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ABSTRACT 
Socioeconomic indicators refect location status from various as-
pects such as demographics, economy, crime and land usage, which 
play an important role in the understanding of location-based so-
cial networks (LBSNs). Especially, several existing works leverage 
multi-source data for socioeconomic indicator prediction in LBSNs, 
which however fail to capture semantic information as well as distil 
comprehensive knowledge therein. On the other hand, knowledge 
graph (KG), which distils semantic knowledge from multi-source 
data, has been popular in recent LBSN research, which inspires us 
to introduce KG for socioeconomic indicator prediction in LBSNs. 
Specifcally, we frst construct a location-based KG (LBKG) to inte-
grate various kinds of knowledge from heterogeneous LBSN data, 
including locations and other related elements like point of interests 
(POIs), business areas as well as various relationships between them, 
such as spatial proximity and functional similarity. Then we propose 
a hierarchical KG learning model to capture both global knowledge 
from LBKG and domain knowledge from several sub-KGs. Exten-
sive experiments on three datasets demonstrate our model’s supe-
riority over state-of-the-art methods in socioeconomic indicators 
prediction. Our code is released at: https://github.com/tsinghua-fb-
lab/KG-socioeconomic-indicator-prediction. 

CCS CONCEPTS 
• Human-centered computing → Social network analysis; • Com-
puting methodologies → Knowledge representation and reasoning. 
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1 INTRODUCTION 
Socioeconomic indicators of a location, such as population, income 
level and education level, characterize the attributes of location-
based social network (LBSN) from various aspects, and thus are 
important to the study of LBSNs. A novel and promising way for 
socioeconomic indicator prediction in LBSNs is location represen-
tation learning, which aims to learn low-dimensional embedding 
vectors for locations. Efective embeddings can characterize various 
properties of locations to help socioeconomic indicator prediction. 

The proliferation of LBSNs has generated a large amount of LBSN 
data, which provides a comprehensive description of locations. For 
example, locations with a large mobility outfow on weekday morn-
ings and a large infow in the evening may serve as residential areas 
in the city, which indicates that mobility fow data generated by 
location-based devices can refect the function of locations. There-
fore, LBSN data is essential to location representation learning and 
socioeconomic indicator prediction. 

LBSN data is often of complex structure with multiple types of 
interconnections therein. As a result, graph structure is usually 
used to model LBSN data, and thus location representation learning 
can be formulated as a network representation learning problem. 
Moreover, most existing works use multi-view graph embedding 
techniques to model multiple factors such as mobility, spatial vicin-
ity and function of LBSNs [13, 32, 38]. However, such works only 
consider locations during the fnal information aggregation pro-
cess and ignore other elements in LBSNs, which leads to the lack 
of semantic information. For example, the function of a location 
is largely refected by POIs and categories therein, while existing 
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works do not incorporate such elements into the graphs. Moreover, 
existing works fail to consider knowledge in LBSNs from a global 
view, because they model diferent kinds of knowledge in diferent 
graphs, and use simple attention mechanism to fuse them together. 
However, various kinds of knowledge in LBSNs are deeply entan-
gled with each other. For example, there may be a large mobility 
fow from residential areas to work areas on weekday mornings, 
which indicates that mobility knowledge of LBSNs is correlated 
with their function knowledge. As a result, it is insufcient to model 
mobility knowledge and function knowledge in diferent graphs. 

Therefore, better socioeconomic indicators prediction faces two 
key challenges: (1) First, how to model rich semantic information 
in LBSNs? The semantic information in LBSNs is determined not 
only by locations, but also by various other elements like POIs 
and business areas, and complex relationships between them. It is 
non-trivial to model such information in the graphs. (2) Second, 
how to capture diferent LBSN knowledge in a comprehensive 
way? As mentioned above, existing works mostly consider diferent 
knowledge in diferent graphs, while they fail to consider all the 
knowledge at a global level. 

Inspired by the capability of KG in modeling heterogeneous 
data [6, 16–18], in this paper, we propose a KG-based model to 
overcome the challenges. First, according to empirical observation, 
we construct a location-based KG (LBKG) incorporating various 
knowledge in LBSNs, i.e., spatiality knowledge, function knowledge, 
mobility knowledge and business knowledge. The LBKG contains 
entities including locations, POIs, categories and business areas, as 
well as complex relationships between them, which can model rich 
semantic information in LBSN and thus solve the frst challenge. 
As for the second challenge, we propose a hierarchical KG learning 
framework to integrate both global and domain knowledge in LB-
SNs. At the higher level, the LBKG incorporates various kinds of 
knowledge in a single graph, from which we distil global knowl-
edge using KG embedding technique [22]. Besides, at the lower 
level, we extract a corresponding sub-KG from LBKG for each kind 
of domain knowledge, and learn embeddings with the assistance 
of global knowledge. Furthermore, we design a knowledge fusion 
module to fuse various kinds of domain knowledge. Overall, the 
LBKG distils global knowledge at the higher level, which also as-
sists the learning of domain knowledge in sub-KGs at the lower 
level. In this way, the two levels of hierarchical framework together 
incorporate various kinds of LBSN knowledge comprehensively. 

The contributions of this paper can be summarized as follows: 

• We introduce KG to socioeconomic indicator prediction prob-
lem in LBSN. To the best of our knowledge, we are the frst to 
construct an LBKG to integrate heterogeneous LBSN data in a 
single multi-relational graph comprehensively. Specifcally, we 
systematically investigate various LBSN knowledge and model 
it through multiple types of entities and relations in LBKG. 

• We propose a hierarchical KG learning model, which leverages 
LBKG to distil global knowledge from a global view, and use 
several sub-KGs to capture domain knowledge from diferent 
aspects with the assistance of global knowledge. 

• We perform extensive experiments on three real-world LBSN 
datasets, whose results demonstrate our model’s superiority over 
state-of-the-art methods in socioeconomic indicator prediction 

tasks, outperforming baselines by over 7.5% in terms of �2. The 
considerable performance across all indicators on three datasets 
shows the robustness of our model, and several in-depth experi-
ments further demonstrate the efectiveness of model design. 

2 PROBLEM STATEMENT 
In this section, we frst introduce the preliminary concepts related 
to our work, and then provide the defnition of socioeconomic 
indicator prediction problem. Specifcally, we aim to predict socioe-
conomic indicators from LBSN data, which is defned as follows. 

Defnition 2.1 (LBSN Data). LBSN data DLBSN consists of multi-
source data including spatial data, attribute data and mobility data. 
Specifcally, spatial data contains spatial information such as the 
geographic coordinates of POIs and the boundary of locations. 
Attribute data includes POI brand, category and other attribute 
information. Mobility data can be the mobility records of mobile 
devices or taxi trips, refecting the trajectories of users in LBSNs. 

Furthermore, since our model is based on KG, we present the 
defnition of KG here [8, 11, 30]. 

Defnition 2.2 (Knowledge Graph). A KG is defned as a graph 
G = (E, R, F ), consisting of the entity set E, relation set R and 
fact set F . Each fact in F is a triplet (ℎ, �, �), where ℎ, � ∈ E, � ∈ 
R, denoting a directional edge from head entity ℎ to tail entity � 
with relation type � . Besides, each entity can have an entity type 
determined by a mapping function � : E → A, where A is the set 
of predefned entity types. The KG schema describes the high-level 
structure of KG, which shows the types of entities and relations 
between entity types. 

With the concepts defned above, we formulate our research 
problem as follows. 

Defnition 2.3 (LBSN Socioeconomic Indicator Prediction). 
Given LBSN data DLBSN and a set of locations in LBSN S� = 
{�1, �2, ...�� }, learn a mapping function � : S� → V� , where V� 
is the value set of socioeconomic indicator � ∈ I, i.e., predict the 
value of socioeconomic indicators for locations in LBSN. Here I 
denotes the set of socioeconomic indicators, which are measures 
of socioeconomic status of a location such as population, income 
level, education level, etc. 

To better solve the problem, two key challenges need to be ad-
dressed. First, LBSN data DLBSN is heterogeneous, containing mul-
tiple types of elements and relationships with rich semantic infor-
mation. It is difcult to model the semantic information therein. 
Second, there are various kinds of knowledge in LBSN owing to 
various sources of LBSN data. Diferent kinds of knowledge play 
diferent roles in LBSN while there are also complex interconnec-
tions between them. Therefore, modeling all kinds of knowledge 
comprehensively is challenging. 

3 METHODS 

3.1 Framework Overview 
To address the aforementioned challenges, we propose a hierarchi-
cal KG learning framework, whose architecture is shown in Figure 1. 
Specifcally, to overcome the frst challenge, we construct an LBKG 
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Figure 1: (a) The overall framework of our proposed model, and (b) details of knowledge encoder. 

to integrate heterogeneous LBSN data, where elements in LBSN 
data are modeled as entities and complex relationships are modeled 
as relations in LBKG. As for the second challenge, we propose a 
hierarchical model to capture both global and domain knowledge 
from LBKG. At the higher level, we distil global knowledge from 
LBKG through KG embedding model. At the lower level, we extract 
several sub-KGs from LBKG which contain domain knowledge in 
LBSN from diferent aspects. Domain knowledge in sub-KGs is 
distilled with the assistance of global knowledge, and combined 
with the global knowledge to generate location embeddings. Finally, 
the learnt location embeddings are fed into a regression model for 
socioeconomic indicator prediction. 

3.2 LBKG Construction 
We frst construct an LBKG including various elements and relation-
ships in LBSN to capture semantic information therein. Inspired by 
existing works [17, 18, 38], we conduct correlation analysis between 
various kinds of LBSN knowledge and socioeconomic indicators 
to empirically examine their relationship. Then we incorporate 
LBSN knowledge that is correlated with indicators, i.e., spatiality 
knowledge, function knowledge, mobility knowledge and business 
knowledge into LBKG. Specifcally, spatiality knowledge describes 
the spatial vicinity between locations, and function knowledge 
depicts the function of locations by POIs and categories. Besides, 
mobility knowledge characterizes the mobility transition pattern 
between locations and business knowledge contains information 
about business areas and their relationships with locations. The 
schema of our LBKG and each kind of LBSN knowledge is shown 
in Figure 2. We then explain the construction process in detail. 

Spatiality knowledge. Urban regions are basic functional areas 
divided by the main road networks in the city where people live 
and work, and can be seen as basic spatial units in LBSNs. In this 
work, we choose urban regions as the locations to study, which are 
therefore identifed as entities in LBKG. According to Tobler’s First 
Law of Geography [21], near things are more related than distant 
things, which indicates that spatially close locations probably have 
more similar characteristics. We conduct analysis on our datasets to 
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Figure 2: The schema of LBKG and four kinds of LBSN knowl-
edge. 

verify such correlation. Specifcally, for each location, we select the 
nearest location and calculate the distance between them as well 
as the diference in population (measured on log scale). As shown 
in Figure 3(a), the spatial distance between regions is positively 
correlated with their population diferences, which suggests that 
spatially neighboring locations are likely to have similar population. 
To capture such relationships, we use relation BorderBy to link 
locations that share part of the same boundary and NearBy to 
link locations whose distance is smaller than a threshold. BorderBy 
and NearBy describe the vicinity of locations from diferent scales, 
which further enriches the spatiality knowledge. 

Function knowledge. The function of locations has a signif-
icant impact on their properties, which is largely determined by 
POIs and categories therein [13, 37, 38]. POIs, such as schools, parks 
and restaurants, are the basic functional units in LBSN, and are clas-
sifed into several categories by the function and property of POIs. 
To evaluate the correlation between function and socioeconomic 
indicators, we calculate the functional similarity between locations 
as the cosine similarity of POI category distribution. Then for each 
location, we plot the functional similarity between it and its most 
similar location against their population diference. As shown in 
Figure 3(b), locations that are more functionally similar tend to 
have more similar population. Consequently, to capture function 
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Figure 3: Pearson correlation between LBSN knowledge and 
indicators. The four kinds of LBSN knowledge are correlated 
with socioeconomic indicators of locations (here we present 
population as an example). 

knowledge of locations, we incorporate each POI as an entity into 
LBKG and link it to the location it lies in with relation LocateAt. 
And relation CoCheckin is used to describe geographical infuence 
between POIs. We also add POI categories as entities to LBKG and 
link each POI with the category it belongs to with CateOf relation. 
Moreover, we calculate the functional similarity for each pair of 
locations and link each location with the most similar � locations 
with relation SimilarFunc. 

Mobility knowledge. Mobility data, generated by location-
based devices in LBSN, depicts the human fow transition patterns 
across locations, which can also refect socioeconomic properties 
of a location [32, 36, 37]. We aggregate the mobility data to get 
the volume of mobility fow between every two locations. For each 
location, we plot the correlation between mobility volume and pop-
ulation diference between this location and the location with the 
largest mobility fow volume. As shown in Figure 3(c), locations 
with a large mobility fow transition are likely to have a smaller 
population diference, which empirically inspires us to incorporate 
mobility knowledge into LBKG. Specifcally, for each location �, 
we choose the top-� locations according to the volume of mobility 
fow originating from �, and draw relation LargeFlowTo from � to 
those locations. Similarly, we choose the top-� locations accord-
ing to the mobility fow with destination at �, and draw relation 
LargeFlowFrom from � to those locations. 

Business knowledge. As shown in previous works, business 
knowledge in LBSN is also correlated to socioeconomic status of 
locations [1, 35]. To incorporate such knowledge into LBKG, we 
identify core areas of commercial activities as Business Area entities 
in LBKG such as Sanlitun in Beijing. Business areas are linked with 
locations and POIs within a spatial range with relation ProvideSer-
vice and BelongTo, respectively. Besides, spatially close POIs with 
the same brand are linked with relation Competitive to model their 
competitive relationship. To empirically evaluate the correlation, 

for each location, we select the location with the most common 
business areas they belong to, and plot the population diference 
against the number of common business areas. From Figure 3(d), 
we can observe that locations that share more common business 
areas tend to have a similar population. 

In summary, the LBKG contains various elements in LBSN as 
well as complex relations between them, which incorporate rich 
semantic information in heterogeneous LBSN data. Furthermore, 
we present a visualization of LBKG in Appendix A to intuitively ex-
amine the capability of LBKG in modeling diferent types of entities. 
Besides, it should be noted that the correlations in above analysis 
are not very strong, which indicates that it is not straightforward to 
use such correlations to capture characteristics of locations. There-
fore, there is a strong need for a better framework to distil and 
integrate the knowledge together. 

3.3 Hierarchical Knowledge Distillation 
After constructing the LBKG with rich semantic information, we 
further propose a hierarchical model to capture diferent kinds of 
knowledge comprehensively, whose architecture is shown in Fig-
ure 1. Specifcally, we distil global knowledge from LBKG through 
a knowledge encoder at the higher level, which aims to capture 
the overall characteristics of LBSN. At the lower level, we extract 
sub-KGs to capture domain knowledge with the assistance of global 
knowledge distilled, which describes LBSN from diferent aspects 
such as spatiality, function, mobility, etc. Finally, domain knowl-
edge is combined with global knowledge after a knowledge fusion 
module to generate the embeddings of locations. 

3.3.1 Global Knowledge Distillation. Based on various kinds of 
knowledge therein, the LBKG models knowledge in LBSN from a 
global level. To distil global knowledge from LBKG, in our experi-
ment, we adopt the widely used KG embedding model R-GCN [22] 
as the knowledge encoder. R-GCN is a kind of graph convolutional 
network designed for KG, which aggregates information from the 
neighborhood of entities through each type of relation separately. 
Therefore, it is able to capture the structural information of KG. The 
information aggregation process of R-GCN is shown in Figure 1 (b). 
Specifcally, the embedding of entity �� at the (� + 1)-th layer can 
be obtained as: ∑ ∑ (�+1) (� ) (� ) (� ) (� )� = � ( � � + � � ), (1)

� � � 0 � 
� ∈R � ∈N

�
� 

(� )where � is the embedding of entity �� at the �-th R-GCN layer, 
� 

N� is the set of entities connected to entity �� via relation � and
� 
(� ) (� )

�� , �0 are learnable weight matrices at the �-th R-GCN layer. 
� is a nonlinear activation function. 

3.3.2 Domain Knowledge Distillation. Locations play diferent roles 
with respect to diferent knowledge. For example, locations that 
are functionally similar may be far from each other geographically. 
Therefore, apart from global knowledge that describes LBSN at the 
higher level, diferent kinds of domain knowledge also need to be 
considered separately at the lower level. Specifcally, we extract sev-
eral sub-KGs according to diferent kinds of knowledge mentioned 
in Section 3.2 in LBKG to capture domain knowledge in LBSN. 
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Table 1: The basic information of three real-world datasets and basic statistics of LBKGs. 

City #Locations 
Basic Information 

Indicators #Entities 
LBKG Statistics 

#Relations #Facts 
Beijing 1010 population, number of takeaway orders, number of restaurants, economic activity 36,752 11 188,985 
Shanghai 2476 population, economic activity 58,175 11 368,453 
NYC 2120 population, education level, average income, number of crimes, land usage 87,020 7 357,464 

Spatiality sub-KG. Locations that are spatially close may also 
share similar characteristics. Consequently, we defne the schema of 
sub-KG including locations and spatial relationship between them, 
i.e., NearBy and BorderBy to capture spatiality knowledge. 

Function sub-KG. As mentioned above, POIs and their cate-
gories largely determine the function of locations. We extract loca-
tions, POIs and Categories as well as functional relations between 
them as Function sub-KG. 

Mobility sub-KG. To capture mobility knowledge, we keep all 
the locations as well as relation LargeFlowTo and LargeFlowFrom 
between them in Mobility sub-KG. 

Business sub-KG. In order to capture business knowledge in 
LBKG, Business sub-KG preserves Business Areas, Locations and 
POIs as well as BelongTo, ProvideService and Competitive relations. 

After extracting sub-KGs from LBKG, we design a domain knowl-
edge encoder to distil domain knowledge in each sub-KG. Note that 
each sub-KG we extracted is a KG as well, so we also leverage the 
aforementioned KG embedding model R-GCN to learn embeddings 
for locations. Moreover, it should be noted that the input here is em-
beddings after global knowledge encoder, which can also preserve 
global knowledge in the whole LBKG. 

Since diferent knowledge may contribute diferently to socioe-
conomic indicator prediction, we further adopt a knowledge fu-
sion module [31] to adaptively fuse the knowledge. Specifcally, 
let {�1, �2, ...�� } denotes the set of sub-KGs, we calculate the 
importance of each sub-KG as: ∑ 1 

��� = �⊤ tanh(� ��
� 
� + �), (2)|S� | 

� ∈S� 

where S� is the set of locations, ��� is the embedding of location 
� 

�� in sub-KG �� , � is the attention vector, � is the weight matrix 
and � is the bias vector. Then the weight of each sub-KG can be 
calculated by normalizing ��� with softmax function: 

exp(��� )
��� = . (3)Í� 

=1 exp(�� � )� 

Finally, we fuse the embedding from each sub-KG to obtain the 
sub-KG embeddings of locations as ���� = 

Í� 
=1 �

�� ��� .
� � � 

3.4 Framework Optimization 
So far we have obtained two embeddings for each location ��� 

and ���� with encoded global knowledge in LBKG and domain 
knowledge in sub-KGs. To better preserve the semantic knowledge 
in KG as well as similarity between locations, we design the KG 
completion loss to capture the plausibility of facts in KG at the 
higher level, and the location loss to preserve similarity between 
locations at the lower level. 

3.4.1 KG Completion Loss. To better preserve global knowledge 
in LBKG, after global knowledge encoder, scoring function Dist-
Mult [34] is used to calculate the plausibility of each triplet (ℎ, �, �)
in LBKG: 

� (ℎ, �, �) = (�ℎ ⊙ �� )⊤�� , (4) 
where �ℎ , �� and �� are the embeddings of head entity ℎ, relation � 
and tail entity � . We aim to correctly calculate the plausibility for 
triplets in KG, i.e., triplets existing in KG should have a higher score. 
As a result, we optimize a cross-entropy loss for KG completion [12]: ∑ exp(� (ℎ, �, �)) L�� = − log Í . (5) 

� ′ ∈E exp(� (ℎ, �, � ′)) (ℎ,�,� ) ∈F 

3.4.2 Location Loss. While KG completion loss aims to better pre-
serve global knowledge in LBKG, we also design location loss to 
capture location similarity. In order to incorporate global knowl-
edge and domain knowledge, we frst fuse location embeddings 

��� + ���� learnt from LBKG and sub-KGs as � � ��� = . Then we 
adopt a widely used loss function to measure location similarity in 
previous works [13, 32, 38]. Specifcally, We estimate the distribu-
tion of mobility fow originating from location �� as: 

⊤� ��� � ��� exp(� � )
� � 

�̂ (� � |�� ) = . (6)⊤� ��� � ��� Í� 
=1 exp(� � )
� � � 

We then obtain source and destination location pairs from mobility 
data, which is denoted as a set M, and each element (�� , �� ) ∈ M 
corresponds to a mobility record from location �� to location �� . 
The location loss is calculated as:∑ 

= −����̂ (�� |�� ) . (7) 
(�� ,�� ) ∈M 

L��� 

The fnal loss is the combination of L�� and L��� : 
L = �L�� + (1 − �)L��� , (8) 

where � is a hyperparameter. Finally, we get the embeddings of 
locations as the concatenation of ��� and ���� , which are fed into 
regression model for socioeconomic indicator prediction. 

4 EXPERIMENTS 

4.1 Datasets 
To examine the efectiveness of our model, we conduct experiments 
on three LBSN datasets from Beijing, Shanghai and New York City 
(NYC). The datasets contain LBSN data including locations and their 
socioeconomic indicators, and we construct a LBKG for each dataset 
according to methods in 3.2. The basic information of datasets and 
statistics of LBKGs are presented in Table 1. Specifcally, in Beijing 
dataset, we remove all food category POIs to avoid data leakage 
in restaurant number prediction. Besides, in NYC dataset, due to 
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Table 2: Performance comparison with baselines on Beijing and Shanghai dataset. Best results are presented in bold, and the 
second best results are underlined. 

Beijing dataset Shanghai dataset 
Population #Orders #Restaurants Economic activity Population Economic activity 

Model MAE RMSE 2 R MAE RMSE 2 R MAE RMSE 2 R 2 2 MAE RMSE R MAE RMSE R 2 MAE RMSE R
Node2vec 0.680 0.864 0.593 2.009 2.541 0.504 0.741 0.927 0.739 1.030 1.286 0.627 0.702 0.954 0.534 1.190 1.581 0.385 
GCN 0.627 0.803 0.648 2.070 2.702 0.439 0.823 1.044 0.668 1.074 1.338 0.596 0.716 0.972 0.517 1.265 1.640 0.338 
GAT 0.725 0.913 0.545 1.969 2.599 0.481 0.773 0.987 0.703 1.130 1.409 0.551 0.771 1.026 0.461 1.349 1.721 0.271 

ZE-Mob 0.798 1.003 0.452 2.160 2.846 0.378 0.944 1.199 0.563 1.274 1.614 0.412 0.839 1.145 0.329 1.384 1.750 0.247 
MGFN 0.705 0.900 0.558 1.979 2.655 0.458 0.858 1.119 0.619 1.174 1.504 0.489 0.812 1.097 0.384 1.348 1.727 0.266 
MV-PN 0.860 1.082 0.362 1.889 2.631 0.468 0.862 1.093 0.637 1.097 1.456 0.521 0.964 1.281 0.160 1.514 1.885 0.126 
HDGE 0.686 0.871 0.586 1.961 2.692 0.442 0.918 1.166 0.585 1.220 1.564 0.447 0.765 1.038 0.448 1.365 1.728 0.265 
HUGAT 0.703 0.878 0.580 1.903 2.578 0.489 0.834 1.080 0.645 1.159 1.464 0.516 0.831 1.100 0.380 1.364 1.745 0.251 
MVURE 0.626 
ours 0.559 

0.806 
0.710 

0.646 1.829 
0.725 1.633 

2.475 
2.253 

0.530 0.756 
0.610 0.612 

0.980 
0.801 

0.708 1.057 
0.805 0.935 

1.377 
1.196 

0.572 0.749 
0.677 0.637 

1.020 
0.870 

0.467 1.341 
0.612 1.149 

1.720 
1.516 

0.272 
0.434 

Improv. 10.7% 11.6% 11.9% 10.7% 9.0% 15.1% 17.4% 13.6% 8.9% 9.2% 7.0% 8.0% 9.3% 8.8% 14.6% 3.4% 4.1% 12.7% 

Table 3: Performance comparison with baselines on NYC dataset. Best results are presented in bold, and the second best results 
are underlined. 

Population Education level Income level Crime Land use 
Model MAE RMSE R2 2    MAE RMSE R  MAE RMSE R2 MAE RMSE R2 NMI ARI 

Node2vec 0.449 0.661 0.077 0.090 0.118 0.675 0.228 0.298 0.505 0.497 0.637 0.429 0.809 0.520 
GCN 0.446 0.664 0.069 0.089 0.118 0.677 0.213 0.281 0.559 0.443 0.577 0.531 0.814 0.522 
GAT 0.439 0.644 0.124 0.092 0.120 0.664 0.227 0.293 0.522 0.479 0.614 0.468 0.817 0.527 

ZE-Mob 0.473 0.682 0.018 0.128 0.158 0.419 0.291 0.368 0.243 0.601 0.752 0.203 0.535 0.194 
MGFN 0.450 0.664 0.070 0.109 0.137 0.559 0.254 0.326 0.408 0.499 0.642 0.420 0.724 0.365 
MV-PN 0.456 0.649 0.110 0.140 0.178 0.257 0.315 0.398 0.117 0.631 0.773 0.157 0.256 0.013 
HDGE 0.445 0.664 0.068 0.104 0.135 0.575 0.237 0.315 0.446 0.525 0.668 0.370 0.761 0.341 
HUGAT 0.466 0.673 0.043 0.131 0.162 0.383 0.296 0.375 0.215 0.525 0.669 0.368 0.784 0.466 
MVURE 0.447 0.647 0.116 0.095 0.121 0.658 0.228 0.293 0.523 0.472 0.608 0.478 0.728 0.375 
ours 0.423 0.617 0.196 0.084 0.108 0.728 0.203 0.266 0.604 0.397 0.505 0.640 0.812 0.512 

Improv. 3.6% 4.2% 58.1% 5.6% 8.5% 7.5% 4.7% 5.3% 8.1% 10.4% 12.5% 20.5% -0.6% -2.8% 

the lack of business area data and some POI related data, we omit 
business knowledge in our model. The details of datasets can be 
found in Appendix B. 

4.2 Experiment Settings 
4.2.1 Baselines. We compare the performance of our model with 
several state-of-the-art baselines. Specifcally, for single view meth-
ods, we choose Node2vec [5], GCN [14], GAT [26], ZE-Mob [36] 
and MGFN [32]. For multi-view methods, we choose MV-PN [3], 
HDGE [28], HUGAT [13] and MVURE [38]. All the baselines use 
the same settings as ours, i.e., they frst learn location embeddings, 
and use regression or clustering model for socioeconomic indica-
tor prediction. The details of baselines and implementation can be 
found in Appendix C. 

4.2.2 Evaluation Metrics. We evaluate the performance of models 
on two kinds of socioeconomic prediction tasks, prediction and 
clustering. For all indicators except for land usage in NYC dataset, 
we apply Ridge regression model [7] to predict the value of socioe-
conomic indicator by embeddings of locations. Specifcally, we split 
all locations into train, validation and test set by 6:2:2, and adopt 
widely used metrics Mean Absolute Error (MAE), Root Mean Square 
Error (RMSE) and coefcient of determination 2 (� ) to measure the 
performance. For clustering task, we apply K-means algorithm on 
embeddings of all locations and use community districts in NYC 
as the ground truth. The performance is measured by Normalized 

Mutual Information (NMI) [23] and Adjusted Rand Index (ARI) [10], 
the details of which are presented in Appendix D. 

4.3 Overall Performance 
The overall performance of our model and baselines on three datasets 
is shown in Table 2-3, from which we have the following fndings. 

First, our model outperforms all baselines on almost all indica-
tors owing to its capability of integrating various kinds of LBSN 
knowledge comprehensively. For example, on Beijing dataset, our 
model outperforms existing methods 2 with an improvement in  �

by 8.0% to 15.1%. Such great improvement shows the capability 
of our model to integrate heterogeneous LBSN data and capture 
knowledge related to socioeconomic indicators. Besides, some state-
of-the-art baseline models such as MGFN, MVURE and HUGAT 
only conduct experiments on a single dataset with less than 300 lo-
cations. In comparison, our model achieves the best performance on 
various socioeconomic indicators across three much larger datasets 
from diferent cities with totally diferent LBSN structures and 
environments, which further demonstrates the robustness and gen-
eralizability of our model. 

Second, graph neural networks achieve rather good performance, 
suggesting rich semantics in LBKG. Take NYC dataset as an exam-
ple, the GAT model achieves similar or even higher performance 
with the best baseline MVURE. This is probably because spatiality, 
mobility and part of function knowledge is already included in the 
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Figure 4: Performance comparison of models without global knowledge or domain knowledge. "domain." and "global." represent 
domain knowledge and global knowledge, respectively. 
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Figure 5: Performance comparison of models without specifc domain knowledge. 

edges between locations in LBKG, which further shows that LBKG 
can integrate various knowledge efectively. 

Third, among diferent baselines, MVURE and HUGAT generally 
perform better because they incorporate information in LBSN from 
various aspects, while models considering only mobility fow data, 
i.e., ZE-Mob and MGFN, perform rather worse. This fnding shows 
the importance of considering various kinds of LBSN knowledge. 
However, even though MVURE and HUGAT utilize various infor-
mation, they still perform worse than our model, which further 
shows that KG can better integrate knowledge from LBSN data. 

In summary, our proposed model achieves considerable improve-
ment over state-of-the-art baselines across three datasets, demon-
strating the capability of LBKG in integrating heterogeneous LBSN 
data and efectiveness of our hierarchical design. Further analysis 
on the impact of hyperparameters can be found in Appendix E. We 
also evaluate the efciency of our model in Appendix F. 

4.4 Ablation Study 
To evaluate the infuence of global and domain knowledge, we 
remove the LBKG or sub-KGs and use the rest embeddings for 
socioeconomic indicator prediction. As shown in Figure 4, perfor-
mance on all indicators drops when omitting LBKG or sub-KGs, 
which demonstrates the efectiveness of global knowledge in LBKG 
as well as domain knowledge in sub-KGs. Besides, we fnd that 
two kinds of knowledge may contribute diferently to diferent 
indicators. Take Beijing dataset as an example, embeddings with 
only global knowledge (w/o sub-KGs) perform better than that with 
only domain knowledge (w/o LBKG) on number of orders, number 
of restaurants and economic activity prediction. But embeddings 
with domain knowledge perform better on population prediction. 

It further indicates that knowledge from global and local level is 
both important and needed to be modeled in a hierarchical way. 

Besides, we analyze the efectiveness of diferent LBSN knowl-
edge by removing diferent sub-KGs and corresponding entities and 
relations in LBKG. From Figure 5, we can observe that performance 
becomes worse on almost all indicators when removing each sub-
KG, which shows the necessity of incorporating various kinds of 
LBSN knowledge in our model. Besides, on Beijing and Shanghai 
datasets, the impact of function knowledge is rather large on all 
indicators, which suggests that it is important to consider POI and 
POI categories in LBKG. 

4.5 Result Visualization 
To intuitively examine correlations between location embeddings 
and socioeconomic indicators, we map the learnt location embed-
dings into 3-dimensional vectors by t-SNE [25], and visualize them 
in Figure 6, where the color represents the value of socioeconomic 
indicators. It can be observed that locations can be distinguished 
based on socioeconomic indicators. For example, as shown in Fig-
ure 6(a), red dots mostly lie in the middle part of the fgure, which 
correspond to locations with high income level. Meanwhile, blue 
dots, which correspond to low income level locations, mostly lo-
cates at the upper part. Similarly, locations with fewer crimes are 
likely to lie in the right part of Figure 6(b). In addition, in Figure 6(c), 
locations with high education level and those with lower education 
level can be easily separated spatially. The fndings demonstrate 
that location embeddings learnt by our model can distinguish loca-
tions by socioeconomic indicators, and thus help socioeconomic 
indicator prediction. 

Moreover, to get an intuitive understanding of the clustering 
results, we visualize location clusters of diferent models in Figure 7. 
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Figure 6: Visualization of location embeddings, where color 
represents the value of indicators. (Income level and crime 
are measured on log scale.) 

The results of some other models are shown in Appendix G. For 
better visual efect, here we only visualize locations in the borough 
of Manhattan, which has only 12 clusters according to community 
districts. It can be observed that our result fts the ground truth 
better than baselines. For example, HDGE fails to distinguish the 
four districts in the northern part, MVURE generates fewer clusters 
than ground truth in the southern part of Manhattan, while the 
clusters of HUGAT are more likely to mix together. The visualiza-
tion result further shows the efectiveness of our hierarchical KG 
learning model in capturing various LBSN knowledge. 

(a) Ground truth (b) ours (c) HUGAT (d) MVURE (e) HDGE 

Figure 7: Visualization of clustering results in borough of 
Manhattan, NYC. Red squares mark where baselines perform 
worse than our model. 

5 RELATED WORK 

5.1 Socioeconomic Indicator Prediction in LBSN 
Socioeconomic indicator prediction in LBSN has attracted extensive 
attention, and the main concern of such task is how to utilize 
LBSN data properly. Early studies usually use feature engineering 
methods, manually extracting features from LBSN data to infer 
socioeconomic indicators. Yang et al. [35] use social context of 
LBSN such as number of visitors and number of POIs to predict the 
commercial activeness of a location through a linear model. Dong 
et al. [1] extract features from restaurant data, such as restaurant 
number and review number, to predict socioeconomic indicators 
like population and consumption level through LASSO regression. 
Besides, Wang et al. [27] consider the features of locations as well 
as interplay between locations. Feature engineering can reveal the 
importance of diferent features, but it is labor-intensive and the 
performance is largely afected by feature design. 

In recent years, many socioeconomic indicator prediction models 
based on representation learning have been proposed. For example, 

ZE-Mob [36] borrow the idea of word embedding methods and 
model location as word and mobility event as context to learn loca-
tion embeddings for socioeconomic indicator prediction. GMEL [19] 
considers geographic contextual information of locations for fow 
prediction. Some studies focus on mobility data in LBSN and model 
the mobility patterns between locations at diferent time [9, 32] or 
with diferent features [33]. Some studies further try to incorpo-
rate LBSN data from various sources through multiple graphs. For 
example, HDGE [28] constructs a fow graph and a spatial graph 
to predict prime rate, income and house price. MV-PN [3] con-
structs POI networks considering both geographical and human 
mobility views. Some studies [20, 38] model various relationships in 
LBSN such as mobility, POI and spatial vicinity in diferent graphs 
and adaptively fuse them together. HUGAT [13] designs several 
meta-paths to capture diferent relationships in LBSN from a hetero-
geneous graph, and aggregate information from meta-path based 
neighbors of locations. However, existing works do not leverage 
KG to model LBSN data, and they fail to integrate heterogeneous 
LBSN data in a single graph comprehensively. 

5.2 Knowledge Graph Application in LBSN 
KG has been widely applied in LBSNs thanks to its capability of 
modeling complex relationships between various elements in LBSN. 
For example, STKG [29] utilizes spatio-temporal KG to combine 
information in LBSN, and convert mobility prediction problem to 
a KG completion problem. KnowSite [17] applies KG to site selec-
tion problem and shows great performance and interpretability. 
UKGC [15] models geographical and functional knowledge as well 
as interactions between users and POIs for location recommen-
dation. RFP-KMN [16] models fow transitions as relations in KG 
to predict fow patterns. Besides, Tan et al. [24] constructs a KG 
of trafc system to discover implicit trafc knowledge in LBSN. 
These works show the ability of KG to model complex entities and 
relations in LBSN, while they focus on diferent problems from ours. 
In this work, we introduce KG to a new problem of socioeconomic 
indicator prediction in LBSN. 

6 CONCLUSION 
In this paper, we propose a hierarchical KG learning model for 
socioeconomic indicator prediction in LBSN. To capture semantic 
information from heterogeneous LBSN data, we construct a LBKG 
consisting of various types of entities and complex relations be-
tween them. Moreover, we design a hierarchical model to learn 
global knowledge and various kinds of domain knowledge in a 
comprehensive way. We conduct extensive experiments on three 
real-world datasets, and the results demonstrate the efectiveness 
and robustness of our model. 

This work also has some limitations. For example, we use LBSN 
data from various sources, some of which may be not easy to collect, 
e.g., business area data. Besides, we do not consider the dynamic 
change of socioeconomic indicators and other characteristics of 
locations over time, which can be a future work. In the future, 
another promising direction is to integrate inductive KG techniques 
like NodePiece [4] for inductive learning. Moreover, we plan to 
change our model to an end-to-end framework for socioeconomic 
indicator prediction. 
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A LBKG VISUALIZATION 
We leverage KG embedding model TuckER to learn a embedding 
for each entity in LBKG (on Beijing dataset), an visualize the em-
beddings using t-SNE in Figure 8, where diferent colors represent 
diferent types of entities. Specifcally, we sample 1000 POIs and 
preserve all entities of other types. It can be observed that diferent 
types of entities can be spatially distinguished, which demonstrate 
the ability of KG to model various types of entities in LBSN. 

Location Business area Category POI

Figure 8: Visualization of diferent types of entities in LBSN 
on Beijing dataset. 

B DETAILS OF DATASETS 
Here we present the details of three datasets. 

• Beijing Dataset. This dataset contains 1010 regions in Bei-
jing partitioned by main road networks. Besides, each region 
has four socioeconomic indicators. Population data is col-
lected from WorldPop1, which contains the estimated popu-
lation in 2018. The number of takeaway orders is obtained 
from Meituan, a life service platform. Restaurant data [1] in 
2017 is collected from Dianping, the largest rating platform 
of restaurants in China. We also use frm data from [2] to 
refect the economic activity of regions. 

• Shanghai Dataset. This dataset includes 2476 regions in 
Shanghai, which are also separated by main road networks. 
In addition, the data of two socioeconomic indicators, i.e., 
population and economic activity (refected by number of 
frms), is collected from the same sources as Beijing dataset. 

• NYC Dataset. In this dataset, we use census tracts in NYC 
as the regions to study. The population, education level and 
average income data is collected from Safegraph 2, where 
the education level is measured by the ratio of population 
with bachelor degree. Besides, we collect crime data from 
NYC Open Data3. As for land usage, we follow [38] and use 
community districts as the ground truth of clustering. 

1https://hub.worldpop.org/geodata/summary?id=24924 
2https://www.safegraph.com/
3https://data.cityofnewyork.us/Public-Safety/NYPD-Complaint-Data-Historic/qgea-
i56i 

C DETAILS OF BASELINES AND 
IMPLEMENTATION 

The details of baselines are as follows. 
Single view methods. 

• Node2vec [5]: It uses random walks to learn node embeddings 
with skip-gram models. 

• GCN [14]: GCN aggregates information from neighborhood for 
each node. 

• GAT [26]: GAT applies attention modules to aggregate informa-
tion from neighborhood with diferent weights. 

• ZE-Mob [36]: This model uses the co-occurrence of origin-
destination locations to learn embeddings of locations from mo-
bility fow data. 

• MGFN [32]: It frst fuses mobility graphs with similar patterns, 
and then learns embeddings of locations via multi-level attention 
mechanism. 
Multi-view methods. 

• MV-PN [3]: It constructs multi-view POI-POI networks for each 
location and learns location embeddings through an encoder-
decoder framework. 

• HDGE [28]: It constructs a spatial graph and a fow graph and 
jointly learns location embeddings from them. 

• HUGAT [13]: It defnes several meta-paths to capture semantics 
in LBSN from a heterogeneous graph, and adopts heterogeneous 
graph attention network to learn location embeddings. 

• MVURE [38]: This work models diferent types of correlations 
between locations with diferent graphs, and proposes a joint 
learning module to learn location embeddings. 

Since graph neural networks models take homogeneous graphs 
as input, we use our LBKG with only the locations and all edges 
between locations preserved as the input graph for Node2vec, GCN 
and GAT, where the edge types are ignored. For all models, the 
embedding dimension is set as 64 for fair comparison. We tune the 
hyperparameters for each model and choose the best one. Besides, 
to guarantee the robustness of models, we run all experiments for 
5 times and report the average results. 

D DETAILS OF CLUSTERING EVALUATION 
METRICS 

We adopt widely used Normalized Mutual Information (NMI) [23] 
and Adjusted Rand Index (ARI) [10] to evaluate the performance of 
clustering. 

• NMI. It measures the purity of clustering results and is de-
fned as: 

2 × � (� ;�)
� �� = , (9)

� (� ) + � (�)
where � (� ;�) is the mutual information between true labels 
set � and cluster labels set � . � (� ) and � (�) represent the 
entropy of true labels and cluster labels. NMI ranges from 0 
to 1, and a larger NMI indicates a better clustering result. 

• ARI. It measures the similarity between true clusters and 
clustering results, which is defned as: 

�� − �������� (�� )
��� = , (10)

��� (�� ) − �������� (�� ) 
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where Rand Index (RI) calculate the correctness of each pair 
� � +� � of locations in clustering results by �� = 

� � +�� +� � +� � . For 
example, if two locations have the same true label and lie in 
the same cluster, they are considered as a true positive (TP) 
pair. True negative (TN), false positive (FP) and false negative 
(FN) pairs are defned similarly. A larger ARI indicates a 
better clustering result. 

E IMPACT OF HYPERPARAMETERS 
In this section, we investigate the impact of two important hyper-
parameters in our model, i.e., embedding dimension and the weight 
� in the loss function Equation 8. 
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Figure 9: Performance comparison under diferent hyperpa-
rameters on Beijing dataset. 

Figure 9(a) shows the performance on Beijing dataset with em-
bedding dimension in {8,16,32,64,128,256}. It can be observed that 
the �2 goes up on all indicators when embedding dimension in-
creases from 8 to 64 and then remains stable. This is because embed-
ding with a larger dimension can preserve more information, while 
a too large dimension may make the embedding sparse. Besides, the 
result shows that it is appropriate to choose 64 as the embedding 
dimension in our experiment. 

We also evaluate our model under diferent � ranging from 0.0 
to 1.0 and present the result on Beijing dataset in Figure 9(b). It can 
be observed that for diferent indicators, the trend of performance 
curves are diferent. For example, as � increases, the performance on 
economic activity, number of orders and number of restaurants goes 
larger, while the performance on population drops. This fnding 
indicates that importance of global knowledge and domain knowl-
edge varies across indicators, which further shows the necessity to 
consider such knowledge in our model. 

F EFFICIENCY EVALUATION 
To evaluate the efciency of our model, we compare the training 
time of our model and baselines in Table 4. It can be observed that 
our model is more efcient than some state-of-the-art baselines 
like ZE-Mob, MGFN and MVURE. Moreover, the training time of 
our model on all datasets is within an hour, which is acceptable in 
practice. 

G CLUSTERING RESULTS 
Here we present the clustering results of MGFN, ZE-Mob and MV-
PN in Figure 10. It can be observed that they generally ft the ground 

Table 4: Training time comparison with baselines on three 
datasets. 

Dataset 
Model Beijing Shanghai NYC 

Node2vec 3 min 4 min 3 min 
GCN 1 min 2 min 2 min 
GAT 1 min 2 min 2 min 

ZE-Mob 1.3 h 7h 3.6 h 
MGFN 1.4 h 12 h 8 h 
MV-PN 1 min 1 min 2 min 
HDGE 17 min 47 min 35 min 
HUGAT 1 min 3 min 3 min 
MVURE 40 min 3 h 2.3 h 
ours 25 min 47 min 53 min 

truth worse than models in Figure 7, because these three models 
do not incorporate spatial information. 

(a) MGFN (b) ZE-Mob (c) MV-PN 

Figure 10: Visualization of clustering results in borough of 
Manhattan, NYC. Red squares mark where baselines perform 
worse than our model. 
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