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Recent years have witnessed a rapid proliferation of personalized mobile applications, which poses a pressing need for accurate
user demographics inference. Facilitated by the prevalent smart devices, the ubiquitously collected mobility trace presents a
promising opportunity to infer user demographics at large-scale. In this paper, we propose a novel Semantic-enhanced Urban
Mobility Embedding (SUME) model, which learns dense representation vectors for user demographic inference by jointly
modelling the physical mobility patterns and the semantic of urban mobility. Specifically, SUME models urban mobility as a
heterogeneous network of users and locations, with various types of edges denoting the physical visitation and semantic
similarities. Moreover, SUME optimizes the node representation vectors with two alternating objective functions that preserve
the feature in physical and semantic domains, respectively. As a result, it is able to capture the effective signals in the
heterogeneous urban mobility network. Empirical experiments on two real-world mobility traces show the proposed model
significantly out-performs all state-of-the-art baselines with an accuracy margin of 8.6%∼14.3% for occupation, gender, age,
education and income inference. In addition, further experiments show SUME is able to reveal meaningful correlations
between user demographics and the mobility patterns in spatial, temporal and urban structure domain.
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1 INTRODUCTION
Achieving accurate and large-scale user profiles lies at the heart of the increasingly popular personalized
applications [1, 2]. The recently available large-scale user behavioral data provides a novel angle for the potential
solutions, which draws attention to two key problems: identifying suitable data sources [3] and designing
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compatible behavior models [4]. On one hand, the correlations between user profiles and their mobility patterns
have been widely observed and extensively validated [5, 6]. On the other hand, the localization modules in the
prevalent smart devices provide fine-grained mobility data that can potentially scale to population level. Under
this context, we aim to design a novel user profiling model that can effectively leverage the mobility data to infer
user’s demographics, i.e., occupation, gender, age, education and income level.
However, due to the intrinsic complex correlation, it is a non-trivial task to harness the power of mobility

data to infer user demographics. Most of the previous work combined mobility data with various other mobile
sensory data, such as app usage [3], user-generated content [7] and light sensor data [1], to improve the model
performance. However, the additional data sources requirement significantly limits the generalizability of these
methods, since they are hard to collect and might raise more privacy concerns. On the other hand, the previous
works solely relied on mobility data did not fully exploit the semantic information of urban mobility [6, 8], i.e.,
modelling urban mobility as transition between physical locations instead of semantic-aware point of interest
(POI), such as home and workplace. As a result, it limits the performance of these models.

Inspired by the limitations of previous works, we aim to design a novel semantic-enhanced urban mobility
embedding (SUME) model, which is dedicated to learning effective user representations to facilitate accurate user
profiling. The designed model consists of three main components. First, we propose to model the urban mobility as
a heterogeneous information network, which includes two types of nodes, i.e., user and location. In addition, there
are three types of edges among them, where the edge between user and location describes the visitation frequency.
The edges among users and among locations denotes their similarity in semantic domain, which measure the
similarity in time allocation pattern (i.e. how users dissect their time into smaller chunks) and POI distribution
(e.g. number of workplaces and residences), respectively. Such data structure allows us to jointly model the urban
mobility patterns and the underlying semantic information. Second, we design a network embedding algorithm
to automatically learn a dense representation vector for each user and location node, which is optimized to
preserve user’s similarity in urban mobility patterns. That is the users with similar visitation patterns across
urban regions and the urban regions with similar visiting users will have more similar representation vectors.
Therefore, based on the assumption that users with similar profile will have more similar mobility patterns,
the learned representation vectors can serve as a important feature for user profiling. Third, simply modelling
the similarity in physical mobility patterns might result in an important limitation in leveraging the semantic
information. For example, two users with similar profiles might exhibit identical transition patterns among POIs,
but have very different representation vectors because they are active in different parts of the city and do not
visit similar physical regions. To tackle this limitation, we further propose a heterogeneous network embedding
framework to jointly consider their similarity in physical mobility patterns and semantic domain. Specifically, in
addition to the similarity in physical visitations, the framework also optimizes the node representation vectors
to preserve the similarity in user’s time allocation pattern and urban region’s POI distribution. By alternating
the optimization objective between the physical domain and semantic domain, the proposed framework can
effectively propagate relevant signals through the heterogeneous edges in urban mobility network, and learn
better representations for user profiling.
To evaluate the effectiveness of the proposed model, we leverage two real-world urban mobility datasets,

which are associated with the ground truth of user demographics. By conducting extensive experiments on these
real-world datasets, we find out the following important results. First, the proposed model, SUME, significantly
outperforms all state-of-the-art baselines by an accuracy margin of 8.6%∼14.3% for occupation, gender, age,
education and income inference (p < 0.01, ES > 0.8, two-tailed Student’s t-test). Second, through a careful
ablation study, we show that consistent performance gains are achieved by integrating the semantic information in
urban mobility, i.e., the similarity in user’s time allocation pattern and urban region’s POI distribution. This result
justifies the model design that aims to incorporate semantic information, and showcases the proposed model can
effectively harness such power. Third, our further experiments analyze our model’s robustness across different
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user groups. Specifically, there is no significant performance trend across user groups with different mobility
characteristics. However, the performance is correlated with other user demographic feature, e.g, the prediction
accuracy on female user’s occupation is significantly higher than the male’s (p<0.001, two-tailed Student’s t-test).
Finally, based on the learned user representation vectors, we show our model can reveal meaningful correlations
between user demographic and urban mobility patterns in spatial, temporal and urban structure domain. For
example, the signature of users in education category (i.e., students and teachers) is that: they frequently visit
university area, but are less likely to visit central business area; they tend to stay in one location during working
days, and only visit different locations during daytime in non-working days; they are significantly more likely to
visit recreation and education type POIs than general population.

To conclude, the contributions of this work can be summarized as the following three aspects:
• To the best of our knowledge, we are the first to propose a semantic-enhanced urban mobility embedding
(SUME) model for user profiling. It models urban mobility behavior as a heterogeneous information network,
which is able to capture the signal in physical mobility patterns and the semantic information of urban
mobility simultaneously.
• We conduct extensive experiments to evaluate the model performance on a large-scale urban mobility trace
along with user demographics. We demonstrate the superiority of the proposed model in terms of achieving
significant performance gain against all up-to-date baselines, and having consistent performance across user
groups with different mobility characteristics.
• Through an in-depth model analysis, we showcase the proposed model also reveals meaningful patterns
in all spatial, temporal and urban structure domain. These results allow us to gain deeper insights on the
underlying mechanisms of urban mobility, i.e., how users with different profiles move in the urban space.
Such knowledge is of great importance to wide range of applications, including travel survey [9] and urban
planning [10].
The rest of this paper is organized as follows. We formally define the problem setting in Section 2, and describe

the proposed model in Section 3. After that, we apply our model on a real-world mobility dataset and conduct
extensive experiments to evaluate its performance in Section 4. We conduct in-depth analysis to understand
captured correlations between user demographic andmobility patterns in Section 5. After systematically reviewing
the related works and the limitations of our study in Section 6, we finally conclude our paper in Section 7.

2 MOTIVATION AND PROBLEM DEFINITION

2.1 Problem Motivation
The recent trend of personalized mobile applications gives rise to the need of large-scale user profiling [1, 2].
Informed by accurate user demographics, application vendors are able to better meet their user’s need. For
example, location-based services might suggest more suitable entertainment areas to their users by knowing
their age groups [11], while mobile e-commerce platforms can improve their recommender system based on
the gender information [12]. Previous works in this area mostly focus on leveraging the semantic-aware user
behavior data, such as application usages [13], web browsing records [14], and social media profile [15]. For
example, a recent survey shows mobile application usage can be exploited to infer user income level and age
groups with 64% and 74% accuracy [16], which is beneficial for mobile application development. Due to the
prevalence of mobile devices, mobility data has become the most ubiquitously collected personal data, which
makes it extremely valuable to large-scale applications compared with other data sources with limited access.
However, its application in user demographic inference is woefully inadequate, which is mainly because of
its lack of semantics. On the other hand, one recent study showed human experts can accurately identify the
important semantic information (e.g., workplace, home and transportation mode) of an individual by solely
observing his/her mobility trajectory [17]. Moreover, researchers also showed users with different demographics
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(a) Visualization of original mobility records (b) Heterogeneous Urban mobility network

Fig. 1. Visualization of reorganizing mobility records into heterogeneous urban mobility network.

(e.g., gender and age) tend to exhibit different mobility patterns in various domains [6, 18, 19]. These observations
demonstrate the feasibility to extract useful information from mobility data for user demographic inference.
However, previous works on mobility data mining focus on capturing the similarity in physical space [20], which
overlook the important semantics information in urban context [7, 21]. Inspired by the limitations of previous
works, we aim to propose a semantic-enhanced urban mobility model for accurate user demographic inference.

2.2 Problem Definition
Now, we formally introduce the parameter notations and problem definition as follows.

Definition 2.1. (Mobility record) Amobility record is a triplet (u, l , t), which denotes that useru visits location
l at time t , where l denotes a unique area with geographical coordinates (i.e., longitude and latitude) and boundary
in the urban space.

Definition 2.2. (POI) A POI P is defined as a uniquely identifiable venue with specific functionC , e.g., residence,
workplace and park. In our model, each location has a POI distribution vector which represents the number of
different types of POIs within that location.

Figure 1(a) gives an example of the original mobility records, where different colors represent different users.
For example, the blue trajectory indicates that a user has visited the locations l5, l2 and l4. It captures how users
mobility behavior within the urban space.

Definition 2.3. (User−LocationMobility Network) It is denoted asGul = (U ∪L,Eul ), an undirected bipartite
network where U is the set of user vertices, L is the set of location vertices, and Eul is the set of edges between
users and locations. If user ui visits location lj , there will be an edge e(ui , lj ) between them. The weightw(ui , lj )
is set by the frequency that user ui visits location lj .

Definition 2.4. (User−User Similarity Network) It is denoted as Guu = (U ,Euu ), where U is the set of user
vertices, each representing a user, and El l is the set of edges between them. The edge weightw(ui ,uj ) represents
the similarity of user ui and uj in semantic space, wherew(ui ,uj ) ≥ 0,∀ui ,uj ∈ U .

Definition 2.5. (Location−Location Similarity Network) It is denoted asGl l = (L,El l ), where L is the set of
location vertices, each representing a location, and El l is the set of edges between them. The edge weightw(li , lj )
represents the semantic similarity between location li and lj , wherew(li , lj ) ≥ 0,∀li , lj ∈ L.
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Definition 2.6. (Heterogeneous Urban Mobility Network) It is denoted as G = (L ∪ U ,Eul ∪ Euu ∪ El l ),
whereU is the set of user vertices and L is the set of location vertices. Heterogeneous Urban Mobility NetworkG
is a combination of Gul , Guu and Gl l , with edge weightsW (ui , lj ),W (ui ,uj ) andW (li , lj ) corresponding to the
edges in these network, respectively.

Specifically, Figure 1(b) showcases the data structure of heterogeneous urban mobility network. The green lines
between users and locations depicts the user−location mobility network, which depicts the spatial interaction
between user and location. In addition, the blue dashed line and orange dashed line denotes the semantic similarity
in user domain and location domain. By organizing the urban mobility as a heterogeneous urban mobility network,
we can simultaneously identify the user pairs with similar physical mobility patterns by finding 2−hop neighbors
in user−location network as well as the user pairs and location pairs with high semantic similarity by finding the
immediate neighbors in user−user network and location−location network respectively. That is we can jointly
consider the physical mobility behavior and semantic similarity in urban mobility, which facilitates us to model
the complex correlation between urban mobility and user demographic.

Finally, we formally define our problems as follows: given heterogeneous urban mobility networksG , we aim to
learn a projection function Φ that projects the user vertices u ∈ U into an embedding vector in low-dimensional
space Rd . In this space, users with similar demographic are closer to each other than those who are less similar.
The derived embedding vectors should be able to facilitate accurate user demographic inference, and reveal the
underlying correlations between user demographic and urban mobility patterns. With the problem formally
defined, we are ready to dive into the model design.

3 METHOD
Inspired by the phenomenal success of representation learning, we are dedicated to designing a novel network
embedding algorithm that learns low-dimensional embedding vectors from the heterogeneous urban mobility
network for user demographic inference. However, existing network embedding algorithms mostly focus on
homogeneous network [22, 23]. More importantly, they usually are optimized to preserve predefined network
metrics, such as first-order proximity [22], second-order proximity [23] and community structure [24], which are
not customized for user demographic inference. Therefore, our algorithm needs to address three key obstacles: 1)
how to construct the heterogeneous urban mobility network for user demographic inference? 2) how to design
optimization metrics to preserve physical mobility pattern and semantic information? 3) how to jointly optimize
for these two metrics?
Motivated by these challenges, we first design the user-location network and propose a network embedding

algorithm that is able to preserve the physical mobility pattern. Then, we describe how to capture the semantic
information into urban mobility. Finally, we propose a unify framework to jointly capture the physical mobility
pattern and semantic information in user embedding.

3.1 Urban Mobility Network Embedding
The key intuition behind our model design is the users who share similar urban footprints (frequency distribution
among locations) are more likely to have similar demographics [6]. The edge weightw(ui , lj ) between user ui
and location lj is set as the frequency that user ui visits location lj . Therefore, implementing the intuition is
equivalent to preserving user’s structural role with respect to urban locations in the embedding vector. That is
user vertices that have similar edge weight distribution on location vertices should have similar embeddings. The
learning process is illustrated in Figure 2 (a). Specifically, given the embedding vector of user ui as ®ui and the
context vector of location lj as ®l ′j , we define the predicted normalized edge weight between them as pm(lj |ui ),
which is computed by:
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Fig. 2. Illustration of semantic-enhanced urban mobility embedding. Different edge colors denotes different types of edges,
with thicker edges represent higher weight. (a) Preserving physical mobility patterns, e.g., vertexu1 andu2 should be projected
to similar embedding vectors as they share similar neighbors in user-location network. (b) Preserving semantic similarity
among users, e.g., vertex u1 and u3 should be closely located in the embedding space as they have a strong edge between
them. (c) Preserving semantic similarity among locations, e.g., vertex l1 and l4 should also be placed closely as they have a
strong edge between them.

pm(lj |ui ) =
exp(®l ′j

T
· ®ui )∑

lk ∈L exp(
®l ′k
T
· ®ui )
, (1)

where |L| represent the number of location vertices. For each user vertex ui in set U , Eqn.(1) computes the
predicted normalized edge weight ps (l⋆ |ui ) over the entire set of location vertices in L. To preserve the structural
role, we should optimize ps (l⋆ |ui ) to fit the empirical normalized edge weight distribution ŵ(l⋆ |ui ), which is
computed asw(l⋆ |ui )/

∑
k w(lk |ui ). Therefore, we minimize the following objective function:

Om =
∑
ui ∈U

αid(ŵ(l⋆ |ui ),pm(l⋆ |ui )), (2)

where d(⋆,⋆)is defined as the KL−divergence between two distributions, and αi is the out degree of user vertex
ui , which denotes its importance in network. To avoid iterate through user-location pairs that have no edge, we
can prove that optimizing Eqn.(2) is equivalent to optimizing the following objective function:

Om = −
∑

e(ui ,lj )∈Eul

w(ui , lj )loд(pm(lj |ui )). (3)

It allows us to only iterate through the user-location pairs with existing edges. By iteratively optimizing the
embedding vectors for user vertices, we are able to represent every user vertex ui ∈ U with a d−dimensional
vector ®ui that preserve the similarity in physical mobility pattern. For example, user u1 visits location l1 three
times, l2 three times and l3 three times, then his normalized frequency distribution vector among urban loca-
tions will be [1/3, 1/3, 1/3, 0]. Likewise, the normalized frequency distribution vectors for user u2, u3, u4 are
[1/3, 1/3, 1/3, 0], [0, 0, 1/2, 1/2], [0, 0, 0, 1], respectively. After calculating the KL-divergence between these vectors,
we find that the user u2 is closest to user u1, while the user u4 is farthest to user u1. Therefore, u1 and u2 will have
more similar embedding vectors, which accurately preserves the similarity in physical mobility patterns. The
embedding for location vertices can be derived with identical process.
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3.2 Capturing the Semantic Similarity in Urban Mobility
First, we construct a user-user network to capture the semantic similarity between users. We draw inspiration
from a recent study where researchers find urban mobility data can be classified into meaningful clusters based
on the time allocation patterns [8]. Specifically, the time allocation patterns are represented as how the users
partition their time among different locations. The overall time duration is first segmented into a set of evenly
distributed time slices C . Then, the time slices are partitioned into same subsets if users are in same location
during the corresponding time slots, and overall partition scheme is represented as Pm for userm. By measuring
the similarity in partition scheme, it allows us to model the semantic similarity between user’s mobility behavior
without the interference of physical proximity, i.e., distant users with similar time allocation patterns can be
effectively detected. The underlying assumption is that two users with similar time allocation patterns are more
likely to share similar life styles, and hence are more likely to have the similar demographics. Specifically, we use
the partition distance to quantify the divergence in time allocation patterns. Given two partition schemes Pm
and Pn of a collection of time slices C which represent two users’ time allocation patterns, the partition distance
between Pm and Pn is defined as follows [25],

Definition 3.1. (PartitionDistancepd(⋆,⋆)) The partition distance pd(Pm , Pn) between Pm and Pn is computed
as the minimum number of time slices that must be removed from C , so that the two induced partitions are
identical.

Higher partition distance indicates two users have more different time allocation patterns. Therefore, we use
the inverse of partition distance to determine the edge weight in user-user network: wui ,uj ∈U = 1/pd(ui ,uj ),
which measure the semantic similarity among users. Note that this similarity metric allows us to capture both
temporal and spatial information, since it measures time allocation patterns between users.
On the other hand, we leverage the location’s POI distribution to measure the semantic similarity among

them. Specifically, each location is associated with a POI distribution vector, which represents the number of
different types of POIs within that location. Previous studies demonstrated the urban locations with similar POI
distribution usually have similar urban function [10, 21]. Therefore, the location’s similarity in POIs distribution
can measure their semantic in urban mobility. As a result, we set the location-location edge weightw(li , lj ) as the
cosine similarity of two location’s POI distributions.
In both user-user network and location-location network, the edge weight denotes the semantic similarity

between two vertices, where higher edge weight indicates the connected vertices are more similar in semantics.
Therefore, modelling the semantic similarity is equivalent to preserving the proximity in location-location
and user-user network. That is the vertices pairs that are connected with high weight edges should have
similar embedding vectors. To achieve this goal, we propose an additional objective function. Since optimizing
embedding vectors of location vertices is identical with user vertices, we only describes the algorithm of learning
user embeddings to avoid redundancy. We first define the predicted edge weight between user vertex ui and uj as
follows:

ps (ui ,uj ) =
1

1 + exp(−®uTi · ®uj )
, (4)

where user vertices with similar embedding vectors are predicted to have higher edge weight, which is consistent
with our objective. Following this equation, we can compute predicted edge weight distribution ps (u⋆,u⋆) over
the space U ×U . The empirical distribution can be computed as ŵ(ui ,uj ) = w(ui ,uj )/

∑
(ui ,uj )∈Euu w(ui ,uj ). To

optimize the embedding vectors, a natural way is to minimize the KL-divergence of two probability distributions
as follow:

Os = d(ŵ(u⋆,u⋆),ps (u⋆,u⋆)), (5)
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Similarly, the objective function is equivalent to iterative through existing edges with the following equations:

Os = −
∑

(ui ,uj )∈Euu

w(ui ,uj ) logps (ui ,uj ). (6)

The illustration of node embedding algorithm in user−user network and location−location network is shown
in Figure 2 (b) and (c). Take the user-user network as an example, the more similar two users’ time allocation
patterns are, the more similar embedding vectors they will have, which as a result facilitates the user demographic
inference.

3.3 Semantic-enhanced Urban Mobility Embedding
Finally, we introduce the unified learning framework, i.e., Semantic-enhanced Urban Mobility Embedding
(SUME). The goal is to optimize the vertex’s embedding vectors to capture the feature from all types of edge in
heterogeneous urban mobility network simultaneously. Specifically, we have described the standalone embedding
algorithms on all three sub-networks, i.e., user-user network, location-location network and user-location network.
An intuitive approach is to optimize the combination of the corresponding objective functions, which can be
formulated as following:

O = λulOul + λuuOuu + λl lOl l , (7)
where

Oul = −
∑

(ui ,lj )∈Eul

w(ui , lj )loд(pm(lj |ui ))),

Ouu = −
∑

(ui ,uj )∈Euu

w(ui ,uj ) logps (ui ,uj ),

Ol l = −
∑

(li ,lj )∈El l

w(li , lj ) logps (li , lj ),

λul + λuu + λl l = 1, 0 < λul , λuu , λl l < 1.

(8)

To be specific,Oul describes the objective to capture physical mobility patterns, whileOuu andOl l describe the
objective to capture semantic similarity in user domain and location domain respectively. In addition, λul , λl l and
λuu denote the importance of them. However, optimizing O is computationally expensive, since the evaluation
of Oul requires to summing over the entire vertices set to compute pm(l⋆ |ui ) for each vertex. To address this
problem, we adopt the negative sampling technique to accelerate the optimization [26]. In the optimization of
each vertex we sample one positive edge according to its edge weight distribution and multiple negative edges
according to noisy distribution. We denote the optimized vertex as vi , noisy distribution as Pn(v) and number of
negative edges as K . Without loss of generality, the vi can represent either user vertex or location vertex when
optimizing for different vertices. Then, the update gradient for its embedding ®vi can be computed as:

logσ (®vTj · ®vi ) +
K∑
n=1

Evn∼Pn (v)[logσ (−®v
T
n · ®vi )], (9)

where σ (x) = 1/(1 + exp(−x)) is the sigmoid function, vj and vn are connected vertices on positive edge and
negative edge respectively. Following the widely adopted empirical setting [26], we set K = 5 and Pn(v) ∝ α3/4

v ,
where αv is the degree of vertex v . The key idea of negative sampling is to approximate the gradient of objective
function by sampling a small amount of edges, where the first term in Eqn.(9) corresponding to gradient from
existing edges while the second term corresponding to absent edges. Following the idea of negative sampling, we
can optimize the overall objective function 7 in a edge sampling manner. That is, in each optimization step we first
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ALGORITHM 1: Semantic-enhanced Urban Mobility Embedding Algorithm
Input: Gul , Guu , Gl l , number of total samples N , number of negative samples K , list of importance

coefficient λ = [λul , λl l , λuu ].
Output: user embeddings ®u, user contextual embeddings ®uc , location embeddings ®l , location contextual

embeddings ®lc .
Initialize edge type list: H← [ul , ll ,uu];
while iter ≤ N do

Sample edge type: h ← H ∼ λ ;
Draw a positive edge: ep ← Eh ∼ ŵh ;
Draw K negative edges: {en} ← Eh ∼ Pn(v) ;
Update vertex embedding according to Eqn.(9);

end

sample an edge type based on relative importance (i.e. λul , λl l and λuu ), and then optimize the vertices embedding
in corresponding sub-network with negative sampling algorithm in Eqn.(9). The complete optimization algorithm
is shown in Algorithm 1. Since the context vectors are equivalent to the embedding vectors, we average the
embedding vectors and the context vectors as the final output embedding vectors.
By jointly optimizing these three objective functions, we can effectively propagate the important signals

through the heterogeneous edges. For example, user u1 and user u2 never visits the same locations, but the
locations they frequently visit share similar POI distributions. Then, their embedding vectors will still be similar,
because the locations they frequently visit have similar embeddings due to the objective in location-location
network. As a result, u1 and u2 are assigned similar embedding vectors due to the signals propagate through
user-user edge and user-location edge. Therefore, our SUME model is able to capture features not limited in
physical mobility pattern or semantic similarity, but combining the strength from both of them. It is worth
pointing out that the proposed SUME model focus on extracting low-dimensional embedding vectors, which can
be readily fed into off-the-shelf classifier models for user demographic inference, such as SVM and random forest.
We aim to extract quality representation from urban mobility data for user demographic inference, and thus the
downstream classifier models are beyond our scope. In addition, our SUME model can be easily generalized to
online mode, where the embedding of newly added users can be computed by only updating the edges connecting
them for a few epochs.

4 EXPERIMENT

4.1 Dataset
We leverage two large-scale real-world mobility trace along with user demographics data to evaluate our models.
Their descriptions are as follow.

4.1.1 Social Media Data. This dataset is released by a recent study [27, 28]. Specifically, the dataset is collected
by the local mobile operator in Shanghai, and contains more than 7 million mobility records covering 602 users
and 13,496 base stations for one week, i.e., from 20 Apr. 2016 to 26 Apr. 2016. It records the time stamps and the
connected base stations whenever the mobile users access cellular network, e.g., consuming mobile data traffic,
sending text and making phone calls, which constitutes a fine-grained mobility trace. On the other hand, it also
includes the public profiles users post on the mainstream social media platform in China, i.e., Weibo. The basic
information is summarized in Table 1. Specifically, it provides the gender and occupation information for the
users. We present the user demographic distribution in Table 2.
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Table 1. The basic information of the utilized datasets.

Source City Time Duration Records Users Locations
Social media Shanghai 20th-26th,April, 2016 7,704,708 602 13,496
Social network Beijing 1st,October-31st,December, 2019 208,795,352 39,999 10,656

Table 2. User demographic distribution in social media dataset.

Demographic Category
Occupation white collar(61.00%), education(19.74%), sports and health(10.65%), media(5.06%), civil servant(3.56%)
Gender male(59.97%), female(40.03%)

Table 3. User demographic distribution in social network dataset.

Demographic Category
Occupation professionals(66.44%), sales workers(12.57%), transport and production(7.41%), administration support(6.85%),

healthcare and technicians(4.48%), services(1.30%), managers(0.94%)
Gender male(58.67%), female(41.32%)

Education primary school(7.18%), junior high school(6.66%), senior high school(22.13%), undergraduate(51,79%), postgraduate(12.24%)
Income very low(3.36%), low(14.84%), medium(55.79%), high(24.57%), very high(1.44%)
Age 0∼20(5.61%), 20∼25(26.76%), 25∼30(22.57%), 30∼50(42.46%), 50∼99(2.60%)

4.1.2 Social Network Data. Through close collaborations with Tencent corporation, we were granted access to
a mobility trace collected from their social network applications. This dataset is large-scale in terms of covering
39,999 users and 10,656 locations in Beijing. It contains 209 million mobility records from 1 Oct. 2019 to 31 Dec.
2019. Whenever users invoke location-based services, e.g. check-in to a location, the localization module generate
a record of user’s physical location. The basic information is summarized in Table 1. Through large-scale user
survey, this dataset also collects user demographic information, including gender, age, education level, income
level and occupation. The occupations are originally classified based on the standard occupational classification
(SOC) system [29]. Since some of the categories are absent in urban space, like farming and military, we merge
them into seven categories following the setting in [30]. This occupation taxonomy covers all the main job
categories in urban space. Besides, we know most of them have distinct commuting behaviors based on our
common sense and previous works [30], which can be compared against our model’s performance. We present the
user demographic distribution in Table 3. Note that the age groups are split unevenly to make the user distribution
more even, and also to better represent different life stages, such as schooling, early career and retirement.

4.1.3 Ethical Considerations. Given the sensitivity of the data, we enforce the following protocols to address
the privacy and ethical risks in data sharing and analysis. First, all data is properly anonymized by the data
owners before they are shared to us. The real user IDs are never made available to or utilized by the researchers.
In addition, our data analysis procedures are reviewed and authorized by the dataset owners to ensure the
compliance with privacy protocols in the Term-of-Use statements. Second, all the researchers that have been
authorized to access the datasets are bounded by strict non-disclosure agreements, and our research protocol are
approved by the local institutional board. Third, we store all the data in a secure off-line server, and only the
authorized core researchers can access the data.

4.1.4 Basic Statistics. To provide a comprehensive understanding on the utilized datasets, we present the
distribution of mobility records, radius of gyration and entropy in Figure 3. Take the social media dataset as an
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(a) Number of records(social media) (b) Radius of gyration(social media) (c) Entropy of mobility(social media)

(d) Radius of gyration(social network) (e) Entropy of mobility(social network)

Fig. 3. The distribution of mobility characteristics among user population.

example, we plot the number of mobility records distribution in Figure 3(a), with the users sorted by the number
of records. We can observe that the the empirical data follows power-law distribution with an exponential cut-off.
81% users (448) have more than 1000 mobility records. In addition, we examine the mobility activity area as the
radius of gyration [31], which is computed as the user’s root mean square displacement from his average location
through all his mobility records. From Figure 3(b), we can observe that the radius of gyration follows similar
power-law distribution, with 304 users having less than 13,000 meter radius. On the other hand, we showcase
the entropy of mobility behavior in Figure 3(c), which measures the uncertainty of user’s mobility across all
the locations. We observe more than 400 users have entropy above 2.5. Similar observations are made in social
network dataset. Since each user in this dataset has identical number of mobility records, we only present the
distribution of radius of gyration and entropy in Figure 3(d) and 3(e).

4.2 Experiment Settings
4.2.1 Baselines. We select numerous baselines to compare against our method. Specifically, the baselines can

be summarized in three categories: classic models, deep learning models and variants of our model.
First, we implement two classic methods to serve as benchmarks: random guess and raw feature.

• Random guess. The most basic method that sets a naive benchmark for the prediction task. It randomly
chooses an occupation and gender for each user according to the popularity, i.e., frequency distribution.
• Raw feature. The classic feature based method. The feature vector of each user is constructed as the
frequency distribution over all locations.
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We also compare our method with three state-of-the-art network embedding models and two graph neural
network models. These models leverage representation learning technique to learn embedding vectors for vertices.
Therefore, they are strong competitors to our model.
• DeepWalk [22]. It is a classic network embedding method, which uses skip-gram model [32] to learn
embedding vectors for vertices based on the vertices sequence sampled by truncated random walk.
• Node2vec [33]. It generalizes DeepWalk by adopting customized biased random walks, which achieves a
better trade-off between exploration and return.
• LINE [23]. It is a network embedding method that learns embedding on a weighted network to represent
both first and second order proximity. There are three variants: LINE(1st), LINE(2nd) and LINE(1st + 2nd),
which preserve first-order proximity, second-order proximity and both of them, respectively.
• Graph Convolutional Network (GCN) [34]. It is a classic graph neural network model, which learns
embedding for each node by iteratively aggregating information form its neighbors. We use a two-layer
GCN model (optimal setting), which is trained in an unsupervised manner to ensure fair comparison.
• Graph Attention Network (GAT) [35]. It is a state-of-the-art graph neural network model, which replaces
the aggregator function in GCN with attention module. It allows the model to assign different weights
to different neighbor nodes. We use a two-layer GAT model (optimal setting), which is trained in an
unsupervised manner to ensure fair comparison.

The proposed SUME model has three variants, which stands for the embedding on the partial urban mobility
network. The details of the variants are discussed as follows.
• SUME(ul). It is a variant of SUME, which only exploits the user-location network in the unified embedding
framework.
• SUME(uu+ul). It is a variant of SUME, which exploits user-location network and user-user network in the
unified embedding framework.
• SUME(ll+ul). It is a variant of SUME, which exploits the user-location network and the location-location
network in the unified embedding framework.

Except for the random guess method, all the evaluated models generate an embedding vector for each user.
Each baseline method follows the optimal implementation released by the authors, and the hyper parameters
are tuned to optimal through grid search. For the network embedding and graph neural network baselines, we
use the complete mobility network we construct for our model as the input graph. Besides, we use the node id
embedding as the node features for the graph neural network baselines [34]. Since all the users in the evaluation
datasets have ground truth information, we feed the learned embedding vectors into a supervised classification
model for user demographics inference. Without loss of generality, we adopt the widely used support vector
machine [36], which can be readily switched to other supervised and semi-supervised models.

4.2.2 Evaluation Metric. We adopt the accuracy, precision and recall as performance metrics for model
evaluation, which can be computed as follow:

Accuracy =
1
M

M∑
i=1

I (Ti ∈ Si (k)), Precision =
1
N

N∑
j=1

TPj

TPj + FPj
, Recall =

1
N

N∑
j=1

TPj

TPj + FNj
,

where N is the number of attribute categories, andM is the number of users. In addition, Si (k) is the set of the
top-k attributes the model predicts user i exhibits, and Ti is the ground truth. TPj , FPj , FNj are the true positive,
false positive and false negative rates in the j-th category. I (Ti ∈ Si (k)) equals to 1 if the ground truth attribute
is included in Si (k), otherwise it equals to 0. They are the most adopted metrics in real-world application [37],
since they balanced measure model’s performance from different aspects. Without loss of generality, we set k = 2
for occupation, education, age and income inference and k = 1 for gender inference respectively. To ensure

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 4, No. 3, Article 98. Publication date: September 2020.



SUME: Semantic-enhanced Urban Mobility Network Embedding for User Demographic Inference • 98:13

the robustness of the experiment results, we randomly split the datasets into 5 subsets, and report the average
performance of 5-folds cross-validation. For the inference of each user demographic, we ensure it distributes
uniformly in each subsets.

4.3 Performance Evaluation
4.3.1 Performance Comparison with Baselines. The overall experiment results are summarized in Table 4 and

Table 5. For the proposed SUME model, we conduct statistical analysis to examine the significance of performance
gain over the best baseline. Specifically, we use Student’s t-test (with Bonferroni correction) to compute the
p-value p and effect size ES respectively, where p < 0.05 and ES > 0.8 indicate the performance gain is statistically
significant [38]. From the experiment results, we have the following observations and conclusions.

Table 4. Performance comparison with baseline models on social media data, where (∗∗) indicates p < 0.05 (with Bonferroni
correction) and ES > 0.8 over the best baseline.

Occupation Gender
Method Accuracy Precision Recall Accuracy Precision Recall

random guess 0.41 0.37 0.38 0.53 0.48 0.49
raw feature 0.42 0.38 0.40 0.59 0.56 0.58
DeepWalk 0.50 0.43 0.43 0.63 0.58 0.60
Node2vec 0.47 0.42 0.43 0.62 0.57 0.55
LINE(1st) 0.53 0.47 0.48 0.65 0.59 0.61
LINE(2nd) 0.53 0.48 0.47 0.67 0.62 0.60

LINE(1st+2nd) 0.55 0.49 0.52 0.70 0.64 0.65
GCN 0.51 0.46 0.47 0.65 0.62 0.63
GAT 0.52 0.47 0.46 0.65 0.61 0.61

SUME(ul) 0.53 0.48 0.48 0.65 0.62 0.63
SUME(ul+uu) 0.57 0.51 0.52 0.71 0.65 0.68
SUME(ul+ll) 0.56 0.53 0.52 0.70 0.66 0.69

SUME 0.61** 0.56** 0.57** 0.76** 0.71** 0.73**

1) In both datasets and across different user demographics, there is no significant difference between random
guess and raw feature method. The performance of random guess only degenerates slightly for all user
demographic inference. On the other hand, all the representation learning methods, including DeepWalk,
Node2vec, LINE, GCN and GAT, consistently achieve notable performance gains over the random guess
and feature-based methods. A plausible reason is that the complex correlation between urban mobility
and user demographics cannot be captured by the simple frequency distribution vector, which suggests
the importance of learning expressive representations. In addition, our SUME model achieves further
performance gain over the best representation learning methods. It indicates our model can effectively
captures the physical mobility patterns and semantic information with the novel representation learning
algorithm.

2) The proposed SUMEmodel significantly outperforms all baseline models. In social media Dataset, it provides
a relative performance gain of 42.5%∼47.4% in occupation inference (p < 0.05,ES > 0.8) and 25.9%∼28.8%
in gender inference (p < 0.05,ES > 0.8), respectively. In addition, it also significantly outperforms the
state-of-the-art representation learning method, Line(1st+2nd), by 9.6%∼14.3% in occupation inference
(p < 0.05,ES > 0.8) and 8.6%∼12.3% in gender inference (p < 0.05,ES > 0.8). As for the social network
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Table 5. Performance comparison with baseline models on social network data, where (∗∗) indicates p < 0.05 (with Bonferroni
correction) and ES > 0.8 over the best baseline.

Gender Education Income Age Occupation
Method Acc. Prec. Rec. Acc. Prec. Rec. Acc. Prec. Rec. Acc. Prec. Rec. Acc. Prec. Rec.

random guess 0.50 0.48 0.50 0.40 0.40 0.38 0.40 0.40 0.39 0.40 0.40 0.40 0.29 0.29 0.28
raw feature 0.53 0.51 0.51 0.46 0.42 0.45 0.45 0.42 0.41 0.46 0.42 0.43 0.33 0.31 0.30
DeepWalk 0.55 0.53 0.53 0.60 0.54 0.54 0.59 0.53 0.52 0.63 0.59 0.58 0.43 0.38 0.38
Node2vec 0.54 0.51 0.52 0.59 0.53 0.51 0.58 0.53 0.54 0.62 0.57 0.57 0.43 0.39 0.38
LINE(1st) 0.61 0.56 0.58 0.71 0.62 0.65 0.71 0.62 0.63 0.67 0.64 0.62 0.49 0.45 0.44
LINE(2nd) 0.62 0.59 0.56 0.72 0.64 0.63 0.73 0.64 0.67 0.69 0.64 0.63 0.51 0.46 0.46

LINE(1st+2nd) 0.63 0.58 0.59 0.72 0.64 0.66 0.73 0.66 0.68 0.71 0.67 0.65 0.53 0.47 0.48
GCN 0.59 0.56 0.56 0.72 0.65 0.64 0.72 0.66 0.66 0.71 0.67 0.66 0.52 0.47 0.47
GAT 0.59 0.57 0.57 0.71 0.65 0.63 0.72 0.67 0.66 0.72 0.68 0.67 0.52 0.48 0.47

SUME(ul) 0.61 0.58 0.56 0.72 0.63 0.65 0.72 0.67 0.69 0.70 0.65 0.66 0.47 0.44 0.45
SUME(ul+ll) 0.65 0.59 0.59 0.73 0.67 0.64 0.73 0.66 0.70 0.73 0.68 0.68 0.53 0.48 0.49
SUME(ul+uu) 0.68 0.65 0.62 0.75 0.66 0.68 0.76 0.69 0.67 0.75 0.68 0.71 0.54 0.50 0.48

SUME 0.72** 0.68** 0.66** 0.79** 0.72** 0.71** 0.80** 0.73** 0.73** 0.79** 0.74** 0.73** 0.59** 0.53** 0.54**

dataset, SUME also significantly outperforms all the baselines across all performance metrics. In terms of
accuracy, SUME outperforms the best baselines with a margin of 9.6%∼14.3%. Moreover, the accuracy of
income level and age inference reaches up to 80% and 79%. These results demonstrate the proposed SUME
model consistently achieves preferable performance against state-of-the-art baselines, and is beneficial to
real-world application.

3) By comparing the performance of the complete SUME model and the degraded versions, we observe
consistent performance gains as more components are integrated into the framework. These comparisons
indicate that each component of our model play its role in improving the user demographic inference. Also,
these results suggest our model can effectively incorporate the semantic information in urban mobility and
the physical mobility patterns.

To conclude, our SUME model consistently achieves preferable results compared with classic models and
the state-of-the-art network embedding methods. In addition, each component of the proposed model leads to
significant performance gain. These results combined to suggest the proposed SUME model’s effectiveness in
simultaneously capturing the feature of physical mobility patterns and semantic similarity, and therefore it is a
powerful model to infer user demographic with mobility data.

4.3.2 Performance Across Different User Groups. We also conduct more experiments to evaluate how the
model performance varies across user groups with different characteristics. To avoid redundancy, we only show
the accuracy of gender and occupation inference on social network dataset. Similar observations are made on
other demographics and social media dataset.
Specifically, we split the user population evenly into four groups based on the number of visited locations,

radius of gyration and mobility entropy, respectively. The performance of occupation inference across different
user groups is displayed in Figure 4(a), while the performance of gender inference is displayed in Figure 4(b).
From Figure 4(a), we observe that the user group with the highest number of visited locations ranks first in
prediction accuracy, which is probably because the features of user mobility can be better captured with more
visited locations. Besides, Figure 4(b) shows similar trend in gender inference. In addition, both Figure 4(a) and
Figure 4(b) demonstrate the accuracy of occupation and gender inference slightly decreases as the radius of
gyration increases, which does not vary significantly. On the other hand, Figure 4(a) and Figure 4(b) show the
inference accuracy of gender and occupation both gradually decrease with the increase of mobility entropy. These
combine to suggest the demographic inference are easier in user population with smaller activity area and less
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(a) Occupation (b) Gender

Fig. 4. Performance of gender and occupation inference across users groups with different mobility characteristics.

uncertain mobility behavior. To conclude, the proposed SUME model generally performs better in the user group
with more visited locations, smaller radius of gyration and lower mobility entropy. However, the performance
does not vary significantly across different user groups, which showcases the generalizability of our model.

5 REVEALING THE CAPTURED MOBILITY FEATURES FOR DEMOGRAPHIC INFERENCE
In this section, we aim to understand the mobility feature SUME extracted for user demographic inference. Since
the demographic inference is based on the learned embedding vectors for users and locations, we can efficiently
extract the most representative users and locations for different demographics by simply computing the similarity
between embedding vectors. Specifically, we are dedicated to visualizing the most representative mobility patterns
in temporal, spatial and POI visitation domains. Note that we aim to deepen our understandings on how SUME
works for user demographics inference. On the other hand, comprehensive analysis on the mobility differences
across user groups is beyond our scope. Therefore, we only present the case studies on the gender, occupation
and age inference in social network dataset to avoid redundancy. Similar observations are made on other user
demographics and social media dataset.

5.1 Temporal Domain Patterns
We first pick out the most representative temporal patterns among user population of different occupations, age
group and gender, and then examine their characteristics by visualizing them in temporal domain. Specifically,
previous studies have established theoretical and empirical analyses on the mobility differences among users
with management, clerical and blue collar occupations as well as different genders and age groups [18, 30, 39].
Therefore, we conduct case studies on genders, age groups, and the user occupations of transport and production,
manager, and administration support to better connect our findings with literature. The intuition behind the
most representative temporal patterns selection is that it should be corresponding to the mobility trace of the
“centroid users” among the user population with certain demographics, which is defined as the users with smallest
root mean square distance with all other users within the population. Since we aim to examine the temporal
patterns, we use the partition distance to measure the distance between users. Such procedure allows us to select
the users with minimum overall distance to all users that are classified into certain demographics, i.e., the most
representative ones. As for the visualization, we first divide and aggregate the mobility records into a typical
working day and a typical non-working day, since they might exhibit different patterns. Then, we evenly segment
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(a) Manager (b) Administration Support (c) Transport and Production

(d) 0∼20 Age Group (e) 25∼30 Age Group (f) 50∼99 Age Group

(g) Male (h) Female

Fig. 5. The visualization of the most representative temporal patterns of different occupations, age groups and genders. Same
color within each subgraph indicate users are associated with same locations, while the color scheme is not shared among
different subgraphs.

the working day and non-working day into 48 time slices respectively, with each time slice denote a 30-minute
period. We link each time slice to the most frequently visited location in that time period, and we visualize them
in the form of clock dial as shown in Figure 5. Specifically, for each selected user, the time slices with same colors
means they are linked to same locations, while the colors do not contain ordering information. Besides, same
color only means same location for an individual user, which does not have a clear meaning among different
users. We can observe that the most representative users of different demographics exhibit distinct temporal
patterns, we summarize the main observations as follows.
• Occupation: As is shown in Figure 5(a)∼5(c), the most representative users with the occupations of
manager, administration support, and transport and production share a similar pattern of mostly staying
in one location during working day’s daytime and in another location during the nighttime, which is
consistent with the common nine-to-five working schedule. However, the users with manager occupation
seem to have a more flexible working schedule. They sometimes might stay at home during the typical
working hours, and occasionally work overtime in the non-working days. On the other hand, the users
with administration support and transport and production occupations tend to have a fixed working
schedule during the typical working hours. These findings echo previous study in this area that high
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pay management jobs have more access to flexible working schedule compared with other relatively low
pay occupations [40]. Besides, the users with transport and production occupation sometimes stay at the
working sites even during midnight, which is probably because of the shift work that is common in this
occupation [41].
• Age group: The temporal patterns of three age groups, i.e, 0∼20, 25∼30 and 50∼99 are presented in
Figure 5(d)∼5(f). Typically, these age groups mainly correspond to the life stages of going to school, starting
a career and retirement. We observe that the users in 0∼20 age group mainly stay at one location, and
occasionally go out during the afternoon in working days and daytime in non-working days. This probably
correspond to the schedules of boarding schools and universities, where users only go out when they
finish the classes. Besides, the 25∼30 age group exhibits a stable nine-to-five schedule in working days, and
occasionally works overtime or visit other locations in non-working days. On the other hand, the 50∼99
age group tend to mainly stays at one location, and occasional goes out in the morning and evening of
working days and the daytime of non-working days.
• Gender: Finally, we present the temporal patterns of male and female users in Figure 5(g) and 5(h),
respectively. We observe that both male and female users exhibit a similar nine-to-five schedule in working
days. On the other hand, male users seem more likely to work overtime in non-working days, while female
users tend to visit multiple different locations. These observations probably could be explained by the
findings in previous studies that females engage more in multi-purpose and multi-stop trips in order to do
household errands and take up gender differentiated roles [18, 42].

In summary, through the temporal patterns visualization and analysis, we find the proposed SUME model can
effectively capture the distinct and semantic-aware temporal mobility pattern for the user demographic inference.
Although users with different occupations, genders and age groups exhibit similar sleeping cycle, but they differ
significantly in working schedule and non-working day activities. These observations echo previous studies on
the mobility differences across different user demographics, and also help us to understand how SUME works.

5.2 Spatial Domain Patterns
Here, we aim to pick out the most representative locations in the classification of each user demographic,
and visualize them in spatial domain. Since the proposed SUME model embeds users and locations into same
representation space, we can efficiently look up the most representative locations for certain user demographic
by computing the similarity between embedding vectors. Based on the Algorithm 1, we find that the dot product
between user’s embedding vectors and location’s contextual embedding vector measures the importance of this
location in inferring that user’s demographic, where the higher dot product value indicates higher importance.
Guided by this mechanism, we first compute the average embedding vectors among the users that are classified
into certain demographics, and then select the top 30 locations for each average embedding vector as the most
representative locations. We visualize the spatial distribution of the most representative locations for different
user demographics in Figure 6. We adopt the heatmap format for visualization, where red color denotes high
density of representative locations and blue color denotes low density. Besides, we also present their differences
in mobility characteristics in Table 6.
• Occupation: Figure 6(a)∼6(c) demonstrate the spatial distribution of the most representative locations of
the user population with manager, administration support, and transport and production occupations. We
observe distinct differences between them. Specifically, the key features of users with manager occupation is
mainly distributing in the downtown area, with three peaks around the famous CBD areas — Zhongguancun
(IT center), trade center and financial street. On the contrary, users with administration support and
transport and production occupation distribute more evenly in the urban space. On the other hand, Table 6
shows the users with manager occupation has the least radius of gyration and the most mobility entropy
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(a) Manager (b) Administration Support (c) Transport and Production

(d) 0∼20 Age Group (e) 25∼30 Age Group (f) 50∼99 Age Group

(g) Male (h) Female

Fig. 6. Spatial distribution of the most representative locations for the inference of different user demographics.

compared with administration support and transport and production. It indicates users with manager
occupation has smaller activity areas but allocate their time more evenly among locations, which is
consistent with previous observations on spatial and temporal patterns. In addition, users with transport
and production occupation have the largest radius of gyration, which is likely due to their occupation
requirement for transportation.
• Age group: Figure 6(d)∼6(f) show the spatial distribution of the most representative locations of different
age groups. We observe that they correspond to different locations but all distribute rather evenly in urban
space. On the other hand, Table 6 shows the users in 25∼30 age group have the largest radius of gyration
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Table 6. Differences in mobility characteristics across different genders, occupations and age groups. (-) and (+) represents the
groups with least and most value in comparison respectively, which all pass the Student’s t-test (with Bonferroni correction)
with p < 0.05 and ES > 0.8.

occupation age gender
Mobility feature manager admin. support transport and production 0∼20 25∼30 50∼99 male female

Radius of gyration(m) 27130.29 (-) 27947.30 29335.14 (+) 23121.90 (-) 30002.30 (+) 27991.72 30715.18 (+) 27681.20 (-)
Mobility entropy 1.69 (+) 1.60 (-) 1.64 1.36 (-) 1.74 (+) 1.53 1.73 (+) 1.63 (-)

Table 7. The results of the deviation of POIs visiting behaviours among different occupations. *represents p-value≤0.05 and
**represents p-value≤0.01 (Student’s t-test with Bonferroni correction). Blocks with red colors are the distinct features.

occupation business life service residence sports and health education recreation transportation travel
manager 0.0523* -0.0744 0.0227 0.0161 0.0739** 0.0476** -0.0170 -0.0029

administration support 0.0266 0.0607** 0.0021 0.0075 -0.0353 -0.0452 -0.0300 -0.0042
transport and production -0.0789 0.0136 -0.0248 -0.0235 -0.0386 -0.0024 0.0470** 0.0071*

and mobility entropy, while the users in 25∼30 age group have the least. Similar observations have been
made in wide range of countries, which is mainly attributed to lack of transportation means (e.g. private
cars) in the young and old population[19, 43, 44]
• Gender: From Figure 6(g) and 6(h), we observe distinct features on the most representative locations
of different genders. Specifically, the representative locations of female users mainly concentrate in the
downtown area, while male users distribute more evenly in the urban space. Previous study find evidences
that female users tend to visit less unique locations and mainly spend their time on the most frequently
visited locations. On the other hand, Table 6 also shows female users generally are less active in mobility.
Researchers find evidences that holding less driver licenses, lower socioeconomic status and the fear of
personal safety all contribute to the gender gap in urban mobility worldwide [18, 45].

Through visualizing the most representative locations our model captures, we showcase the signature spatial
patterns it utilizes for user demographic inferences. Specifically, we find users with different occupations, ages and
genders indeed have distinct spatial distribution and mobility characteristics in urban space. These observations
provide insights into how SUME learns effective representations from the spatial domain features of urban
mobility.

5.3 Understanding the Patterns in POI Visitation
In order to further examine the distinct patterns in POI visitation, we analyze the POI distribution in the most
representative locations selected by previous spatial analysis. To remove the inherent difference in the number
of different types POIs, we preprocess the POI distribution vectors with z-score normalization. Therefore, a
positive value indicates users visit this type of POIs more frequently than the general population, while a negative
value means otherwise. Then, we perform statistical analysis on the average POI distribution across the most
representative locations of different user demographics, which is shown in Table 7∼9. The distinct features of
each user demographic is highlighted with red colors. We make the following observations.
• Occupation: Table 7 shows POI visitation frequency differences among users with manager, administration
support, and transport and production occupations. We observe that users with manager occupation visit
business, education and recreation types of POIs significantly more frequently than other two occupations.
On the other hand, users with transport and production occupations visit transportation and travel types
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Table 8. The results of the deviation of POIs visiting behaviours among different age groups. *represents p-value≤0.05 and
**represents p-value≤0.01 (Student’s t-test with Bonferroni correction). Blocks with red colors are the distinct features.

age business life service residence sports and health education recreation transportation travel
0∼20 -0.0780 -0.1057 -0.0016 -0.0115 0.0403 * -0.0576 -0.0315 -0.0058
25∼30 0.0470* 0.0534 -0.0202 0.0040 -0.0681 0.0353 0.0008 0.0058
(50,99] 0.0311 0.0523 0.0218 * 0.0075 0.0278 0.0223 0.0307** 0.0000

Table 9. The results of the deviation of POIs visiting behaviours among different genders. *represents p-value≤0.05 and
**represents p-value≤0.01 (Student’s t-test with Bonferroni correction). Blocks with red colors are the distinct features.

gender business life service residence sports and health education recreation transportation travel
male -0.0185 0.0434 0.0325 0.0286 0.0133 0.0164 0.0054 -0.0039
female 0.0185 ** -0.0434 -0.0325 -0.0286 -0.0133 -0.0164 -0.0054 0.0039

POIs more frequently. These observations are probably due to the their differences in work locations, and
users with manager occupation generally has higher salary to spend on education and recreation.
• Age group: Table 8 demonstrates POI visitation differences among different age groups. We observe users
of 0∼20 age group visit education type POIs significantly more frequently, and 25∼30 age group visits
business type POIs more frequently. These observations fit with our common understandings on the life
stages of going to schools and starting a career. On the other hand, the distinct feature of users older than
50 is visiting residence and transportation type POIs more frequently. One plausible explanation is that
these users spend more time in home because of retirement, and use public transportation more frequently
due to ticket free policy for old citizens.
• Gender: Finally, we demonstrate the gender differences on POI visitation in Table 9. We can observe
that the only significant difference is female users visit business type POIs more frequently, which is a
bit counter-intuitive considering the widely observed gender gap in workplace. One plausible reason is
China has a rather high women employment rate, which reaches up to 89% [46], and the workplace gender
inequality mainly exists in the salary. In addition, female users tend to spend time on less locations, and
hence lead to more frequent visitation.

To conclude, we find distinct features for each type of user demographic in terms of POI visitation frequency,
which provides us with deeper insights into the underlying correlations between POI visiting behaviours and
user demographics.

6 RELATED WORKS AND LIMITATIONS
With the proliferation of mobile devices, the increasingly available mobility data is gaining popularity in numerous
applications, including urban planing [10], business sites selection [47], recommender system [48], and user
profiling [8]. In this paper, we focus on leveraging the mobility data to infer user’s occupations, which is a crucial
task to dissect urban mobility and has wide-range application scenarios at the same time. Now, we review the
most relevant related works, and summarize them into the following three aspects.

6.1 User Profiling with Mobility Data
The prevalent personalized mobile applications give rise to the need of high-quality user profiling [1, 2, 14]. It has
been demonstrated as an important link to improving the user experience in recommender system [12], mobile
application scheduling [1], location based services [11] and so on. Various data sources, such as web browsing
records [14], user-generated content [49] and social network feature [50], have been exploited to construct user
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profiles. Although mobility data has become a ubiquitously collected data source, its applications in inferring
user profile are relatively more limited. Previous works either focus on leveraging the mobility data to infer social
connections since they are closely correlated [51, 52], or combined the mobility data with other mobile sensory
data, such as app usage and light sensor, to infer user attributes like age and gender [3, 4]. One key obstacle
for inferring the complex user attributes solely based on mobility data is the difficulty of understanding the
motivations behind mobility transitions, which prevents the models from capturing the underlying correlation
between mobility behavior and user attributes. On the other hand, one recent study demonstrated that human
experts can accurately identify the important functional locations, e.g., workplace, home and transport, by
solely observing user’s trajectories [17]. It showcased the feasibility of inferring the user occupations based
on mobility data. In addition, another important related work proposed a temporal pattern based trajectory
clustering algorithm, which effectively captured the similarity in time allocation patterns [8]. It showed promising
results in inferring user occupations by predicting them as the most frequent ones within user clusters.

Different from most previous works, we aim to infer the user demographics based on the ubiquitously collected
mobility data. Instead of straightforward clustering algorithm, we are dedicated to developing a sophisticated
representation learning algorithm, which is able to extract the complex correlation between user demographics
and mobility behavior as well as capture the semantics of urban mobility at the same time.

6.2 Modelling the Context of Urban Regions
Urban mobility tends to be closely correlated with urban structure, because it is often driven by concrete
motivations and consists of regular transitions between different contextual locations [53, 54], such as home,
workplace and shopping malls. Therefore, modelling the underlying context of urban regions plays an important
role in understanding urban mobility patterns [9], which also holds the key to achieve accurate user profiling
from mobility data. Numerous attempts have been made to dissect the urban area into smaller and context-aware
functional regions with various data sources [10, 55, 56], such as entertainment area and office area. On the
other hand, researchers also proposed novel algorithms to detect the dynamic activities in urban area with
large scale mobility data [7, 21]. Instead of classifying urban regions into semantic explicit categories, recent
studies also looked at learning implicit feature vectors for urban regions with up-to-date representation learning
techniques [57, 58]. The derived region representations have been shown to be effective in predicting the crime
rate and house price of different urban regions.
Although we are dedicated to harnessing the power of urban structure in user profiling, we are not set to

derive an explicit representation of the urban region context. On the other hand, we formulate the urban mobility
as a heterogeneous network of user and location, and learn representation of urban regions implicitly with the
goal to optimize user profile. Experiments show these designs allow us to effectively make up the shortcoming of
semantically unclear mobility data, and significantly improve the performance of user profiling.

6.3 Network Embedding Algorithms
Embedding algorithms, also known as representation learning, are a major branch of deep learning techniques,
which aims to derive low-dimensional and dense vector that captures the feature in certain aspect [59–61]. An
important seminal work is the Word2Vec model that is originally designed to model the word semantics in natural
language processing [59]. Inspired by the connection between word co-occurence and network structure, the
embedding techniques are later adapted to learn the structural role of nodes in network, which are referred to as
network embedding algorithms [22, 23, 33]. These algorithms have been proved effective in the applications of
modelling user-generated content [62], inferring social relationships [63], profiling urban regions [64, 65] and
detecting urban activities [7]. Previous works have designed network embedding algorithms to preserve the
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node’s similarity in terms of link strength and common neighbours, which optimizes the node embeddings to
represent homogeneity and structural role respectively.
In this paper, we model urban mobility as a heterogeneous network, with edges between user and location

to capture user’s location visitation patterns and the edges among locations and users themselves to capture
the semantic similarity. Such settings allow us to learn semantic-enhanced urban mobility representation to
better capture its complex correlation with user occupations. On the other hand, it also poses new challenges to
properly measure the semantic similarity and design semantic-aware urban mobility embedding algorithms.

6.4 Limitations
We note several limitations of our works. First, the results presented in our study are mainly derived from the
population of Chinese users. Although we collect two datasets to cover different platforms, it might still suffer
from cultural bias. We are actively searching for datasets with different cultural background. However, it is
non-trivial to attain additional large-scale mobility data, especially those with user demographic information. We
encourage researchers to reproduce our results on their datasets. Second, the evaluation settings in our paper are
correlated with the experiment platforms. For example, the taxonomy of occupation, income level and age group
are defined by the platforms of data collection. However, the consistent performance boost in the experiments of
age, gender, occupation, income and education demonstrate our model’s generalizability to other application
scenario. Finally, the proposed SUME model is not customized for a specific task. Instead, we aim to extract
embedding vectors that cover a wide spectrum of user demographic. Additional performance gain might be
achieved by fine-tuning the embedding vector for specific tasks. We leave this as an important future work.

7 CONCLUSION
In this paper, we investigate the problem of leveraging large-scale urban mobility data to infer user demographics.
To properly capture the important semantic feature in urban mobility, we model it as a heterogeneous information
network, with the heterogeneous edges denoting the user physical mobility patterns as well as the semantic
similarity. Furthermore, we propose a semantic-enhanced urban mobility embedding (SUME) algorithm to
learn high quality representation for each user, which is effective in accurately inferring user’s demographics.
Experiments show that our model achieves significant performance gain over the state-of-the-art baselines in
terms of improving the prediction accuracy with a margin of 8.6%∼14.3% for occupation, gender, age, education
and income inference. In addition, the learned user representations also reveal important correlations between
user demographics and their mobility behavior patterns in spatial, temporal and urban structure domain, which
might provide important insights on interpreting urban mobility patterns.
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