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ABSTRACT
Learning the underlying slow and fast dynamics of a system is
instrumental for many practical applications related to the system.
However, existing approaches are limited in discovering the appro-
priate time scale to separate the slow and fast variables and effec-
tively learning their dynamics based on correct-dimensional repre-
sentation vectors. In this paper, we introduce a framework that effec-
tively learns slow and fast system dynamics in an integratedmanner.
We propose a novel intrinsic dimensionality (ID) driven learning
method based on a time-lagged autoencoder framework to identify
appropriate time scales to separate slow and fast variables and their
IDs simultaneously. Further, we propose an integrated framework
to concurrently learn the system’s slow and fast dynamics, which is
able to integrate prior knowledge of time scale and IDs and model
the complex coupled slow and fast variables. Extensive experimen-
tal results on two representative dynamical systems show that our
proposed framework is able to efficiently learn slow and fast system
dynamics. Specifically, the long-time prediction performance is able
to be improved by 36% on average compared with four represen-
tative baselines based on our proposed framework. Furthermore,
our proposed system is able to extract interpretable slow and fast
dynamics highly correlated with the known slow and fast variables
in the dynamical systems. Our codes and datasets are open-sourced
at: https://github.com/tsinghua-fib-lab/SlowFastSeparation.
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1 INTRODUCTION
The evolution of real-world systems in many scientific fields often
involves multiple time scales. For example, in chemical reaction
systems there usually exist violent and slow reactions simultane-
ously [23], where the violent reaction dominates the initial dynam-
ics of the system and quickly reaches a pseudo-steady state, while
the slow reaction often dominates the system dynamics after a
long-term evolution [17]. By explicitly modeling the violent and
slow reactions, we are able to reliably forecast both short-term and
long-term states of the system. In a bio-physical system composed
of 𝑅 atoms, it has been found that its effective dimensionality is far
smaller than 3𝑅, which is the degree of freedom of the spatial coor-
dinates of all atoms. Furthermore, the effective dimensionality can
be extracted by separation of time scales, where the extracted slow
variables are found to characterize more important dynamics and
related to the smooth underlying free energy plane [10]. Therefore,
modeling slow and fast dynamics is crucial for understanding the
underlying structure of the system. In modeling molecular dynam-
ics, extracting the slow collective variables of the system is also
an irreplaceable technical foundation [22]. Overall, learning the
underlying slow and fast dynamics of a system is instrumental for
many practical applications related to the system [23, 17, 10, 22].

As a long-standing problem, learning slow and fast system dy-
namics has been investigated in numerous existing studies [23, 28].
However, a number of challenges still remain unsolved. First, there
exist diverse time scales in different systems. Variables with the
same convergence time might be the fast variables in some sys-
tems while being slow variables in other systems simultaneously.
Most existing approaches simply assume the time scale to split the
slow and fast variables is known [23, 28]. The first challenge is
determining the appropriate time scale to separate slow and fast
variables, followed by determining the dimensionality of intrinsic
variables that describe slow and fast dynamics. Using excessively
high-dimensional representation vectors to describe slow dynamics
may mix fast dynamics into the extracted slow variables, resulting
in a failure to separate them. Even when the appropriate time scale
and dimensionalities are known, effectively learning slow and fast
dynamics remains challenging. Currently, there is no integrated
framework that can concurrently learn the slow and fast system
dynamics.

In this paper, we aim to develop an integrated framework that
can effectively learn slow and fast system dynamics by automat-
ically discovering appropriate time scales to separate slow and
fast variables and the dimensionalities of their intrinsic variables.

4380

https://github.com/tsinghua-fib-lab/SlowFastSeparation
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1145/3580305.3599858
https://doi.org/10.1145/3580305.3599858
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3580305.3599858&domain=pdf&date_stamp=2023-08-04


KDD ’23, August 6–10, 2023, Long Beach, CA, USA Ruikun Li, Huandong Wang, and Yong Li

Specifically, we propose a novel intrinsic dimensionality (ID) driven
learning method based on a time-lagged autoencoder framework,
which is able to identify appropriate time scales to separate slow and
fast variables and their IDs simultaneously. Further, based on the
obtained time scales and IDs, we propose an integrated framework
to concurrently learn the system’s slow and fast dynamics. Our
framework proposes a neural network based on Koopman theory
to learn slow dynamics, where our prior knowledge of time scale
and ID is utilized in the manner of inductive bias by constraining
the Koopman operator to better extract the slow variables of the
system. Furthermore, a decay rate guided autoregressive model is
proposed to learn the fast dynamics, which effectively models the
short-term drastic changes of fast variables and their long-term de-
cay rate effectively guided by the obtained time scale of separating
slow and fast variables as prior knowledge.

Our contribution can be summarized as follows:
• We propose a novel ID-driven learning method based on
the time-lagged autoencoder framework, which is able to
identify appropriate time scales to separate slow and fast
variables and their IDs simultaneously.

• We propose an integrated framework to concurrently learn
the slow and fast system dynamics, which utilizes our prior
knowledge of time scale and ID in the manner of inductive
bias and utilizes a deep Koopman neural network and a decay
rate guided autoregressive model to learn the complicated
slow and fast dynamics, respectively.

• Extensive experimental results show that our framework
is able to efficiently learn slow and fast system dynamics.
Specifically, our proposed method outperform four repre-
sentative baselines, with an improvement about 36% on av-
erage in long-term prediction performance. Furthermore,
our framework is able to extract interpretable slow and fast
dynamics highly correlated with the known slow and fast
variables in the dynamical systems.

This paper is structured as follows. We begin by introducing
related works. Then, we present a mathematical model to formulate
our problem and give a high-level overview of our proposed system.
Next, we introduce the methodology of our proposed framework
for automatically finding appropriate time scales to separate slow
and fast variables and learning slow and fast system dynamics.
Following our methodology, we present extensive evaluations and
validations of our method. Finally, we conclude our paper.

2 RELATEDWORK
Slow and fast variable detection: Singer et al. [23] present a
metric to measure the distance between samples in dimensionalities
corresponding to the solve variables, which utilizes the randomness
of the system and needs samples of the system state to evolve for
a given time period. Then, they utilize anisotropic diffusion maps
and the obtained metric to extract the slow variables. Dsilva et
al. [9] adopt a similar framework and propose a metric based on the
Mahalanobis distance. Wehmeyer et al. [28] propose a time-lagged
autoencoder for slow variable extraction, which is achieved by
utilizing the encoder to extract the latent features from the current
system state that can help us best predict the further system state
over a certain period of time. Chen et al. [6] further utilize this

framework to discover fundamental variables of complex systems.
We can observe that existing methods for detecting slow and fast
variables require prior knowledge of the appropriate time scale for
separation of the target system. However, most of these techniques
are unable to accurately determine the IDs of slow and fast variables,
which substantially limits their flexibility and practical usability.
ID estimation: The ID of a system or a dataset refers to the
minimum number of variables required to describe it. Due to its im-
portant role in dimensionality reduction [19], data denoising [21],
outlier detection [2], and complex system comprehension [6], etc., a
number of approaches have been proposed to implement ID estima-
tion. Specifically, based on the observation that the number of data
points within distance 𝑟 of any given data point 𝐿𝑖 is proportional to
𝑟 𝐼𝐷 with sufficiently small 𝑟 , Levina et al. [18] propose a maximum
likelihood estimation (MLE) based ID estimator, which utilizes the
Euclidean distance between each data point and its 𝑘 nearest neigh-
bors. Lombardi et al. [19] propose another ID estimator based on
the probability density function of the normalized nearest neighbor
distance namedMiND. Amsaleg et al. [1] propose several estimators
of local ID using well-established techniques including MLP, the
method of moments (MoM), probability weighted moments (PWM),
and regularly varying functions (RV). Amsaleg et al. [2] propose
an ID estimator that utilizes all the pairwise distances within the
given sample rather than only using the distance of neighbors. For
a system with both slow and fast dynamics, both slow and fast
variables contribute to its ID. Even if the fast variables converge to
a pseudo-steady state in the long-term evolution, where they are
slaved by the slow variables, they still dominate the initial dynamics
of the system. Consequently, the existing ID estimation techniques
can only estimate the sum of the degrees of freedom of fast vari-
ables and slow variables, but cannot reliably discriminate between
their respective dimensionalities. Moreover, existing methods only
focus on static samples, lacking an understanding of the ID of the
system from the perspective of dynamic evolution. In contrast, our
framework can automatically identify the appropriate time scale to
separate slow and fast dynamics and utilize it as prior knowledge
to learn slow and fast variables efficiently. Differently, we apply
the ID estimation method from a dynamic evolution perspective,
which helps us to automatically mine the IDs corresponding to fast
dynamics and slow dynamics in the system.
Dynamical system modeling: With the rising paradigm of ar-
tificial intelligence, there is also a growing number of research
utilizing neural networks to model dynamical systems. A num-
ber of approaches seek to directly learn the system dynamics in a
data-driven manner. Zhang et al. [29] combine neural ordinary dif-
ferential equations (Nerual ODE) and graph neural networks (GNN)
to learn the dynamics of complex networks. Huang et al. [14] pro-
pose a latent ordinary differential equation generative model to
learn the system dynamics based on irregularly-sampled observa-
tional data. Kipf et al. [16] utilize a variational autoencoder to infer
the relational structure of dynamical systems. Huang et al. [15]
utilize graph ordinary differential equations to jointly learn the evo-
lution of nodes and edges of dynamical systems. Other approaches
focus on modeling the system dynamics based on inductive bias,
e.g., the existence of Koopman invariant subspace, symmetry, etc.
Specifically, Takeishi et al. [24] propose a data-driven numerical
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algorithm for Koopman spectral analysis based on optimizing the
residual sum of squares (RSS) loss. Azencot et al. [3] further propose
a consistent Koopman autoencoder model to learn the consistent
dynamics of nonlinear dynamical systems. Greydanus et al. [11]
utilize neural networks to learn the system’s Hamiltonian, which
enables unsupervised training of models strictly satisfying conser-
vation law. Wang et al. [27] propose a new class of approximately
equivariant networks which is able to preserve symmetry in mod-
eling dynamical systems. Different from previous studies, our work
mainly focuses on modeling the dynamical system by separating
and learning the slow and fast dynamics within the system. As
a consequence, the utilized neural networks including the Koop-
man theory based neural network as well as decay rate guided
autoregressive neural network are all tightly combined with the
discovered time scale and IDs of slow and fast dynamics, which is
reflected in their network architectures, optimization targets, etc.

3 SYSTEM MODEL AND OVERVIEW
In this section, we formulate the problem and introduce the overall
system for the analysis of the slow and fast system dynamics.

3.1 Problem Formulation
We consider the evolution of dynamical systems with slow and fast
dynamics, during which the slow and fast dynamical components
are mixed in the observed data with nonlinear interactions. The
evolution of the fast variable component is a fast process whose
dynamics can only be observed on small time scales. A statistical
illustration is that the autocorrelation coefficient of the fast dynam-
ics decreases with increasing lag time. Differently, the evolution
pattern of the slow dynamics can still be identified on long time
scales [12]. We utilize 𝑋 (𝜏) = {𝑥𝜏 , ..., 𝑥𝑛𝜏 |𝑥 ∈ R𝑁 } to denote the
𝑁 -dimensional system evolving from an initial state to an observed
trajectory of length 𝑛, where 𝜏 is the time scale of the observation,
i.e., the time interval between adjacent sampling points.

From the perspective of slow and fast dynamics, the trajectory
can be divided into a fast variable component𝑋𝑓 (𝜏) = {𝑥 𝑓 ,𝜏 , ..., 𝑥 𝑓 ,𝑛𝜏 }
and a slow variable component𝑋𝑠 (𝜏) = {𝑥𝑠,𝜏 , ..., 𝑥𝑠,𝑛𝜏 }. The dynam-
ics of the system are embedded in the evolutionary trajectories of
the slow and fast variables. Our goal is to learn the slow and fast
dynamics of the system, which poses the challenge of separating
the slow and fast components 𝑋𝑠 (𝜏) and 𝑋𝑓 (𝜏) from the original
trajectory 𝑋 (𝜏). In order to effectively identify the slow variable
components and their ID 𝐷𝑠 in the observed data, we need to ana-
lyze the change patterns of system states at different time scales
and judge the dimensionality 𝐷𝑠 of slow variables at a suitable time
scale 𝜏𝑠 . Finally, we verify the effectiveness of the learned slow and
fast dynamics of the system by predicting the future evolution state
𝑥𝑡+𝑚𝜏 (𝑚 ≥ 1) of the observed state 𝑥𝑡 , ranging from short-term
evolution to long-term evolution.

3.2 Overall Framework
The original observations of evolutionary trajectories of dynami-
cal systems contain information on both slow and fast dynamics,
making it challenging to separate them without prior knowledge.
To quantitatively analyze the system dynamics composition, we

design an ID-driven time scale selection and slow variable extrac-
tion framework, and further model the slow and fast dynamics
separately. Specifically, our analytical framework consists of three
sub-modules.

• ID-driven time scale selection: The ID is the minimum di-
mensionality required to describe the dynamics of the system,
and it reflects the number of potential variables that play a dom-
inant role in the evolution of the system. Observing the system
according to the short and long time scales 𝜏1 and 𝜏2 (𝜏1 ≪ 𝜏2)
yields the evolutionary trajectories 𝑋 (𝜏1) and 𝑋 (𝜏2), respec-
tively. Since the fast dynamics cannot be finely observed on
long time scales, 𝑋 (𝜏2) will have a lower ID than 𝑋 (𝜏1). When
𝜏2 is large enough, 𝑋 (𝜏2) only responds to the dimensionality
of the slow dynamics, i.e., 𝐷𝑠 . We observe the system on a set of
time scales and obtain the time scales applicable to the observa-
tion of the slow dynamics using the ID as a guide. Specifically,
we obtain the system ID by analyzing the embedding obtained
from a time-lagged autoencoder, which is described in detail in
Sec. 4.1.

• Secondary encoding based slow and fast separation: On
the determined time scale 𝜏𝑠 , we calculate the dimensional-
ity of the slow dynamics 𝐷𝑠 . We take 𝐷𝑠 as the embedding
dimensionality and connect the secondary encoder after the
time-lagged encoder to obtain the potential representation of
the slow dynamics based on the observed sequence 𝑋 (𝜏). A
decoder network is further utilized to map the representation of
the slow dynamics back to the original observation space, and
the slow dynamics component 𝑋𝑠 (𝜏) is successfully extracted
in this process to complete the fast-slow separation.

• Learning of slow and fast dynamics: We use Koopman the-
ory to analyze the slow dynamics and predict changes at any
continuous time by learning the linear state transfer matrix K
of the slow variables in the Koopman subspace. For the part of
the fast dynamics, we propose a decay rate guided autoregres-
sive model to learn it, which is effectively guided by the prior
knowledge of the obtained time scale of separating slow and
fast variables in the form of decay rates. Finally, we couple the
slow and fast dynamics to model the whole system dynamics.

4 METHOD
Learning the slow and fast system dynamics means separating their
components from observed trajectories and predict their future
evolution. The predictions of the slow and fast components form
the system’s evolutionary trajectory from the given state 𝑥𝑡 . In
this section, we first introduce the ID-driven automatic time scale
selection method, which successfully selects a suitable time scale 𝜏𝑠
for observations without prior knowledge, and computes the ID 𝐷𝑠
of the slow variables based on the observed sequence 𝑋 (𝜏𝑠 ) at the
time scale 𝜏𝑠 . We then introduce an integrated learning framework
for slow and fast dynamics, which performs a secondary encoding
and decoding of the original observed trajectory 𝑋 (𝜏) to obtain
the slow dynamic component 𝑋𝑠 (𝜏) as well as the fast dynamic
component 𝑋𝑓 (𝜏), completing the slow and fast separation. Finally,
a Koopman theory based neural network and a prior knowledge
guided recurrent neural network are utilized to learn the slow and
fast dynamics of the system, respectively.
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Figure 1: An illustration of the ID-driven time scale selection
module

4.1 ID-Driven Selection of Time Scales
In order to provide a quantitative description of the dynamics of the
system at different time scales 𝜏 , we measure the ID of the system
by geometric manifold learning algorithms. The variation of ID
with 𝜏 reveals the complicated interactions between slow and fast
dynamics of the system at different time scales, which is a key guide
to separate them. However, existing ID analysis methods are unable
to compute the dimensionality of fast or slow variables directly
from the trajectories obtained from the system with mixed slow
and fast dynamics. Therefore, our goal is to design an automatic
analysis mechanism that can calculate the dimensionality of the
slow and fast variables in the observed data of the system.

For a given 𝑁 -dimensional system, we design a time-lagged au-
toencoder with lag 𝜏 to compute the𝑀-dimensional embedding of
the system state, and obtain the ID at the time scale 𝜏 by computing
the geometric dimensionality of the obtained embedding. The time-
lagged autoencoder consists of an encoder 𝐸1 : R𝑁 → R𝑀 and a
decoder 𝐷1 : R𝑀 → R𝑁 . The design of this module is shown in
Figure 1. By learning the prediction task with lag 𝜏 , the time-lagged
autoencoder compresses the dynamics of the system at the time
scale 𝜏 into the embedding vector in the latent space. We design
the loss function for the time-lagged prediction task as

𝐿1 = ∥𝑥𝑡+𝜏 − 𝐷1 (𝐸1 (𝑥𝑡 ))∥. (1)

As network parameters are updated, the encoder 𝐸1 learns the abil-
ity to compress redundant information from the raw observations
and extract relatively slower dynamics with respect to the lag 𝜏 .

The number of variables that dominate the system dynamics can
be obtained by calculating the ID of the embedding through the geo-
metric manifold learning algorithm. For a vector set {𝐿1, 𝐿2, ...., 𝐿𝑁 },
the number of data points within distance 𝑟 of any given data point
𝐿𝑖 is proportional to 𝑟 𝐼𝐷 , when 𝑟 is small [6]. This leads to the local

ID near 𝐿𝑖 as
[

1
𝑘−2

𝑘−1∑
𝑗=1

log𝑇𝑘 (𝑥 )
𝑇𝑗 (𝑥 )

]−1
, where 𝑇𝑘 (𝑥) is the Euclidean

distance between 𝐿𝑖 and its 𝑘 nearest neighbors. We divide by 𝑘 − 2
rather than𝑘−1 to make the estimator asymptotically unbiased [18].
The global ID estimate of the embedding is obtained by taking the
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average as

𝐼𝐷 =
1
𝑁

𝑁∑︁
𝑖=1
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𝑘 − 2

𝑘−1∑︁
𝑗=1

log
𝑇𝑘 (𝑥)
𝑇𝑗 (𝑥)

]−1
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We denote the ID of the embedding as 𝐷𝜏 when lag is 𝜏 . As
𝜏 increases, the fast dynamical information evolving on the tiny
scale will not be observed and the ID shows a decreasing trend.
The observed time scale 𝜏𝑠 suitable for separating slow and fast
dynamics should satisfy: no fast dynamics are observed at all in
𝑋 (𝜏𝑠 ), while the system ID is equal to the slow variable dimension,
i.e., 𝐷𝜏𝑠 = 𝐷𝑠 . As 𝜏 increases, starting from 𝜏𝑠 , the measured IDs
fully reflect the dimensionality of the slow variable and no longer
change. Starting from the minimum observation interval 𝜏1 of the
system, given a sequence of time scales 𝑇 = (𝜏1, 𝜏2, ... , 𝜏𝑛 , ... ,𝜏𝑁 ),
we define the appropriate time scales for the slow variables as

𝜏𝑠 = min
(
{𝜏𝑛 |

��𝐷𝜏𝑛 − 𝐷𝜏𝑚
�� < 1, 𝑛 < ∀𝑚 ≤ 𝑁 }

)
. (3)

Note that the ID of the slow dynamics 𝐷𝑠 is determined by its
own properties and does not change with the observation scale 𝜏 .
Therefore, 𝐷𝑠 computed at time scale 𝜏𝑠 is also applicable to other
time scales 𝜏 . Similarly, the time-lagged encoder 𝐸1 trained with lag
𝜏𝑠 is able to extract slow variable information from the observed
trajectory at arbitrary time scale 𝜏 , about which we will perform a
detailed validation in the experimental section.

4.2 Koopman Modeling of Slow Dynamics
In Koopman operator theory, a finite-dimensional nonlinear dynam-
ical system is mapped into phase space by an observation function
𝑔, and its evolution along the phase space orbit is described by
an infinite dimensional linear operator K . For the dynamical sys-
tem 𝑥𝑡+𝑑𝑡 = 𝑓 (𝑥𝑡 ), 𝑥 ∈ R𝑑 , Koopman analysis requires solving the
approximation of the Koopman operator K and the observation
function 𝑔 to satisfy K𝑔(𝑥) = 𝑔(𝑓 (𝑥)) [20].

In this module, we use the obtained ID of the slow dynamics 𝐷𝑠
and the time-lagged encoder trained at the time scale 𝜏𝑠 to encode
the original observations by the secondary encoder 𝐸2 to obtain the
representation 𝑢 of the slow dynamics of the system. Considering
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that the Koopman operator theory boosts the observation dimen-
sionality to map low-dimensional nonlinear dynamics to linear
high-dimensional spatial evolution [5], we boost 𝑢 to complete the
mapping to the 𝐾-dimensional Koopman subspace. In the Koop-
man subspace, the slow dynamics evolve in a linear fashion and
are characterized by the Koopman operator K . It is subsequently
mapped back to the original space by the decoder 𝐷2. The whole
process is shown in Figure 2.

4.2.1 Koopman invariant subspace of slowvariable. In Sec. 4.1,
we have obtained the time scale 𝜏𝑠 for observing the slow dynamics
and the corresponding time-lagged autoencoder, based on which
we are able to extract the𝑀-dimensional representation of the slow
variables from the original trajectory 𝑋 (𝜏). Subsequently, based
on the identified slow dynamics dimensionality 𝐷𝑠 , a second level
encoder 𝐸2 : R𝑀 → R𝐷𝑠 is designed to obtain the slow dynamics
representation 𝑢 = 𝐸2 (𝐸1 (𝑥)). We pass 𝑢 through an encoder 𝐸3
to obtain the nonlinear combinatorial terms 𝑢′, and concatenate
these combinatorial terms with 𝑢 as the 𝐾-dimensional Koopman
variable 𝑧 = {𝑢,𝑢′} ∈ R𝐾 . In turn, we intercept the previous 𝐷𝑠
dimensionality of 𝑧 to get 𝑢. During training, 𝐸1 will be frozen to
maintain its ability to extract the slow dynamics. Finally, we design
a decoder 𝐷2 : R𝐷𝑠 → R𝑁 to map the representation 𝑢 of the slow
dynamics back to the original space and obtain the slow dynamic
component of the observed sequence as follows:

𝑋𝑠 (𝜏) = 𝐷2 (𝐸 (𝑋 (𝜏))) = 𝐷2 (𝐸2 (𝐸1 (𝑋 (𝜏)))), (4)

where 𝐸 (·) = 𝐸1 (𝐸2 (·)). At this point, the components of fast dy-
namics can be obtained by subtracting the components of slow
dynamics from the overall dynamics of the system as follows:

𝑋𝑓 (𝜏) = 𝑋 (𝜏) − 𝑋𝑠 (𝜏) . (5)

The component of slow dynamics of the original data is not
available due to the absence of prior knowledge. This poses a chal-
lenge to the supervised training of 𝐸2, 𝐸3, and 𝐷2. We designed a
multi-task loss function

𝐿2 = ∥𝑋 (𝜏) −𝐷2 (𝐸 (𝑋 (𝜏)))∥ +𝛼 |𝐸1 (𝑋 (𝜏)) −𝐸1 (𝐷2 (𝐸 (𝑋 (𝜏)))) | (6)

to approximate the goal of slow variable extraction. The first term
of (6) represents the reconstruction error, which guarantees the
accuracy of the mapping of 𝐷2 from the slow dynamics subspace
to the original space. However, this error alone can mislead 𝐸2 to
compress the components of fast dynamics into the representation
of slow dynamics, which helps the reconstruction task but interferes
with the extraction of slow variables. Therefore, we designed the
second term as a penalty, which constrains 𝐸2 and 𝐷2 to compress
and recover only the slow dynamic components by the ability of
𝐸1 to identify the slow dynamics. 𝛼 is the penalty coefficient.

4.2.2 Learning-based Koopman operator of slow dynamic.
The Koopman operator K linearly characterizes the dynamics of
the system in the Koopman subspace. We parameterize K with the
following eigen decomposition structure,

K(𝜏) = 𝑉 −1exp(𝜏Λ)𝑉 , (7)

where 𝑒𝑥𝑝 (𝜏Λ) = 𝑑𝑖𝑎𝑔(𝑒𝑥𝑝 (𝜏𝜆1), ..., 𝑒𝑥𝑝 (𝜏𝜆𝐾 )) ∈ 𝐶𝐾×𝐾 is the di-
agonal matrix of eigenvalues, 𝑒𝑥𝑝 (𝜏𝜆𝑘 ) is the 𝑘th eigenvalue, and
𝑉 = [𝑣1, .., 𝑣𝐾 ] ∈ 𝐶𝐾×𝐾 is the set of eigenvectors and 𝑣𝑘 is the 𝑘th

eigenvector. The Koopman state transfer of slow dynamics in the
time step 𝜏 can be described by K(𝜏) after determining 𝑉 and Λ,

𝑧𝑡+𝜏 = K(𝜏)𝑧𝑡 = 𝑉 −1exp(𝜏Λ)𝑉𝑧𝑡 . (8)

Specifically, 𝑉 and Λ are learned through performing gradient
descent updates by back-propagating the error of the prediction
task. The error consists of two specific parts, and the first is the
evolution error in both slow representation space and Koopman
space:

𝐿3 = ∥𝑢𝑡+𝜏 − 𝑢𝑡+𝜏 ∥ + ∥𝑧𝑡+𝜏 − 𝑧𝑡+𝜏 ∥
= ∥𝑢𝑡+𝜏 − 𝑢𝑡+𝜏 ∥ + ∥𝑧𝑡+𝜏 − K(𝜏)𝑧𝑡 ∥,

(9)

where 𝑢𝑡 = 𝐸 (𝑥𝑡 ) and 𝑧𝑡 = {𝑢𝑡 , 𝐸3 (𝑢𝑡 )}. The other part is jointly
calculated by the slow and fast variable prediction results in (11),
which will be introduced in detail in the following section.

4.3 Decay Rate Guided Autoregression for Fast
Dynamics

In Sec. 4.2, we have extracted the component of fast dynamics
𝑋𝑓 (𝜏) from 𝑋 (𝜏) and now we model its evolution mechanism. In
our ID-driven analysis in Sec. 4.1, we have selected a time scale 𝜏𝑠
suitable for separating the slow and fast dynamics, beyond which
the fast dynamics will not be observed. Under the guidance of 𝜏𝑠 ,
we model the decay process of fast dynamics as

𝑥 𝑓 ,𝑡+𝜏1 =
��𝑥 𝑓 ,𝑡 �� · exp(−(𝜂𝑡 + 𝜏𝑠 )) · 𝜉𝑡 , (10)

where 𝜉𝑡 denotes the direction of the evolution of the fast dynam-
ics at moment 𝑡 and 𝜂𝑡 denotes the relative decay rate of the fast
dynamics at this time, which is constrained to be greater than 0.
𝜂𝑡 and 𝜉𝑡 are determined by both the state of the slow and fast
dynamics at moment 𝑡 . We use a recurrent neural network, i.e.,
the long short-term memory (LSTM) [13] , to implement their pre-
dictions. The inputs of the LSTM are the slow and fast dynamic
components 𝑥𝑠,𝑡 , 𝑥 𝑓 ,𝑡 at moment 𝑡 , and the outputs are 𝜂𝑡 and 𝜉𝑡 .
Using the minimum observation interval 𝜏1 of the original sequence
as the unit time step for the prediction of the fast dynamics, the
long-time prediction is accomplished in an autoregressive manner.
For simplicity, we denote the evolution mechanism modeled by (10)
as 𝑥 𝑓 ,𝑡+𝜏1 = 𝑓 (𝑥 𝑓 ,𝑡 , 𝑥𝑠,𝑡 ).

The prediction of the whole system dynamics is equal to the
respective prediction of the slow and fast dynamics, i.e. 𝑥𝑡+𝜏 =

𝑥𝑠,𝑡+𝜏 + 𝑥 𝑓 ,𝑡+𝜏 . The loss function is defined as

𝐿4 = ∥𝑥𝑡+𝜏 − 𝑥𝑡+𝜏 ∥
= ∥𝑥𝑡+𝜏 − 𝑥𝑠,𝑡+𝜏 − 𝑥 𝑓 ,𝑡+𝜏 ∥
= ∥𝑥𝑡+𝜏 −𝑉 −1exp(𝜏Λ)𝑉𝐸 (𝑥𝑡 ) − 𝑓 ◦ ... ◦ 𝑓︸     ︷︷     ︸

𝑛 𝑡𝑖𝑚𝑒𝑠

(𝑥𝑡 − 𝐷2 (𝐸 (𝑥𝑡 )), 𝐸 (𝑥𝑡 ))∥,

(11)
where the fast dynamics undergo a total of 𝑛 = 𝜏

𝜏1
evolutions in an

autoregressive manner.

4.4 Training
The training of the whole framework is divided into two stages.
First, we follow the given time-scale series𝑇 = (𝜏1, 𝜏2, ..., 𝜏𝑛, ..., 𝜏𝑁 )
to train the time-lagged autoencoders 𝐸1 and 𝐷1 with different lag
values, respectively, and the loss function is 𝐿1. From the variation
of the dimensionality of the embeddingwith different lag values, the
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time scale 𝜏𝑠 suitable for separating the slow dynamics is selected 
and the dimensionality 𝐷𝑠 corresponding to the slow dynamics is 
recorded. The learned model parameters of 𝐸1 are reserved for the 
second stage of training. Next, we train the overall framework for 
fast-slow separation and dynamics modeling end-to-end, which 
consists of: a secondary encoder 𝐸2, a nonlinear generator 𝐸3, a 
decoder 𝐷2, an LSTM, eigenvalues Λ, and eigenmatrix 𝑉 of the 
Koopman operator K. The LSTM performs a 𝜏 -step autoregressive

prediction of the fast dynamics with 𝜏1 as the single-step time
interval, and the slow dynamics are also trained for the prediction
with the same time interval. In the pre-training period, we freeze
𝐸1 and guide the model through multi-task learning with the loss
function 𝐿 = 𝐿2 + 𝐿3 + 𝐿4, where 𝐿3 and 𝐿4 are averaged over the
𝜏
𝜏1
-step predictions. After training enough rounds, we turn down

the learning rate and liberate the 𝐸1 weight parameters to involve
it in the end-to-end fine-tune training.

5 EXPERIMENTS
In this section, we apply the proposed framework to capture the
slow and fast dynamics of two dynamic systems and predict their
evolutionary behavior. We first introduce the dynamics of the sys-
tems to be studied, then compare the accuracy of our model with
other baseline models in the prediction task. Finally, we analytically
validate the effectiveness of the proposed framework for slow and
fast dynamics separation and modeling.
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Figure 3: Fast-variable evolutionary trajectory of the 4-
dimensional system.

5.1 Experimental settings
System Dynamics. We test the proposed model in two slow and
fast systems investigated by existing studies. The analysis of the
dynamics of the two systems is presented below.
• 1S2F System: This system contains one slow variable and two
fast variables (1S2F) and is an inherently nonlinear chemical
reaction system [23] in a black box which is charged into two
molecules 𝑋 and 𝑌 from the outside at a specified rate. The
chemical reactions with different rate coefficients occurring
inside the black box are:

𝑋
𝑘1−→ 𝑋 + 𝑍, 𝑌 + 𝑍 𝑘2−→ 𝑌 (12)

∅ 𝑘3−→ 𝑌, 𝑌
𝑘4−→ ∅ (13)

∅ 𝑘5−→ 𝑋 (14)

We select the value of the rate constant as

𝑘1 = 1000, 𝑘2 = 1, 𝑘3 = 40, 𝑘4 = 1, 𝑘5 = 1, (15)

which ensures that the reaction in (12) is the fastest, the reaction
in (13) occurs on an intermediate time scale, and the reaction in
(14) is the slowest. The system has three observed variables 𝑋 ,
𝑌 , and 𝑍 , which represent the quantities of the three reactants,
respectively. The model of this reaction can be approximated
by the ODE system with variables 𝑥 = 𝑋

100 , 𝑦 = 𝑌
40 and 𝑧 = 𝑍

2500
as 

𝑑𝑥

𝑑𝑡
=
𝑘5
100

,

𝑑𝑦

𝑑𝑡
=
𝑘3
40

− 𝑘4𝑦,

𝑑𝑧

𝑑𝑡
=

100𝑘1𝑥
2500

− 40𝑘2𝑦𝑧.

(16)

The equation shows that 𝑋 increases gradually at a slow rate,
the equilibrium-state value of 𝑌 is 40, and the equilibrium-state
approximation of 𝑍 is 𝑍 = 𝑋/𝑌 . Due to the stochastic nature
of the chemical reaction, 𝑌 will continue to fluctuate after a
rapid convergence to the equilibrium state. Consequently, the
fluctuations of 𝑌 lead to the dynamics of 𝑍 , and it is 𝑋 and 𝑌
that determine the evolution of the system. The evolution of
this system can be fully described by the slow dynamics of the
long-term growth of 𝑋 and the high-frequency noise term of 𝑌 .
The goal of our model is to identify the true slow dynamic term
𝑋 and make accurate predictions of the long-term evolution of
the system through learning the dynamics of 𝑋 .

• 2S2F System: This system is a 4-dimensional ODE system [8]
which contains two slow variables and two fast variables(2S2F)
with the dynamics equations:

𝑑𝑐1
𝑑𝑡

= 𝑓1 (𝑐1, 𝑐2),

𝑑𝑐2
𝑑𝑡

= 𝑓2 (𝑐1, 𝑐2),

𝑑𝑐3
𝑑𝑡

= −1
𝜖
[𝑐3 − 𝜃1 (𝑐1, 𝑐2)] + 𝑓1𝜕𝑐1𝜃1 (𝑐1, 𝑐2) + 𝑓2𝜕𝑐2𝜃1 (𝑐1, 𝑐2),

𝑑𝑐4
𝑑𝑡

= −1
𝜖
[𝑐4 − 𝜃2 (𝑐1, 𝑐2)] + 𝑓1𝜕𝑐1𝜃2 (𝑐1, 𝑐2) + 𝑓2𝜕𝑐2𝜃2 (𝑐1, 𝑐2),

(17)
where 𝜖 and 𝜕𝑖 denote fixed small quantities and bias derivatives
with respect to variable 𝑖 , respectively. The dynamics of the two
fast variables (𝑐3 and 𝑐4) are governed by the motion of the
slow variables 𝑐1 and 𝑐2, and the functions 𝑓1, 𝑓2, 𝜃1 and 𝜃2
depend only on 𝑐1 and 𝑐2. The Chapman-Enskog solution of
the equation shows that 𝑐3 and 𝑐4 will converge to 𝜃1 and 𝜃2,
respectively, after stabilization. In the following experiment, 𝑓1,
𝑓2, 𝜃1 and 𝜃2 are selected as

𝑓1 (𝑐1, 𝑐2) = −𝑐1, 𝑓2 (𝑐1, 𝑐2) = −2𝑐2,
𝜃1 (𝑐1, 𝑐2) = 𝑠𝑖𝑛(𝜔𝑐1)𝑠𝑖𝑛(𝜔𝑐2),
𝜃2 (𝑐1, 𝑐2) = [(1 + 𝑒−𝜔𝑐1 ) (1 + 𝑒−𝜔𝑐2 )]−1,

(18)

which means that 𝑐1 and 𝑐2 will eventually converge to 0, and
𝑐2 is faster than 𝑐1. Before 𝑐1 and 𝑐2 converge, 𝑐3 and 𝑐4 will
quickly converge to the surfaces inscribed by 𝜃1 and 𝜃2 (see
Figure 3), respectively, and then move slowly with 𝑐1 and 𝑐2.
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In this system, the goal of our model is to identify the slow and
fast components and learn their evolutionary properties before
the dynamics dissipate as the system converges.

Datasets and Baselines. In the 1S2F system, we take the system
from a random initial state and simulate the evolution of the system
in 15.1s using the Gillespie stochastic simulation algorithm. The
result of a single simulation is shown in Figure 4. Subsequently,
we sample the simulation sequence twice at the intervals of 10−2s
to ensure that the observation sample points are equally spaced.
The above operation is repeated to obtain 100 observed trajecto-
ries of the evolution process to obtain the dataset. In the second
experiment, we randomly initialize 4 variables from (-3, 3) to nu-
merically solve the evolution trajectory of the differential equation
in 5.1s with a time unit of 10−2s. We evolve 200 observed trajec-
tories with different random seeds to construct the dataset. The
training, validation, and test sets are divided in the ratio 7:1:2 in
both experiments.
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Figure 4: Evolutionary process of X, Y, and Z of a single sto-
chastic simulation trajectory

We choose the following models as baselines in the long-time
prediction task:

• LSTM [13] is an RNN-based sequence-to-sequence predic-
tion model. It improves the long-term dependency problem
of simple RNN and is suitable for processing and predicting
long-time sequences.

• TCN [4] is a prediction model that captures time series
information using a convolutional network. Convolutional
networks avoid the gradient explosion or vanishing problem
common to recursive models and perform better than RNNs
in many time-series prediction tasks.

• Informer [30] improves the operational efficiency of the
Transformer model. It proposes the ProbSpare self-attention,
self-attention distillation, and parallel generative decoder
mechanism, which is getting much attention in long-time
sequence prediction tasks. The amount of data required,
however, is particularly high because of its massive number
of trainable parameters.

• Neural ODE [7] is a deep learning operator for solving differ-
ential equations. It can be used in any framework to achieve
temporal prediction by solving differential equations for fu-
ture sequences with respect to the input sequence. Neural
ODE enables prediction for any continuous time by inte-
grating over continuous time with respect to the differential
equations.

In following experiments, all models are fully trained, where
LSTM, TCN, and Neural ODE are implemented by calling APIs
provided by frameworks such as pytorch, and Informer is applied
through the open-source code provided by the author. We use the

default hyperparameters suggested by the authors when applying
Informer.

5.2 Overall performance
We compare our proposed model for learning slow and fast sys-
tem dynamics with baseline algorithms for multivariate time series
prediction at different prediction lengths. Accurate long-term pre-
dictions demonstrate the effectiveness of our model in learning the
system dynamics.

In order to verify that the models really learn the dynamics of
the system, the model is fed with only one observation 𝑥𝑡 of the
system and performs multi-step prediction in the autoregressive
manner. Our model, LSTM, TCN, and Neural ODE are set to have
a maximum prediction step of 10𝜏1 in training to ensure that they
learn the dynamics of the system only through observations within
a limited view and are required to make long-term predictions (up
to 50𝜏1) in testing. Table 1 shows the comparison of the Root Mean
Square Error (RMSE) and Mean Absolute Percentage Error (MAPE)
of the models at three extrapolation duration 𝜏 , where 𝜏 is {1, 10, 50}
times as much as the minimum observation interval 𝜏1.

In the comparison of results, Informer is not suitable for such
limited observation learning tasks and has the worst performance
due to the huge amount of data required. Other models perform sim-
ilarly on short time scales, but our model that truly learns the slow
and fast dynamics achieves the best performance as the required
extrapolation time increases.

5.3 Analysis of slow and fast dynamics learning
To verify the effectiveness of the proposed framework for the sep-
aration of slow and fast variables, the following analysis shows
how the model determines the appropriate time scale 𝜏𝑠 and the
slow variable dimensionality 𝑑𝑠 in two scenarios, and compares the
relationship between the extracted slow variables under Koopman
space and the actual slow variables of the system.
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Figure 5: ID-𝜏 curves, quantitatively characterize the dynam-
ics at different time scales. The ID-rounding term is the result
of rounding.

5.3.1 Determination of time scale and slow dynamics dimen-
sionality. The time scale 𝜏𝑠 applicable to the separation of slow
dynamics is first selected by our ID-driven approach. In the experi-
ments, the minimum observation interval 𝜏1 is set as 0.1 and 0.3 for
the two systems, respectively. The time-lagged autoencoder learns
the observable trajectories of the systems with integer multiples
of 𝜏1 as the lag values. The geometric dimensionality of embed-
ding with lag parameter 𝜏 is plotted in Figure 5. According to the
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Table 1: Average performance comparison in 10 random seeds with input length 1 and prediction length {1, 10, 50}. A lower
RMSE and MAPE indicate better performance. The best results are highlighted in bold.

1S2F 2S2F
𝜏1 = 0.3𝑠 𝜏10 = 3.0𝑠 𝜏50 = 15.0𝑠 𝜏1 = 0.1𝑠 𝜏10 = 1.0𝑠 𝜏50 = 5.0𝑠

RMSE MAPE RMSE MAPE RMSE MAPE RMSE MAPE RMSE MAPE RMSE MAPE
TCN 326.72 13.76% 381.11 16.49% 529.37 28.60% 0.1352 1.68% 0.1055 1.81% 0.0969 1.89%
LSTM 211.45 6.55% 323.61 10.93% 334.74 14.42% 0.0656 0.53% 0.0284 0.71% 0.0253 0.75%
Neural ODE 224.14 6.86% 334.23 10.47% 331.03 12.09% 0.0802 0.47% 0.0636 0.67% 0.0174 0.56%
Informer 742.34 13.58% 878.96 16.92% 803.55 16.64% 0.4109 18.88% 0.7146 4.58% 1.2356 3.12%
Our 221.76 6.95% 305.99 10.41% 309.51 11.74% 0.0638 0.51% 0.0242 0.49% 0.059 0.16%
Percentages -4.88% -6.11% 5.44% 0.57% 6.50% 2.89% 2.74% -6.3% 14.79% 26.87% 66.09% 71.43%

determination condition of 𝜏𝑠 , the appropriate observation time
scales for the slow variables of the two systems are 3.0s and 0.8s,
respectively. The variation curves of ID in Figure 5(a) show that
the chemical 1S2F system has 2 degrees of freedom at small time
scales, and they actually represent the slowly increasing dynamic
term of 𝑋 and the noise term of 𝑌 , respectively. As 𝜏 increases, the
autocorrelation of the noise term weakens to the point where it
cannot be learned (see Figure 6) so that the measured ID contains
only the slow dynamic term of 𝑋 . Similarly, when 𝜏 is greater than
0.8, only two dimensionalities of slow variable are retained in the
2S2F system. Our model successfully identifies two systems with 1-
dimensional and 2-dimensional slow variables, respectively, which
coincide with the facts.

5.3.2 Separate of slow and fast dynamics. According to the
conclusion of the previous step, the dimensionality of the represen-
tations vector 𝑢 of the slow dynamics of the two systems are set
to 1 and 2, respectively, and the second-level encoder 𝐸2 is trained
to obtain the representations 𝑢. The obtained representations 𝑢
are shown against the original variables in Figure 7. In the 1S2F
system, the one-dimensional slow dynamics representation 𝑢 has
a significant correspondence with the system variable 𝑋 . In the
2S2F system, the dimensionality of representation 𝑢 corresponds to
the real slow variables 𝑐1 and 𝑐2 of the system, respectively. These
results validate the effectiveness of the proposed framework for
slow dynamics extraction.
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Figure 6: Autocorrelation coefficient of system variables.
To further illustrate the slow dynamics component of the system

in the observation space, we map the extracted slow dynamics rep-
resentation back to the observation space, whose results are shown
in Figure 8. We can observe that variable 𝑋 of the 1S2F system is
fully identified as slow dynamics, however, only the steady-state
value 40 of variable 𝑌 is identified as its slow dynamics. This re-
sult is encouraging, because it indicates that our model identifies
the true evolutionary properties of the system on long time scales,

while noise factors that are not significant for long-time evolution
are stripped out. In the experiments of the 2S2F system, 𝑐1 and 𝑐2
are successfully identified, and it is noticed that part of the evolu-
tionary process of 𝑐3 and 𝑐4 is also identified as slow dynamics. The
explanation of this phenomenon is that the evolutionary process of
𝑐3 and 𝑐4 contains 3 stages: (1) rapid convergence from the initial
state to a slow manifold governed by 𝑐1 and 𝑐2. This process occurs
on a tiny time scale, and therefore 𝑐1 and 𝑐2 have not yet converged
at this point; (2) subsequently, 𝑐3 and 𝑐4 are governed by 𝑐1 and 𝑐2
and evolve at the same rate in equilibrium, which exhibits the slow
dynamics property; (3) finally, 𝑐1 and 𝑐2 generally converge to the
steady state and are not changing, and thus 𝑐3 and 𝑐4 also remain
constant. In stage (1), 𝑐3 and 𝑐4 exhibit fast dynamics characteris-
tics and are sieved out by the model, while stages (2) and (3) are
captured as slow dynamics components. The above results again
confirm that our model has the ability to identify the slow dynamics
hidden in observed data, and this accurate identification provides
valuable insights for understanding complex dynamic systems.
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Figure 7: Scatter of representation and observed variables.

5.3.3 Long and short prediction performance analysis. Learn-
ing the slow dynamics accurately is crucial for the effectiveness
in long-term prediction tasks, as it dominates the system’s long-
term evolution. The linear evolutionary nature of the system in the
Koopman subspace makes our model work well in learning the slow
dynamics. In fact, when the𝑉 and Λ of the constituent operatorsK
are successfully fitted, the values of the slow dynamics components
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at any successive moments can be accurately computed, which is
fundamentally different from other models.
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Figure 8: Slow dynamic components of two systems, as ex-
emplified by the 4-segment evolutionary trajectory.

Figure 9(a) shows the learning curves of the two eigenvalues 𝜆1
and 𝜆2 of the operator K for the component of the 2-dimensional
slow dynamics in the experiment of the 2S2F system. Corresponding
to that in Figure 7(b), 𝐸2 maps the slow dynamic components into
the slow dynamics subspace with the representation components
𝑢1 and 𝑢2 matching the slow variables 𝑐2 and 𝑐1, respectively. 𝜆1
and 𝜆2 eventually converge to around -2 and -1, which represent
the evolution rate coefficients of the slow representations 𝑢1 and
𝑢2, respectively. This result is consistent with the coefficients of
the first two terms in (18). We compare the average Mean Absolute
Error (MAE) changes of LSTM, TCN, and our model for 𝑐1 and 𝑐2 in
long-time prediction, thus testing the effectiveness of the proposed
model in the slow dynamics long-time evolution prediction problem.
The error comparison curves are shown in Figure 9(b), where our
error does not grow catastrophically due to the longer prediction
time, which proves the superiority of our model for slow dynamics
learning.
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Figure. 9: Slow dynamics learning performance in ourmodel.

Short-term predictions rely heavily on the fast dynamics, as the
slow dynamics evolve slowly and are easy to predict. Therefore,
the prediction performance of fast dynamics becomes an important
factor in overall performance. Figure 10 illustrates the performance
of multi-step predictions based on a single input sample in the 2S2F

system as a function of the single-step time scale 𝜏 . Obviously, pre-
dicting fast variables is more challenging, but our model gradually
achieves the best performance.
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Figure. 10: Overall prediction performance for 2S2F system.

6 CONCLUSIONS AND FUTUREWORK
In this paper, we explore the dynamics of slow and fast systems by
using ID-driven learning based on time-lagged autoencoders to dis-
cover appropriate time scales and slow dynamics dimensionalities.
We successfully separate the slow and fast dynamics components of
observed trajectories of the system and analyze the slow dynamics
using Koopman theory and the fast dynamics through the decay
rate-guided autoregression. By combining these methods, we can
cooperatively learn the coupled slow and fast variables. Finally, we
test the proposed framework in two representative systems for time
scale selection, slow and fast variable separation, and long-term
prediction performance. The results show that our framework can
effectively learn slow and fast system dynamics.

The success of our proposed framework on two representative
systems demonstrated in Sec. 5 indicates its readiness for similar
real-world scenarios. Experiment results also show that our method
is feasible for online services in terms of robustness (See Appendix
for details). In future work, we plan to deploy the framework as
an online scientific computing service for disease propagation [25],
chemical reactions [23], and neuronal potential changes [26], etc.
Specifically, users can upload data and receive the results in terms
of the time scale and dimensionalities of slow and fast variables. In
addition, we plan to explore the fast and slow dynamics of complex
networks with more complex topologies, and consider the modeling
approach of Neural ODE with the advanced ability of continuous
time prediction.
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A APPENDIX
A.1 Robustness Analysis
We test whether the framework can work robustly in the 2S2F
system with important hyperparameters, including different slow
variable dimension 𝐷𝑠 , Koopman dimension 𝐾 , and penalty coeffi-
cient 𝛼 .
Slow variable dimension 𝐷𝑠 . The slow variable dimension is set
from 1 to 5 respectively. The Koopman dimension is unified to 5.
The MAPE of the predicted results is shown in Table 2.

Table 2: Performance of different 𝐷𝑠 .

𝐷𝑠 𝜏 = 0.1 𝜏 = 1.0 𝜏 = 5.0
1 0.59% 0.46% 0.16%
2 0.64% 0.48% 0.15%
3 0.64% 0.46% 0.14%
4 0.55% 0.45% 0.12%
5 0.57% 0.45% 0.13%
1* 2.68% 0.86% 0.18%
2* 1.36% 0.60% 0.15%
3* 1.36% 0.59% 0.12%
4* 1.32% 0.59% 0.11%
5* 1.33% 0.57% 0.09%

Figure 11: Scatter of representation and observed variables
when 𝐷𝑠 = 3.

When the 𝐷𝑠 is set to 1, though the prediction performance is
close to the other settings, the model can actually only identify one
of the two slow variables (whose decay index is -1) at this point,
and the other slow variable, i.e., 𝑐2, is treated as a fast variable

for prediction via autoregression, thus ensuring the robustness of
the overall prediction performance. To verify this, we add a set of
comparison experiments with the fast prediction module turned
off, and the results show that there is a more significant drop in
prediction performance when 𝐷𝑠 = 1 than others. Therefore, when
the number of slow variables set is less than the actual value, the
slow variable cannot be extracted sufficiently, and the proposed
framework fails to model the slow dynamics.

When the number of slow variables set is larger than the actual
value, performance does not degrade, but it does not improve sig-
nificantly either. In addition, the slow variables extracted by the
model are mixed with redundant information and it is difficult to
explain which one is the true slow variable representation at this
point, as shown in Figure 11.
Koopman dimension 𝐾 . The slow variable dimension is unified
to 2, and Koopman dimensions are set from 2 to 6 in turn. TheMAPE
of the predicted results is shown in Table 3, where changes in the
Koopman dimension do not significantly change the prediction
performance.

Table 3: Performance of different 𝐾 .

𝐾 𝜏 = 0.1 𝜏 = 1.0 𝜏 = 5.0
2 0.61% 0.47% 0.16%
3 0.55% 0.46% 0.13%
4 0.60% 0.48% 0.11%
5 0.64% 0.48% 0.15%
6 0.57% 0.41% 0.10%

Penalty coefficient 𝛼 . We test the impact of hyperparameter 𝛼 in
(6), which acts as a penalty coefficient constraining the encoder to
extract only the slow variables, resulting in better long-time predic-
tion results. Specifically, we evaluate the prediction performance
of our proposed framework with 𝛼 ranging from 0.1 to 0.5 in the
2S2F system, where 𝐷𝑠 = 2 and 𝐾 = 2. As shown in Table 4, the
overall performance is best at 𝛼 = 0.3, but the performance does not
change much when 𝛼 takes other values. Therefore, the proposed
model performance is robust to 𝛼 .

Table 4: Performance of different 𝛼 .

𝜏 = 0.1 𝜏 = 1.0 𝜏 = 5.0
𝛼 RMSE MAPE RMSE MAPE RMSE MAPE
0.1 0.0761 0.88% 0.0572 0.59% 0.0045 0.13%
0.2 0.0757 0.78% 0.0566 0.61% 0.0056 0.15%
0.3 0.0731 0.71% 0.0550 0.55% 0.0049 0.11%
0.4 0.0746 0.74% 0.0558 0.57% 0.0051 0.14%
0.5 0.0758 0.82% 0.0553 0.53% 0.0047 0.13%
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