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ABSTRACT
The large-scale vehicle routing problems (VRPs) are defined based
on the classical VRPs with thousands of customers. It is an im-
portant optimization problem in modern logistic systems, since
efficiently obtaining high-quality solutions can greatly reduce op-
eration expenses as well as improve customer satisfaction. Most
existing algorithms, including traditional non-learning heuristics
and learning-based methods, only perform well on small-scale in-
stances with usually no more than hundreds of customers. In this
paper we present a novel Rewriting-by-Generating (RBG) frame-
work which solves large-scale VRPs hierarchically. RBG consists of
a rewriter agent that refines the customer division globally and an
elementary generator to infer regional solutions locally. It is also
flexible with multiple CVRP variant problems and could be continu-
ously evolved with more up-to-date generator designs. We conduct
extensive experiments on both synthetic and real-world data to
demonstrate the effectiveness and efficiency of our proposed RBG
framework. It outperforms HGS, one of the best heuristic method
for CVRPs and also shortens the inference time. Online evaluation
is also conducted on a deployed express platform in Guangdong,
China, where RBG shows advantages to other alternative built-in
algorithms.
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1 INTRODUCTION
The Vehicle Routing Problems (VRPs) is an important combinatorial
optimization problem, which is a vital task in modern logistic sys-
tem designs. Each vehiclemust start from a depot and deliver parcels
to customers, while each customer is serviced once and only once.
Efficiently generating high-quality solutions can greatly reduce
operation expenses of traveling cost due to the gasoline consump-
tion. Moreover, with the service amounts growing continuously,
practical logistic systems often have to handle with enormous dis-
tribution of customer nodes, usually more than several hundreds
to thousands, which forms the Large-Scale VRPs. However, most
existing works focus on finding near-optimal solutions with only
no more than a hundred customers because of the computational
complexity [8, 17, 22]. Due to the NP-hard nature, the exponential
expansion of solution space makes it much more difficult than solv-
ing a small-scale one. Therefore, providing effective and efficient
solutions for large-scale VRPs is a challenging problem.

Current algorithms proposed for VRPs can be divided into tra-
ditional non-learning based heuristics and reinforcement learn-
ing (RL) based models. Many routing solvers involve heuristics as
their core algorithms, for instance, OR Tools [18], LKH3 [19] and
HGS [33], which can find a near optimal solution by exploring the
solution space using manually defined operations. However, pure
heuristic based methods suffers from limitation of hand-crafted
rules and computation burdens. Apart from traditional heuristics,
RL based VRP solutions have been widely studied recently to find
more efficient and effective solutions [7, 9, 10, 20, 25, 26]. Due to the
learning manner that takes every feedback from learning attempts
as signals, RL based methods rely on few hand-crafted rules and
thus can be widely used in different customer distributions without
human intervention and expert knowledge. However, current RL
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agents are still insufficient to learn a feasible policy or generate so-
lutions directly on large-scale VRPs due to the vast solution space,
which grows exponentially along with customer size 𝑁 . Conse-
quently, the complexity makes the agent difficult to fully explore
the space and makes the model hard to learn useful knowledge in
large-scale VRPs.

To avoid the computation explosion in large-scale VRPs, we con-
sider leveraging the classic Divide-and-Conquer idea to decompose
the enormous scale of the original problem. In particular, we divide
the large-scale customer distributions into small-scale ones and
then generate individual regional solutions to reduce the problem
complexity. However, how to 1) obtain a refined region division
where the local VRPs can be handled effectively and how to 2) coor-
dinate iterations between global and local optimization efficiently
remain two challenges of our structure.

To tackle these two challenges above, we propose an RL-based
hierarchical framework, namedRewriting-by-Generating (RBG),
to solve large-scale VRPs. The framework is consist of a "Genera-
tor" and a "Rewriter". First, we divide customers into regions and
use an elementary VRP solvers to solve them locally, known as the
"Generation" process. After that, from a global perspective, a special
"Rewriting" process is designed based on all regional generations,
which rewrites the previous solution with new divisions and the cor-
responding new regional VRP results. Within each rewriting step,
we select and merge two regions into a hyper-region, and further
divide it into two new sub-regions according to the hyper-regional
VRP solution. By doing this, the problem scale is decomposed into
pieces where it could be solved efficiently using regional solvers,
and can still preserve the solution quality improved by the RL-based
rewriter continuously.

To summarize, the main contributions of this paper are as fol-
lows,

• We formally address the large-scale vehicle routing prob-
lem and present an end-to-end framework, Rewriting-by-
Generating (RBG) to solve it.

• We propose a hierarchical framework that consists of a "Gen-
erating" and a "Rewriting" process respectively. The frame-
work has the potential to be continuously improved by aug-
menting new advanced solvers as its generator.

• Extensive experiments demonstrate that our RBG framework
achieves significant performance in a much more efficient
manner. It shows significant advantage on both solution
quality and solving speed to other baselines. Moreover, it
also shows growing superiority to other methods when the
problem scale keeps increasing, and obtains great robustness
to different data distributions.

The remainder of this paper is organized as follows. First, we
introduce some related works on solving VRPs in Section 2. Then,
we present our RBG framework in Section 3. The evaluation results
are shown in Section 4. Lastly, we conclude this paper in Section 5.

2 RELATEDWORK
2.1 Traditional Heuristics.
Due to the fact that a VRP instance has its own theoretical optimal
solution, researchers attempted to develop exact methods as early
solutions [4, 22]. However, these methods are only effective on

small size scales and are extremely slow. Since the exact methods
are almost impossible to solve VRPs within a reasonable time due to
the high computation complexity, researchers developed heuristics
as non-exact methods, to find approximation solutions instead.
Tabu search is one of the old meta-heuristics [5, 15], which keeps
searching for new solutions in the neighborhood of the current
solution. Instead of focusing on improving merely one solution,
genetic algorithms operate in a series of solutions [16, 27]. They
construct new structures continuously based on parent structures.
Instead of treating objectives to be optimized altogether, ant colony
optimizations as another widely accepted solver utilize several
colonies to optimize different functions: the number of vehicles,
the total distance and others [12, 37]. Meanwhile, recreate search
methods keep constructing the current solution and ruining the
current ones to build better solutions. [29]. This helps to expand
the exploration space to prevent the local optimum. Among these
categories, LKH3 is one of the best and most widely-used heuristic
solvers that empirically finds optimal solutions [19]. As a solution
designed for large scale VRPs specifically, HGS [33] shows both
its efficiency and effectiveness. However, the dependence on hand-
crafted rules limits the method in solving basic CVRPs only, and is
hard to generalize to other routing variant problems.

Although these heuristics can improve searching efficiency com-
pared to exact methods, they are still much too time-consuming
when applied to large-scale VRPs with acceptable performances
required, and are vital in responding to any real-time solution re-
quests.

2.2 RL based VRPs Solutions.
Since the learning manner allows the agent model to directly infer
solutions based on a pre-trained model with much shorter com-
putation time, RL based methods become a compelling direction
on solving combinatorial optimizations. It has been successfully
applied in VRPs particularly [7, 20, 26]. Vinyals et al. [34] was the
first to adopt deep learning in combinatorial optimizations by a
novel Pointer Network model. Inspired by this, Bello et al. [7] pro-
posed to use RL to generate routing solutions from scratch. Kool et
al. [20] further augments the attention mechanism into the similar
structure and solved more generalized combinatorial optimization
problems. Other than using the idea of 𝑃𝑜𝑖𝑛𝑡𝑒𝑟𝑁𝑒𝑡𝑤𝑜𝑟𝑘 , Dai et
al. [10] develops their method over graphs via Q-learning [31], so
that the solutions could have better generalization ability. Chen et
al. [9] proposed a local rewriting rule that keeps rewriting the local
components of the current situation via a Q-Actor-Critic training
process [31]. Lu et al. [25] further developed a Learn-to-Iterate
structure that not only improves the solution exploration but also
generates perturbations to avoid local optimum. This is the first ma-
chine learning framework that outperforms LKH3 on CVRPs, both
in computation time and solution quality.Delarue et al. [11] models
the action selection space as a mixed integer optimization problem
and use value-function-based RL to solve VRPs. Li et al. [23], as a
homochronous work as ours tackles large scale VRPs specifically.
Instead of conducting rewriting process on the division of local
region, they choose to train a neural network to generate and se-
lect subproblems directly out of all routes from the last iteration
globally.
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However, these existing RL based methods only achieve promis-
ing results at small scales. The dataset evaluated in these works
are usually constructed with 𝑁 = 20, 50, 100 only. The proposed
models cannot be trained for thousand-customer-level VRPs be-
cause the state space and action space extend exponentially as the
number of customers increases, it will be hard for the model to learn
useful route generation policy directly. In contrast, we propose a
hierarchical RL based framework formed via the classical idea of
Divide-and-Conquer to solve the large-scale challenge.

3 PRELIMINARY
Among all VRP variants, we mainly focus on the capacitated Vehicle
Routing Problem (CVRP). CVRP involves one depot where vehicles
start and end, and several customers with different demands. The
task is to determine the routes with limited capacity to visit all the
customers and fulfill their demands in order to minimize the total
traveling distance.

Let𝐺 (𝑉 , 𝐸) denote the graph consisting of depot and customers.
Specially, 𝑉 = {𝑣0, 𝑣1, ..., 𝑣𝑖 , ..., 𝑣𝑁 }, where 𝑣0 denotes the depot,
and 𝑣𝑖 (1 ≤ 𝑖 ≤ 𝑁 ) denotes the 𝑖-th customer with its location
(𝑥𝑖 , 𝑦𝑖 ) and demand 𝑑𝑖 > 0. For each pair of nodes 𝑣𝑖 and 𝑣 𝑗 , the
edge 𝑒𝑖, 𝑗 , or 𝐸 (𝑣𝑖 , 𝑣 𝑗 ) in another manner represents the distance
between 𝑣𝑖 and 𝑣 𝑗 . In accordance with previous paper[9, 20, 25],
𝑒𝑖, 𝑗 is set as the Euclidean distance of its two nodes, i.e., 𝑒𝑖, 𝑗 =√︃
(𝑥𝑖 − 𝑥 𝑗 )2 + (𝑦𝑖 − 𝑦 𝑗 )2.
The capacity of the vehicle is denoted by𝐷 , which is the maximal

constraint to its loaded shipment. The condition 𝑑𝑖 ≤ 𝐷 is always
satisfied so that the vehicle only visits a customer once in the entire
solution. The vehicle must return to the depot 𝑣0 to reload when
the remaining goods can satisfy no more customers. Therefore,
to meet the needs of every customer, the vehicle may return to
the depot several times, and we term such a travelling sequence
with its head and tail located at the depot 𝑣0 as a route. We denote
the 𝑘-th route 𝜏𝑘 as 𝜏𝑘 = (𝑣0, 𝜏𝑘,1, 𝜏𝑘,2, ..., 𝜏𝑘,𝑛, 𝑣0), where 𝜏𝑘,𝑗 ≠

𝑣0 ( 𝑗 = 1, ..., 𝑛𝑘 ) are the customers visited in this route in order
and 𝑛𝑘 is the number of them. The corresponding cost is C(𝜏𝑘 ) =
𝐸 (𝑣0, 𝜏𝑘,1)+

∑𝑛−1
𝑗=1 𝐸 (𝜏𝑘,𝑗 , 𝜏𝑘,𝑗+1)+𝐸 (𝜏𝑘,𝑛, 𝑣0). Thus the total solution

𝜋 of the problem is composed of 𝐾 routes 𝜋 = {𝜏𝑘 , 𝑘 = 1, ..., 𝐾}, and
the total cost is 𝐶 (𝜋) = ∑𝐾

𝑘=1𝐶 (𝜏𝑘 ).
With the above notations, we mathematically define CVRP as

follows,

min
∑︁𝐾

𝑘=1
C(𝜏𝑘 ), (1)

𝑠 .𝑡 . 𝜏1 ∪ 𝜏2 ∪ · · · ∪ 𝜏𝑖 · · · ∪𝜏𝐾 = 𝑉 , (2)
𝜏𝑖 ∩ 𝜏 𝑗 = {𝑣0},∀𝑖 ≠ 𝑗, (3)∑︁𝑛𝑘

𝑖=1
𝑑𝜏𝑘,𝑖 ≤ 𝐷,∀1 ≤ 𝑘 ≤ 𝐾 (4)

𝜏𝑘,𝑖 ≠ 𝑣0,∀1 ≤ 𝑘 ≤ 𝐾, 1 ≤ 𝑖 ≤ 𝑛𝑘 (5)

where constraint (2) and (3) ensure all customers visited and only
visited once with demands satisfied. (4) indicates the capacity con-
straint. (5) is the constraint of routes that there is no intermediate
visit of depot 𝑣0 in a single route.

Figure 1: The overview of the Rewriting-by-Generating
Framework.

4 REWRITING-BY-GENERATING
4.1 Overall Architecture
Figure 1 shows the overview structure of our proposed framework,
named Rewriting-by-Generating (RBG). Along with the fundamen-
tal idea of Divide-and-Conquer to decompose the enormous prob-
lem scale as discussed previously, we aim at dividing the total cus-
tomers into separate regions and generate near-optimal solutions
individually. To achieve this, we design an RL-based hierarchical
structure including two different components.

First, to refine and obtain more reasonable division results, we
design the "Rewriting" process which keeps updating new divisions
by rewriting the previous ones and their corresponding regional
solutions. The division quality is critical to the final solution since
customers from different regions cannot be scheduled upon the
same route.Within each rewriting step, the agent selects andmerges
two regions based on their current local solutions. A new solution
will be generated upon the merged hyper-region in the following
step, and the rewriter will further divide the merged hyper-region
back to two new regions. Since the exploration on different cus-
tomer composition is complicated and it is not trivial to measure
the direct influence to the final performance in terms of traveling
distance, an RL-based rewriter is a wise choice to learn the selection
and merging action which takes long-term reward as signals. We
will show that the model converges and achieves high performance
when the rewriter agent learns a stable division result in Section 4.

Second, to reach the global solution from the regional scratches,
we employ an elementary VRP generator that generates solutions to
each region, known as the "Generating" process. The selection of the
generator is flexible, which enables the RBG to evolve with any up-
to-date end-to-end VRP solvers and could generate to other practical
routing problems with constraints by implementing specific routing
solvers.

Overall, we develop an RL-based hierarchical framework by co-
ordinating the rewriter and the generator in both global and local
perspectives. The rewriter updates new division and brings new
customer distributions to the generator globally, while the solu-
tions from the generator formulate a key component of the rewriter
in each local regions. From the technical perspective, it is wor-
thy to note that the merging-repartitioning operation the rewriter
conducts is also adopted in previous meta-heuristics [3, 6], while
we replace the handcrafted heuristic with a learning agent. The
global RL based rewriter is responsible for managing inter-regional



KDD ’22, August 14–18, 2022, Washington, DC, USA Zefang Zong et al.

exploration while the generator optimizes inner-results. The combi-
nation of Operation Research (OR) heuristics and RL guarantees an
effective exploration process as well as achieving high computation
efficiency from the prospect of fast solution generation on inference
instances.

For brevity and clarity, we summarize the pipeline as five steps, as
shown in Figure 2. First, we cluster customers into several initialized
hyper-regions. Second, we generate initial regional VRP solutions in
individual hyper-regions via our elementary VRP generator. Third,
we utilize the rewriter to partition each hyper-region into two
smaller regions. Then the rewriter picks up two sub-regions via
neural region representations and merges them into one hyper-
region, and finally generates the hyper-regional solution of it. After
that, we go back to the third step to re-partition the hyper-region
into regions in a loop. Through this process, the partition becomes
more reasonable and the solution is improved continuously. We
can eventually obtain a solution with high quality.

4.2 Region Initialization
Owning to a direct intuition that the spatially close customers are
more likely to be scheduled within the same route in an optimal
solution, a division initialization based on the spatial locations is
reasonable and will benefit to the convergence of the model’s train-
ing. Therefore, we cluster customers according to their locations
and divide the entire graph𝐺 (𝑉 , 𝐸) into subgraphs𝐺𝑖 as the initial-
ization. We adopt K-means in this step for its effectiveness [35]. To
accommodate to the generator model, we set 𝐾 = ⌈ 𝑁

𝑁𝑠
⌉, where 𝑁

is the problem size and 𝑁𝑠 is the small-scale problem size suitable
with the generator model.

Besides, since the depot should be included in each local route,
it is important to make full use of both customer locations and the
depot location for clustering. Considering both relative distance
and direction, we set the distance used for K-means as a linear
combination of Euclidean distance 𝑑𝐸 and polar distance 𝑑𝑃 , which
is calculated using the cosine of the included angle 𝜃 in the polar
coordinate system, whose center is at the depot and the axis is
a fixed line. The overall distance between customer 𝑖, 𝑗 is 𝑑𝑖, 𝑗 =

(1−𝛽)𝑑𝐸
𝑖,𝑗

+𝛽𝑑𝑃
𝑖,𝑗
, where 𝛽 is a hyperparameter. The initial partition

in Fig 2 shows an example of how customers are divided only
according to their polar distance, i.e., when 𝛽 = 1. The detailed 𝛽
selection experiments can be found in Appendix A.3.

4.3 Generating
For small-scale VRPs in merged hyper-regions, we implement VRP
sub-solvers to generate local solutions, termed as the generator. The
well developed VRP research on small and middle scales provide
choices on multiple solutions. In this paper, we adopt both RL based
and non-RL based sub-solvers as follows,

• Following [20], we construct the Attention Model (AM) as
the RL based end-to-end sub-solver. The encoder-decoder
structure selects a customer into the current partial tour.
When a partial tour is constructed, it cannot be changed and
the remaining problem is to find the following path from
the last customer. The generator benefits from the strong
context representation ability to guarantee the performance

and a separate off-line inference stage to generate solutions
within an extremely short period.

• As for non-RL based choices, we adopt LKH3 [19], which is
one of the recent state-of-the-art solver for both CVRP and
many other VRP variants. Besides, we also adopt HGS [33],
which is designed for CVRP only.

It is worth noting that the choice of generator is quite flexible.
One can easily replace it with other efficient learning models for
small-scale CVRP, and the overall framework remains unchanged.
RBG has the potential to accept new advanced small-scale VRP
solvers as its generator.

4.4 Rewriting
The rewriter agent conducts a partitioning-selecting-merging
process to update region divisions. To be detailed, we first partition
each hyper-region based on the inside routes generated by the
generator into two smaller regions, then consistently employ the
neural region representations to select region-pairs and merge them
into hyper-regions.

We denote the 𝑘-th hyper-region by 𝐺𝑘 , and the 𝑘-th region
by 𝐺 ′

𝑘
. The depot 𝑣0 is duplicated and obtained by every 𝐺𝑘 and

𝐺 ′
𝑘
, which is a condition that feasible solutions exist in every local

regions. The local CVRP solution in hyper-region 𝐺𝑘 is denoted
by 𝜋𝑘 = {𝜏𝑘,𝑟 }, 𝑟 = 1, ..., 𝑀𝑘 , where 𝜏𝑘,𝑟 is the 𝑟 -th route in the
solution 𝜋𝑘 and 𝑀𝑘 is the number of routes in 𝜋𝑘 . Similarly, the
solution in region 𝐺 ′

𝑘
is denoted by 𝜋 ′

𝑘
= {𝜏 ′

𝑘,𝑟
}, 𝑟 = 1, ..., 𝑀 ′

𝑘
. We

use |𝐺 ′ | or |𝐺 | to represent the number of customers in region 𝐺 ′

or hyper-region 𝐺 .
Partitioning.Wepartition each hyper-region𝐺𝑘 into two smaller-

size region 𝐺 ′
𝑖
and 𝐺 ′

𝑗
with similar number of customers, while at

the same time keeping the generated routes 𝜏𝑘,𝑟 , 𝑟 = 1, ..., 𝑀𝑘 in
solution 𝜋𝑘 unchanged. In other words, the partition is done upon
the route level.

𝐺 ′
𝑖 ∪𝐺

′
𝑗 = 𝐺𝑘 ,

𝐺 ′
𝑖 ∩𝐺

′
𝑗 = {𝑣0},

𝜋 ′𝑖 ∪ 𝜋
′
𝑗 = 𝜋𝑘 ,

𝜋 ′𝑖 ∩ 𝜋
′
𝑗 = ∅.

(6)

Note that the similar numbers in 𝐺 ′
𝑖
and 𝐺 ′

𝑗
helps to maintain the

regional-scale consistency for further process. Due to the same
intuition addressed in the initialization that an optimal solution
is more likely to assign close customers into the same route, we
calculate the spatial center of all customers within one route as
the route’s representations and use principal component analysis
(PCA) to reduce the representations to 1 dimension. Then we divide
all routes by sides into two new regions 𝐺 ′

𝑖
and 𝐺 ′

𝑗
with similar

amount of customers.
Selecting. After partitioning a hyper-region 𝐺𝑘 into two re-

gions 𝐺 ′
𝑖
, 𝐺 ′

𝑗
, we further generate regional representations via a

neural network. We first represent each route consisting of a se-
quence of nodes as 𝜏 ′

𝑖,𝑟
= (𝑣0, 𝜏 ′𝑖,𝑟,1, 𝜏

′
𝑖,𝑟,2, ..., 𝜏

′
𝑖,𝑟 ,𝑛𝑖,𝑟

, 𝑣0), 𝑟 = 1, ..., 𝑀 ′
𝑖

inside region 𝐺 ′
𝑖
. The original 3-dimensional representation 𝜏 ′

𝑖,𝑟
,

including the coordinate and demand, is further processed via a
𝑑ℎ-dimensional MLP layer and an LSTM [14] layer to capture the
sequential features. Further more, we take the mean value of the
outputs from LSTM of each route in the region and process it using
a fully connected network to generate the 𝑑ℎ-dimensional feature
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Figure 2: The working flow of the hierarchical RBG framework with five steps. The generator is responsible for a solution
initialization in step 2. The iteration including both agents is shown in step 3, 4 and 5.

ℎ𝑖 of 𝐺 ′
𝑖
,

ℎ𝑖 =𝑊
𝜏
1 [

1
𝑀𝑖

𝑀𝑖∑︁
𝑟=1

LSTM(𝑊 𝜏
0 𝜏

′
𝑖,𝑟𝑏

𝜏
0)] + 𝑏

𝜏
1, (7)

where𝑊 𝜏
1 and 𝑏𝜏 are shared weights and bias respectively,𝑀𝑖 is the

number of routes in region 𝐺 ′
𝑖
and ℎ𝑖 ∈ R𝑑ℎ is the representation

of each region 𝐺 ′
𝑖
for further process. All regions share the same

region encoder and its parameters.
With thewell represented regional features, we thus select region-

pairs for further merging. Fixing 𝐺 ′
𝑖
as one candidate region, we

now select another region for further merging. We compute the
selection probability 𝑝𝑖, 𝑗 of 𝐺 ′

𝑖
and 𝐺 ′

𝑗
as

𝑝𝑖, 𝑗 = softmax𝑗 ∈𝑈𝑖
(ℎ𝑇𝑖 ℎ 𝑗 ), (8)

where𝑈𝑖 is the set of the nearest regions to𝐺 ′
𝑖
, and 𝑝𝑖, 𝑗 = 0,∀𝑗 ∉ 𝑈𝑖 .

We set |𝑈𝑖 | = 𝐾 = 5, 8, 9 with 𝑁 = 500, 1000, 2000 respectively. Such
a reduction on selection space could help the HRL framework to
converge much faster. Then we use softmax to select the target
region 𝐺 ′

𝑗
for the following merging process.

Merging. Finally, we obtain a set of region-pairs (𝐺 ′
𝑖
,𝐺 ′

𝑗
), andwe

merge each region-pair together into a new hyper-region𝐺𝑚𝑒𝑟𝑔𝑒 =
𝐺 ′
𝑖
∪𝐺 ′

𝑗
, in which we will regenerate solutions by the generator in

the next iteration step.
Now an iteration of Rewriting-by-Generating is completed. We

perform a fixed number of such iterations at the training and eval-
uation stages respectively. At the 𝑡-th iteration step, which is also
termed as the rollout step or rewriting step, we regenerate the cor-
responding hyper-regional CVRP solution 𝜋𝑡𝑚𝑒𝑟𝑔𝑒 over the merged
hyper-region 𝐺𝑚𝑒𝑟𝑔𝑒 using the elementary CVRP generator. Since
𝜋𝑡𝑚𝑒𝑟𝑔𝑒 considers the customer information more globally, it is com-
prehensible that the newly generated solution 𝜋𝑡𝑚𝑒𝑟𝑔𝑒 is more likely
to obtain better quality than 𝜋 ′𝑡

𝑖
+ 𝜋 ′𝑡

𝑗
. If the new solution is bet-

ter than the previous one, we accept the updating on the overall
solution 𝜋𝑡 of all customers as follows,

𝜋𝑡+1 = 𝜋𝑡 − 𝜋 ′𝑡𝑖 − 𝜋 ′𝑡𝑗 + 𝜋𝑡𝑚𝑒𝑟𝑔𝑒 . (9)

To summarize, the rewriter takes a partitioning-selecting-merging
process to update region divisions. Such a step is called a rewriting
step or a rollout step. The selecting part of the rewriter is optimized

with the performance improvement of the new solutions to the
previous one.

4.5 Optimization via REINFORCE
In the above-mentioned steps, the partition takes place within the
route-level, which does not change the total distance cost. This
means the total cost is only influenced by merging and regenerating.
Hence we define the reward function for one region-pair (𝐺 ′

𝑖
,𝐺 ′

𝑗
)

as follows,

𝑟𝑡 = C(𝜋 ′𝑡𝑖 ) + C(𝜋 ′𝑡𝑗 ) − C(𝜋𝑡𝑚𝑒𝑟𝑔𝑒 ), (10)

where C(𝜋) is the total tour length of solution 𝜋 . It describes how
the solution is improved in each iteration. The gradient updating
of rewriter’s parameter 𝜃 in a batch 𝐵 at rollout step 𝑡 is as follows,

∇𝜃𝐿𝑟 (𝜃 ) =
1
𝐵

𝐵∑︁
𝑏=1

(𝑟𝑡
𝑏
− 𝑏𝑡 )∇𝜃 logP𝜃 (𝐺𝑏,𝑚𝑒𝑟𝑔𝑒 ) (11)

where 𝑏𝑡 is the baseline of REINFORCE method [36] to reduce
the variance of the gradient propagation. It is updated as the run-
ning average of rewards. Meanwhile, to guarantee the iteration
effectiveness, if the newly generated solution is worse than the
previous one, we reject the updated partition and solutions, and
forward to the next rewriting step.

5 PERFORMANCE EVALUATION
In this section, we conduct extensive experiments and answer the
following three research questions:

• RQ1: How does our proposed RBG framework perform com-
pared to other state-of-the-art methods on large-scale VRPs?

• RQ2: How well can RBG generalize to other variant routing
problems with more practical constraints in application?

• RQ3: How is the robustness of RBG when facing different
customer distributions in practice?

Besides offline performance analysis, we also deploy RBG to
a deployed logistic platform online to generate routing solutions,
which is demonstrated further in Section 6.

5.1 Experiment Settings
5.1.1 Datasets. Weevaluate the performance of RBG on two datasets,
including a synthetic one and a real-world one as follows.
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• Synthetic Dataset. We follow the same data generation
method as the CVRP evaluation settings from previousworks [9,
20, 26] for consistency and fair comparison. The location
of each customer (𝑥𝑖 , 𝑦𝑖 ) is sampled uniformly from a unit
square. The demand 𝑑𝑖 of each customer is sampled from
the discrete set {1, 2, ..., 9}, and the capacity of each vehicle
is set 50. Unless otherwise stated in the robustness studies,
we set the depot at the central of the area for simplicity.
The traveling distance between two customers or the depot
are calculated directly using the inner Euclidean distance.
The test dataset contains 1000 instances for each problem
size and is generated using different random seeds from the
training and validation dataset.

• Real-world Dataset We collect the real-world dataset from
an online logistic system within a week. The customer loca-
tions are randomly selected from the historical order records
within a week in Beijing in June, 2020. The discrete de-
mand of each customer node is also uniformly chosen from
{1, ..., 9}, while the capacity is set as 50. The distances in-
between are retrieved from GIS platform, and both location
coordinates and distances are normalized into a unit square.
The dataset distribution of both datasets are presented in
Figure 3.

(a) Synthetic (b) Real-world

Figure 3: Data distributions of both synthetic and real-world
datasets.

Training and Evaluation Details. For both datasets, we con-
sider three different problem scales for large-scale CVRP with cus-
tomer amount 𝑁 = 500, 1000, 2000 respectively. We run 10 rollout
steps for rewriting during each epoch and each model is trained
for 50 epochs, and each epoch contains 100 problem instances.
During evaluation, we run 100 rollout steps for rewriting. More
details on training and evaluation for reproducibility are included
in Appendix A.1.

5.1.2 Methods and Baselines. We first present a background per-
formance for both datasets:

• Random: Routing solutions are generated randomly.
Then We compare the RBG framework with the four widely recog-
nized heuristics methods:

• Ant Colony Optimization(ACO) [13] is a famous heuristic
to solve the the basic VRP and its variants. A number of ant
colonies are established to model and optimize the objective
functions.

• LKH3 [19] is one of the recent state of the art CVRP solver
which adopts the classical Lin-Kernighan heuristic to obtain
high-quality solutions [24]. We record both pre-computation
time and iteration time.

• HGS [33] is a CVRP-specific solution designed especially for
large scale cases.

• OR Tools [18], Google’s vehicle routing problem solver that
utilizes a set of metaheuristics, which is open online1.

We also compare the most up-to-date RL-based approaches:
• ReWriter [9] proposes to keep rewriting current routing
solutions to improve the routing quality.

• AM [20] utilize the transformer structure in both encoder
and decoder. Since the origin algorithm can only solve in-
stances with Euclidean distances only, we adapt it to the
real-world data by projecting the real distance matrix into
initial node embeddings. The model is trained on 100 in-
stances and directly evaluated on large scales.

• L2I [25] establishes a learning-to-iterate framework by con-
struction an operation pool, and train an agent to select an
operator each time to conduct routing improvement.

• L2D [23] as a homochronous work as our RBG framework,
iteratively selects subproblems out of all routes and delegates
their improvement by a subsolver.

To evaluate the effectiveness and flexity of RBG, three RBG extended
frameworks, RBG-AM, RBG-LKH, RBG-HGS are implemented with
AM, LKH, HGS respectively.

5.2 Performance Comparison (RQ1)

Table 1: Overall performance comparison on the synthetic
dataset. The best result is in bold and the second is underlined.
The object Obj. is the average total travel distance. Time is
the average time to solve a single instance.

N = 500 N = 1000 N = 2000
Obj. Time Obj. Time Obj. Time

Random 273.49 - 546.12 - 1091.35 -
ACO [13] 61.55 20min 112.28 50min 207.56 2h
LKH3 [19] 49.55 1s+5min 92.98 6s+15min 178.23 1min+40min
HGS [33] 49.18 15s 92.82 61s 177.20 180s

OR Tools [18] 54.72 20s 100.77 80s 186.95 5min
ReWriter [9] 60.67 33s 108.82 37s 198.76 8min
L2I [25] 52.58 74s 99.21 3min 191.34 17min
AM [20] 55.48 - 106.60 - 218.68 -
L2D [23] 49.54 60s 92.78 144s 176.12 356s
RBG-AM 51.23 7s 95.96 15s 181.43 30s
RBG-LKH 49.48 70s 92.77 159s 175.79 5min
RBG-HGS 49.13 15s 91.74 59s 174.50 90s

The comparison results on both datasets are shown in Table 1
and Table 2 respectively. RBG engaged with HGS as the generator
shows consistent advantage to all other baselines in all experiments,
and outperforms the best baseline by 1.66% with 𝑁 = 2000 in the
real-world dataset. While RBG-LKH is only slightly outperformed
by LKH3 in two datasets with 𝑁 = 500 by 0.2% and 0.6%, and still
outperforms others in larger scales. It is interesting to find that the
performance gaps of RBG-HGS and RBG-LKH compared to LKH3

1https://developers.google.com/optimization/routing/vrp.html
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Table 2: Overall performance comparison on the real-world
dataset. The best result is in bold and the second is underlined.
The object Obj. is the average total travel distance. Time is
the average time to solve a single instance.

N = 500 N = 1000 N = 2000
Obj. Time Obj. Time Obj. Time

Random 272.31 - 546.02 - 1095.62 -
ACO [13] 60.26 20min 109.80 50min 203.71 2h
LKH3 [19] 49.76 1s+2min 93.04 14s+20min 179.52 1.7min+1h
HGS [33] 49.42 15s 93.53 30s 178.81 120s

OR Tools [18] 55.4 5min 100.03 10min 187.01 30min
AM [20] 54.96 - 105.00 - 219.53 -
L2D [23] 49.62 83s 92.80 221s 177.83 359s
RBG-AM 51.22 7s 95.42 15s 180.99 30s
RBG-LKH 49.50 70s 92.62 3min 176.47 6min
RBG-HGS 49.37 12s 92.33 15s 174.87 88s

and HGS, the state-of-the-art heuristic algorithms, keep increasing
when the size of customers increases. This demonstrates that our
RBG framework not only generates high-quality solutions when
the problem is at a large scale but also has a growing advantage
to other methods when the problem scale grows. This is of great
practical value since maintaining solution quality is critical to many
realistic industrial applications in which a vast number of customers
may occur frequently [2]. We also notice that the RBG framework
outperforms the L2D structure consistently in all settings. This is
because that selecting subproblems for the generator via the re-
partitioning and merging cycles help to maintain the stability of
region construction, compared to the complete start-over manner
in L2D.

Apart from the solution quality, RBG also has remarkable infer-
ence efficiency. RBG-AM only takes 30𝑠 averagely to obtain the
solutions to the instances with 𝑁 = 2000. Compared to LKH3,
one of the best heuristic methods that has a close performance to
RBG, our framework works about 80× times faster. Even if RBG
is eqiuped with relatively slower heuristic solvers, RBG-HGS and
RBG-LKH still performs much more efficiently than the pure gen-
erator inference. A plausible reason is that solving partial instances
by the generators locally prevents the framework from facing the
entire global searching space . Consequently, the ability of fast-
responding to new instances makes our proposed RBG framework
adaptive to situations where instances require real-time responses,
which is of great importance. For example, demands in on-demand
delivery service change continuously due to new demand arrivals
and order cancellations. Generating new solutions to new order
distributions within time limits for fast-response is vital to a robust
system design.

5.3 Generalization to Practical Routing
Problems (RQ2)

In real-world applications, routing problems are usually with prac-
tical constraints. A practical framework should be capable of easily
generating to other variant problems. Thus we analyze the how
well can RBG generalize to two typical variants, CVRP with Time
Windows (CVRPTW) and CVRP with Mixed Delivery and Pickup
(CVRPMDP). We introduce the two problems and the datasets used
as follows:

Table 3: The performance comparison with baselines on gen-
eralized practical routing problems. The best result in each
column is in bold.

N = 500 N = 1000 N = 2000
Problem Model Obj. Time Obj. Time Obj. Time

CVRPTW
LKH3 62.84 1.5min+90s 113.89 15min+5min 212.15 1.4h+20min
L2D 63.74 1min 115.20 123s 213.62 5min

RBG-LKH 63.48 30s 113.04 121s 210.85 5min

CVRPMDP
LKH3 55.75 45s+2min 103.32 7min+10min 196.72 44min+42min
L2D 55.65 54s 102.13 130s 193.00 7min

RBG-LKH 55.10 60s 101.97 121s 191.79 7min

• CVRPTW adds additional constraints on the arrival time
of vehicles at each customer, which is restricted within a
given time window [𝑒𝑖 , 𝑙𝑖 ], where 𝑒𝑖 and 𝑙𝑖 are the frontiers
and postiers of the time windows respectively. All vehicles
are required to visit the customers within the time windows.
Following the data generation procedure in Solomon and
Li et al. [23, 30], the time windows are set based on the
synthetic dataset by 1) sampling the time window center
𝑐𝑖 U([𝑒0 + 𝑡0,𝑖 , 𝑙0 − 𝑡0,𝑖 − 𝑠𝑖 ]), where 𝑡0,𝑖 is the travel time
equaling the distance in-between 2) sampling the time win-
dow hald-width ℎ𝑖 uniformly from [0.1, 1] and 3) setting the
entire time window as [𝑚𝑎𝑥 (𝑒0, 𝑐𝑖 − ℎ𝑖 ),𝑚𝑖𝑛(𝑙0, 𝑐𝑖 + ℎ𝑖 )].

• CVRPMDP fomulates when there exists heterogeneous par-
cel parcel types, where some require delivering and some
require picking up. The vehicles are required to accomplish
both pickup and delivery tasks along the routes. Following
the data generation procedure in Salhi et al. [28], we select
half customers with pickup demands and the others with de-
livery demands based on the synthetic dataset, both sampled
uniformly from [1, ..., 9]. The capacity of each vehicle is set
as 25.

Since LKH3 [19] is the only stable generator which is capable to
solve multiple VRP variants, we only compare RBG-LKH with other
available baselines, including LKH3 itself and L2D.

The overall performance results are shown in Table 3.Except
that RBG-LKH is slightly outperformed by LKH3 in CVRPTW with
𝑁 = 500, the RBG based framework outperforms both baselines on
both problem variants. Compared to pure LKH3, RBG-LKH obtains
the optimization advantage by 0.62% and 2.5% on two problems
respectively. Besides, RBG still shows its consistent efficiency in
generating solutions up to 6𝑥 times faster. We also notice that the
original LKH3 spends a great amount of time in pre-computation
when facing complicated routing scenarios in large scales, while the
region decomposition mechanism of RBG greatly saves such time.
Compared to L2D, RBG benefits from its relatively stable region
decomposition, so that the framework can improve solution quality
faster.

While most RL based framework are hard to be adapted to nu-
merous practical routing scenarios, RBG is flexible enough to be
easily generalized by enhancing with corresponding generators.
Such a generalization ability is of great importance in practical
system deployment.
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Figure 4: Performance on different data distributions.

5.4 Analysis of Robustness to Data Distribution
(RQ3)

Practical online logistic systems takes customer orders as new data
continuously. To further evaluate the robustness of RBG to dif-
ferent data distributions, we conduct experiments by generating
four synthetic datasets with different distribution protocols follow-
ing the widely accepted CVRP instance benchmark by Uchoa et
al. [32]: 1) Random depot, random cluster, where the depot and
the customers are all located randomly. 2) Central depot, clus-
tered customer, where customers distribute in several clusters, 3)
Central depot, random-clustered customer, where half of the
customers are randomly located in a uniform distribution, and the
other half gather at several clusters, 4) Central depot, random
customer, which is the same with our training setting, i.e., the de-
pot is located at the center and customers are located randomly in a
uniform distribution. In all scenarios, the RBG model for evaluation
is trained on the same central depot and random customer data,
and then evaluated on different data distributions. We compare the
performance in each scenario with LKH3, the baseline with the best
performance. For clarity, the performance of RBG is normalized by
the corresponding LKH3 traveling cost in Fig 4. The detailed data
distribution is shown in Appendix A.5.

We find that our proposed RBG performs well across different
data distributions and the improvement trends along rollout steps of
the traveling cost are similar. Specifically, RBG outperforms LKH3
at about the 5-𝑡ℎ, 10-𝑡ℎ and 50-𝑡ℎ step in the last three groups.
Clustered customer is the only case where RBG is outperformed
by LKH3. A plausible reason is that the clustering of the customer
distributions make it easier for the LKH3 to find the close customers
within the same cluster and assign them to the same route,and thus
the advantage of dividing customers into reasonable regions is
weakened. However, RBG still obtains high-quality solutions with
performance loss of no more than 0.5%. Detailed visualization and
statistics are presented in Appendix A.5.

6 ONLINE SYSTEM DEPLOYMENT AND
EVALUATION

We integrate RBG into an online logistic system deployed in Guang-
dong, China. The platform collects delivery demands one day in
advance, and provides routing strategies to a fleet to transport the
parcels. Base on the given problem instances, the built-in algorithm
computes the near-optimal routing solutions for the vehicle fleet

Table 4: The performance evaluation of several methods one
day’s logistic task. Results of the deployed algorithm, RBG-
HGS, generated online is in bold, while others are evaluated
offline later with the same data.

500 by 500 700 by 500 700 by 1000
Model Obj. Time Obj. Time Obj. Time
LKH3 32.12 0.6s+5min 39.71 2s+15min 39.71 2s+15min
HGS 31.85 60s 39.48 90s 39.48 90s
L2D 33.11 36s 40.57 36s 40.61 37s

RBG-LKH 32.25 17s 39.80 98s 39.80 99s
RBG-HGS 31.84 14s 39.44 21s 39.46 21s

in advance. Under circumstances where new demands arrive when
the fleet already are already running and in service, the platform
re-computes an updated routing solution considering the additional
requests and send corresponding orders to the vehicles in real-time.
Each vehicle in the fleet is equipped with an IoT device, so that the
real-time coordinate, the remaining volume and the current work-
ing state of each vehicle can be captured by the centralized platform.
A visualization of the platform is shown in Figure 5, where the real-
time Gantt diagram describing working states of different vehicles
is shown on the left, and the customers distributions are shown on
the right. The green bars in the Gantt diagram indicates that the
driver is not moving, either in service at the customer locations or
in a break. While the blue bar indicates that the vehicle is running
along the road guided by the GIS system.

To demonstrate the effectiveness of the proposed RBG frame-
work, we compare the performances of different algorithms on two
days’ logistic tasks, with 𝑁 = 500 and 𝑁 = 700 each. All algo-
rithms are pre-trained via the synthetic data. Since 𝑁 = 700 is not a
pre-established problem scale in the synthetic dataset, we evaluate
the performance using model trained on both 500 and 1000 scales,
termed as 700 by 500 and 700 by 1000. 𝐿𝐾𝐻3 and 𝐻𝐺𝑆 are reported
the same results in these two settings since they are not learning
based approaches. Note that the only implemented algorithm is
RBG-HGS, which generates solutions in the online environment.
The entire comparison is finished by collecting the data and then
evaluate other methods based on the data offline later.

Figure 5: The interface of the online logistic platform de-
ployed in Guangdong, China. A Gantt diagram describing
the routing process of each vehicle is shown on the left, while
the entire customer distribution is shown on the right.

The detailed comparison results are shown in Table 4. RBG-
HGS shows its consistent performance compared to other selected
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baselines. In the𝑁 = 500 task, the previous SOTA baseline HGS [33]
takes 60s to obtain close solution quality as RBG-HGS, who only
takes 14s to finish the searching progress till near convergence. It
is also worthy to note that RBG-HGS performs steadily on 700 by
500 and 700 by 1000, which indicates that the RBG framework is
also flexible in generalizing across different problem scales. Such
a generalization feature is extremely important in online system
implementation, since we cannot expect to train offline models on
all problem scales. When solving online instances with a specific
problem scale no model has ever been trained on, the platform can
easily selects the model with close scales and could still maintain
stable performances.

Our improvement is significant in practical logistic systems. An
urgent problem is that when customer demands change rapidly, a
platform using heuristics cannot generate a corresponding changed
solution at once. Another situation is that if a qualified solution for a
delivery task does not exist, we need to split customers into classes
with different priorities and generate several solutions by steps.
This may happen when the customer amount exceeds a maximum
or some extremely distant customer occurs, while the vehicles are
not enough for usage. Under both circumstances, real-time response
to new problem inputs is of great significance. This is exactly where
the RBG framework shows its advantage.

7 DISCUSSION AND CONCLUSION
In this paper, we propose the Rewriting-by-Generating framework
for solving large-scale routing problems. The framework generates
regional routing solutions within each independent regions via a
generator, and rewrites its previous solution by merging and re-
partitioning region pairs via an RL based rewriter. We demonstrate
RBG generates high-quality solutions efficiently. We also showcase
the robust ability for RBG to perform effectively in a variety of
distributions that may be different from the training distribution.
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A APPENDIX
A.1 Additional Training and Evaluation Details
Training. During the training process, we use a learning rate of
0.001 to train the rewriter optimized by SGD. The dimension of
route embedding𝑑ℎ is set as 100. For each instance, we run K-means
for 10 iterations in the initialization step and set 𝛽 = 0.09. We run
10 rollout steps for rewriting during training and randomly rotate
the positions of all customers along the depot at each step to make
training data in a near-i.i.d. distribution to prevent overfitting. Each
model is trained for 50 epochs, and each epoch contains 100 samples.
After each epoch, we evaluate the model on the validation dataset
with 20 samples and update the current model if the performance
improves. The updating parameter𝛼 for the baseline of REINFORCE
is set as 𝛼 = 0.99. Our method is implemented in Python via Pytorch
framework, and the experiments are run on one Nvidia 2080Ti GPU.

Evaluation. During evaluation, we maintain the same generator
setting as in the training process. As for the rewriting process, we
run 100 rollout steps for each problem instance. All evaluation
results are reported based on the average of performance of 100
instances, in terms of the objective and solving time. Note that
LKH spends significantly long time during pre-processing before
reporting the first result on large-scale VRPs, so we report such a
time individually.

For both datasets, we consider three different problem scales
for large-scale CVRP with customer amount 𝑁 = 500, 1000, 2000
respectively.

A.2 Analysis of Rewriting Strategy
Instead of analyzing only final comparison with other baselines,
we also look into the detailed iteration steps to analyze how RBG
improves its solutions iteratively.

We analyze the extent and the frequency of partition along with
the performance improvement. Figure 7(a) shows the reallocation
ratio 𝑅 by rollout steps, which is the ratio of customers reallocated
after a rewriting operation. It is calculated as follows,

𝑅 =
∑︁

(𝐺′
𝑖
,𝐺′

𝑗
)−pair

𝑚𝑖𝑛( |𝐺 ′
𝑖
−𝐺 ′

𝑗
∩𝐺 ′

𝑖′ |, |𝐺
′
𝑖
−𝐺 ′

𝑖
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𝑗 ′ |)
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where a region pair (𝐺 ′
𝑖
,𝐺 ′

𝑗
) is merged into a hyper-region and then

re-partitioned into a new region pair (𝐺 ′
𝑖′,𝐺

′
𝑗 ′), and 𝐺 is the entire

graph. Figure 7(b) shows the rate of repartition being accepted.
Figure 7(c) shows the normalized traveling cost ratio to the minimal
cost along with rollout steps.

We find that the reallocation ratio and the partition update rate
decreases significantly as long as the traveling cost decreases. The
similar decreasing trends among them demonstrate that the im-
provement of the solution quality is highly related to the extent
and frequency of rewriting. The rewriter finally tends to stop its
rewriting operation when the solutions are close to optimal. In
conclusion, the rewriter shows its effectiveness in improving the
solution quality during the instance inference.

(a) The initial solutions, 𝑁 = 500,
cost=51.97

(b) The final solutions, 𝑁 = 500,
cost=50.97.

(c) The initial solutions, 𝑁 = 1000,
cost=102.09.

(d) The final solutions, 𝑁 = 1000,
cost=99.01.

(e) The initial solutions, 𝑁 = 2000,
cost=190.45.

(f) The final solutions, 𝑁 = 2000,
cost=184.48.

Figure 6: Visualization on initial and final solutions of dif-
ferent scales. The big red point at the center represents the
depot, and each blue point represents a customer. Routes
with the same color are in the same region. For clarity in
visualization, we omit the line segment from depot to the
first customer and from the final customer back to depot for
each route.

(a) Reallocation (b) Update Rate (c) Ratio

Figure 7: Statistics of the rewriter at different scales as the
rewriting step increases. (a) shows the change of reallocation
ratio 𝑅 defined by equation 12. (b) shows the rate of reparti-
tion being accepted. (c) shows the ratio of travelling cost to
the minimal cost available.

A.3 Analysis on different initialization
strategies

Due to the intuition that the closely-distributed customers are more
likely to appear in the same route in an optimal solution, we cluster
the customers according to their locations as discussed in Section
3. However, the detailed spatial feature used for clustering may
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(a) 𝑁 = 2000 instance of random
depot&random customer data.

(b) Solution, cost=274.17.

(c) 𝑁 = 2000 instance of central de-
pot&clustered customer data.

(d) Solution, cost=146.35.

(e) 𝑁 = 2000 instance of central
depot&random-clustered customer
data.

(f) Solution, cost=199.71.

Figure 9: Visualization on graphs and solutions of different
data distributions. The big red point represents the depot,
and each blue point represents a customer. Routes with the
same color are in the same region. For clarity in visualization,
we omit the line segment from depot to the first customer
and from the final customer back to depot for each route.

vary. Hence we analyze two different ways to measure the related
distance between two customers 𝑖 and 𝑗 : 1) Euclidean distance,
𝑑𝐸
𝑖,𝑗

and 2) the polar distance, 𝑑𝑃
𝑖,𝑗
, which is calculated using the

included angle 𝜃 in the polar coordinate system, whose center is at
the depot and the axis is a fixed line.

To measure the influence of the two partition features, we use a
combination of them, (1 − 𝛽)𝑑𝐸

𝑖,𝑗
+ 𝛽𝑑𝑃

𝑖,𝑗
, to represent the distance

between customer 𝑖 and 𝑗 , where 𝛽 is a hyperparameter. The initial-
ization is obtained via the classical K-means algorithm[1, 21] and
the results are shown in Fig 8. The traveling costs are normalized by
the minimal one. We find that the generated solutions has the best

quality when 𝛾 =
𝛽

1−𝛽 = 0.1, i.e., 𝛽 = 0.09. Euclidean distance is a
straightforward feature to measure the closeness of customers, but
the division that relies solely on it may generate clusters that are
far away from the depot. The corresponding route may suffer from
a great distance cost to travel from the depot to the cluster, and
then back to the depot. While the polar distance can prevent this
shortage. An appropriate combination of them can benefit the RBG
framework to obtain higher performance. It is also remarkable to

Figure 8: Ablation study on distance factor(𝛾 =
𝛽

1−𝛽 ) for clus-
tering. x-axis is different 𝛾s, and y-axis is the traveling costs
normalized by the minimal one.

point out that the spatial feature combination has a low fluctuation
range. The worst performance in every customer scales is no worse
than 0.25% than the optimal one. This shows the great robustness
of RBG to different initialization strategies.

A.4 Visualization of Inference
We present the visualization of the initial and final solutions in all
three customer scales, as shown in Fig 6. It is worthy to mention
that due to the initialization based on spatial features, the initial
routes appear to be more gathering in space. Different routes can
usually be separated by a clear boundary between them. However,
in the final solutions which are rewritten and regenerated for steps
by RBG, the routes tend to have more complicated intersections
in space. This is because other factors, including the customer
demands and the capacity are further considered by RBG and more
reasonable divisions and routes are updated.

A.5 Visualization of Solutions with Different
Data Distribution

We also present the visualization results on different instances with
different data distributions, shown in Figure 9.
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