larger living
range of the user.

According to user’s radius of gyration values, we divide them into three groups and all the groups have equal
number of users. We use "Low", "Med" and "High" to represent user groups with different radii of gyration. The
online activity prediction results of these three user groups are shown in Figure 9 (a). We can observe that when
the user group varies from "Low" to "High", the Top3 Accuracy ranges from 63% to 55%, showing that when the
user’s moving range becomes smaller, the prediction performance of our model will be better. Such trend also
exists in Top5 Accuracy and nDCG5, which indicates that it is easier to predict app usage preference of those
users with small moving ranges. This may be for the users with small moving ranges, their mobility patterns are
relatively stable so that their online interaction with apps is correlated stronger with the locations they appear
thus their personal spatiotemporal activity preferences are easier to learn. While for the users with large moving
ranges, they appear in more diverse types of locations and have more complicated interactions, thus it will be
more difficult to learn their spatiotemporal online activity interest.
Second, for time context, we divide one day into 4 time periods, i.e., night 0:00-6:00, morning 6:00-12:00,

afternoon 12:00-18:00 and evening 18:00-24:00. The online activity prediction results during these 4 time periods
are shown in Figure 9 (b). We can observe that the Top5 Accuracy of these four time periods are 31.9%, 38.4%,
37.9% and 42.1%, respectively, showing the prediction performance in the evening is better than the other three
time periods, especially night. We think the reason may be that at night, users may have urgent tasks to address
and need to make a sudden response, so the similarity of app behavior among users will be very low at night.
While in the evening, most of the users are in leisure state, and the similarity of app behavior among users will
be very strong.
Third, for location context, considering the POI information of the check-in dataset, we try to group locations

in two different ways. On the one hand, we want to compare the prediction quality of different functional areas
because their online activity patterns may be different. For example, in entertainment areas, user’s activities are
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Fig. 9. (a) The prediction performance of our model for different user groups. (b) The prediction performance of our model
under different time contexts.
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Fig. 10. The prediction performance of our model under different location contexts, regarding the function and entropy.

very diverse and they may use various kinds of apps to complete various tasks, such as shopping, watching videos
or having a meal. However, in scenic areas, users may use travel apps and photo apps more often. To this end,
intuitively, we can label each location by the category of its most prevalent POI. Thus, we group all the locations
into 15 functional areas, i.e., shopping, residence, scenic, education, life service, industry, restaurant, business, medical
service, culture, government, hotel, transportation, recreation and fitness, respectively. The online activity prediction
results of these 15 function areas are shown in Figure 10 (a). We can observe that the prediction performances
of different functional areas are very different, ranging from 24% to 41%. In addition, the top 4 functional areas
with the best performance are shopping, residence, scenic and education, while the top 4 functional areas with the
lowest prediction accuracy are hotel, transportation, recreation and fitness.
Furthermore, for a location, the entropy of distribution of category-level POI visiting frequency is another

metric to represent the location context. We explore how our model will perform under such kind of different
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location context, so we evaluate our model’s performance in locations with different POI entropy values. In
the previous location division scheme, we just simply adopt the most popular POI category as the location’s
function label. Here we take the visiting frequency of other POI categories into consideration, so we consider the
location’s POI entropy, which is calculated as follows:

El = −

Cl∑
i=1

(
Nl,i∑Cl
j=1 Nl, j

)
log

(
Nl,i∑Cl
j=1 Nl, j

)
,∀l = 1, . . . ,NL, (11)

where El denotes the entropy of location l based on distribution of category-level POI visiting frequency, Cl
denotes the number of POI categories of location l , Nl,i refers to the number of i-th categorized POI in location l
and NL denotes the number of locations.

According to the entropy calculation results, we group these locations into 3 groups, i.e., Low, Med, High, e.g.,
"Low" represents the location group with small entropy values. The online activity prediction results of these
groups are shown in Figure 10 (b). We can observe that when the location group varies from "Low" to "High"
entropy values, their Top5 Accuracy values range from 52.3% to 57.0%, showing that there exists an increasing
trend when the entropy increases. There are similar trends for the metric Top3 Accuracy and nDCG5. These
results means that the larger the POI entropy of a location is, the more accurate the prediction result will be.
In a short summary, we investigate the prediction quality under different kinds of contexts and factors. In

terms of user factor, our model performs better for users with small moving ranges, for they will have interaction
with less types of locations and their activity behavior is easier to predict. For temporal context, the prediction
accuracy of user’s online activity behavior is better in the evening, mainly because most of the users are in leisure
state in the evening and they will have more similar app usage behavior. For spatial context, we study its impact
from two different aspects: first, we find online activity prediction in locations with shopping, residence, scenic
functions is more accurate than that in other functional areas; second, if a location’s category-level POI entropy
is very large, online activity prediction accuracy of users in that location will be also higher.
In conclusion, we evaluate our method’s performance under a variety of scenarios and explore the factors

influencing it. First, considering different sparsity levels, our model can always outperforms several state-of-art
algorithms, especially in high sparsity scenario. In addition, we also evaluate the impact of hyper-parameters to
show our prediction method is quite robust. Besides, we also investigate the influence of user factor and different
spatial and temporal contexts. All these results indicate that our collaborative tensor factorization method is
very effective and the auxiliary check-in data plays an important role in improving the performance of our
context-aware online activity prediction task.

6 DISCUSSION
In this section, we will discuss the following three important issues. We will first discuss about the benefit of
combining online activity and offline activity, which has inspired our study. Then, we will discuss several potential
applications of our work and our contribution to the UbiComp community.

6.1 Benefit of Combining Online Activity with Offline Activity
In our paper, our extensive evaluation results have shown that it is effective to transfer knowledge from offline
check-in data to improve the prediction performance of user’s online app usage activity, which has proved
the benefit of combining online activity and offline activity. Indeed, some other researchers also benefited
from combining offline activity (e.g. check-in records, mobility trajectories, traffic flow) with online app usage
activity, such as improving app recommendation performance [54], solving cold-start problems [72], studying
area economic development level [34] and so on. In addition, besides online app usage behavior, other types of
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online activity also can be combined with users’ offline activity to benefit some other tasks, such as attendance
click [45, 76]. All the above works have clearly demonstrated the mutual influence factor between users’ online
activity and offline activity, and their good performances have verified that there is a strong correlation between
users’ online activity and offline activity. The underlying reason relies on that whether it is online activity or
offline activity, it is the embodiment of the user’s current state and personal interests. In other words, we can
learn users’ interests or preferences from any of them. As a result, when dealing with tasks about online activity
or offline activity, we can turn to the other one for help and transfer knowledge between them. This may provide
a new angle to solve problems in online activity or offline activity domain.

6.2 Potential Applications
Our study has many potential applications in practice. First of all, our scheme of utilizing check-in data to help
online activity prediction is quite practical for check-in datasets are easy to access, and there are also a number
of public check-in datasets, such as Gowalla and Foursquare. Such available auxiliary datasets guarantee the
feasibility of our method, which is the basis of further potential applications: First, from the user perspective,
with the predicted app list that a user will use, we can prepare the apps in the background in advance, which can
save response time and battery power [48, 65]. Second, for advertisers, after knowing what apps one use, they
can choose different apps for different users at the right time [66] to provide better recommendations. Third, for
mobile operators, they can provide personalized traffic plans for different users according to their spatiotemporal
app usage patterns.

6.3 Contribution to the UbiComp Community
During the past few years, the research for online activity has attracted more and more researchers, and become
an important research area of ubiquitous computing and a meaningful topic in the UbiComp community and
beyond. At the same time, there exist many previous works exploring the relationship between individual’s online
activity and offline activity, such as [54, 55, 57, 72, 75, 78]. Our work goes along with this topic and takes a further
step towards the benefits of combining offline check-in activity and online app usage activity for personalized
context-aware prediction task, which poses a brand-new angle of solving personalized context-aware activity
prediction problem.

7 CONCLUSION
In this paper, we aim to study personalized context-aware online activity prediction problem with the help of
offline check-in data. Combined the user-location-time-activity 4D-tensor with location-time-POI 3D-tensor, we
propose a transfer learning based collaborative tensor factorization method, which transfers the semantics of
location and time contexts among them and achieves personalized context-aware online activity prediction. Based
on real-world datasets, we evaluate our method’s performance and find it outperforms the other state-of-the-arts
in high sparsity scenario. Moreover, we also demonstrate that user factor, time and location contexts have quite
different impacts on online activity prediction performance. Our study is the first step forward for transferring
knowledge learned from offline activity behavior to online activity prediction for providing better personalized
context-aware recommendation services for mobile users.
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