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ABSTRACT

Accurate churn prediction for retaining users is keenly important
for online services because it determines their survival and prosper-
ity. Recent research has specified social influence to be one of the
most important reasons for user churn, and thereby many works
start to model its effects on user churn to improve the prediction
performance. However, existing works only use the data’s corre-
lational information while neglecting the problem’s causal nature.
Specifically, the fact that a user’s churn is correlated with some
social factors does not mean he/she is actually influenced by his/her
friends, which results in inaccurate and unexplainable predictions
of the existing methods. To bridge this gap, we develop a coun-
terfactual modeling framework for churn prediction, which can
effectively capture the causal information of social influence for
accurate and explainable churn predictions. Specifically, we first
propose a backbone framework that uses two separate embeddings
to model users’ endogenous churn intentions and the exogenous
social influence. Then, we propose a counterfactual data augmenta-
tion module to introduce the causal information to the model by
providing partially labeled counterfactual data. Finally, we design
a three-headed counterfactual prediction framework to guide the
model to learn causal information to facilitate churn prediction.
Extensive experiments on two large-scale datasets with different
types of social relations show our model’s superior prediction per-
formance compared with the state-of-the-art baselines. We further
conduct an in-depth analysis of the prediction results demonstrat-
ing our proposed method’s ability to capture causal information
of social influence and give explainable churn predictions, which
provide insights into designing better user retention strategies.

CCS CONCEPTS

« Information systems — Enterprise applications; Social net-
works; « Computing methodologies — Neural networks.

KEYWORDS
Churn prediction, social influence, causal information learning

ACM Reference Format:

Guozhen Zhang, Jinwei Zeng, Zhengyue Zhao, Depeng Jin, Yong Li. 2022. A
Counterfactual Modeling Framework for Churn Prediction. In Proceedings of
the Fifteenth ACM International Conference on Web Search and Data Mining

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

WSDM °22, February 21-25, 2022, Tempe, AZ, USA

© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9132-0/22/02...$15.00
https://doi.org/10.1145/3488560.3498468

(WSDM °22), February 21-25, 2022, Tempe, AZ, USA. ACM, New York, NY,
USA, 9 pages. https://doi.org/10.1145/3488560.3498468

1 INTRODUCTION

Users are the core of developing online applications. The ability
of user acquisition and user retention determine the survival and
prosperity of a wide range of online applications, ranging from
general online platforms such as social media, columns, and on-
line communities, to online services, such as news, games, and
e-commerce [5, 6, 8, 35]. As these online applications spring up,
competition becomes fierce, and as a result, acquiring new users is
becoming increasingly difficult [32]. According to a recent report,
the cost of acquiring new users is five times higher than retaining
the existing ones [2]. Therefore, how to retain users is drawing in-
creasing attention. Specifically, as the most critical part of a typical
user retention procedure, predicting user churn has become a key
concern for both academia and industry [14, 33].

With the maturity of social media, lots of applications have
integrated social features such as comments and friend sharing into
their services to enhance their user experience. Many even directly
build themselves on social media. In these fast-growing scenarios,
social influence has become one of the most important reasons
for customer churn [20]. Following this lead, many researchers
have been trying to model the effects of social influence on user
churn to improve churn prediction accuracy. Their attempts can be
mainly divided into two types. The first is modeling social network
structures as a proxy of social influence. For example, Ahmad et
al. [1] use social network analysis to derive network-based features
for machine learning model. The second is viewing user churn
as a diffusion process. That is, if user A churned after his friend
B, we assume user A is “infected” by user B. This type of work
typically uses a diffusion model to simulate the effects of social
influence [36].

However, existing approaches only utilize the data’s correla-
tional information while neglecting the problem’s causal nature.
Specifically, the fact that a user’s churn is correlated with some
social factors does not mean he/she is actually influenced by his/her
friends. As such, existing deep learning methods mainly suffer from
two limitations: (1) their performances can still be improved be-
cause using correlational methods to solve causal problems are
bound to introduce non-causal noises; (2) their predictions are un-
explainable. They cannot answer causal questions such as “did a
user churn because of the effects of social influence?” or “would a
user stay if his/her friends had not churned?”, making it hard to
tailor campaigns for user retention.

To bridge these gaps, we set out to utilize causal information to
improve the churn prediction performance. Specifically, we focus
on designing a churn prediction framework that can learn the
causal information of the social influence on user churn to give


https://doi.org/10.1145/3488560.3498468
https://doi.org/10.1145/3488560.3498468

accurate and explainable churn predictions. This is challenging
because learning causality from data is intrinsically difficult, and
one of the most important reasons is the lack of counterfactual data.
For instance, if a user churns after his friends, we cannot observe
the case when his/her friends did not churn. As a result, the most
powerful supervised learning framework is not working without a
supervising signal for causal effects.

Faced with the challenge, we present a CounterFactual model-
ing framework for Churn prediction (CFChurn), which captures
the causal effects of social influence on user churn and provides
accurate and explainable predictions. Specifically, we first build
our causal model on a backbone framework that uses two separate
embeddings to model users’ endogenous churn intentions and the
exogenous social influence, which contains a novel design - social
influence guided graph neural network to capture the social in-
fluence between users better. Then, we propose a counterfactual
data augmentation procedure that solves the problem of missing
counterfactual observations based on prior causal knowledge on
social influence, which transforms the counterfactual learning prob-
lem into a supervised learning problem with partially labeled data.
Finally, to help our model to learn causal effects to facilitate churn
prediction better, we design a three-headed multi-task prediction
framework based on the sufficiency of the propensity score theory.

We highlight our contributions as follows:

o To the best of our knowledge, this paper tackles the user
churn prediction problem from a causal standpoint for the
first time, and we provide a counterfactual prediction frame-
work that can learn the causal information of the social
influence on churn.

e We design three novel components, including the social in-
fluence guided graph neural network, the counterfactual
data augmentation module, and the three-headed multi-task
learning module, to facilitate our model to learn the causal
effects of social influence from data.

e We conduct extensive experiments on two large-scale real-
world datasets with different types of social relationships.
On both datasets, our model outperforms the state-of-the-art
baselines. Further ablation study shows the effectiveness of
each design, and further in-depth analyses on the model
predictions show our model’s ability to give explanations
for the prediction results, which provides insights for online
applications to make tailored campaigns.

2 PROBLEM FORMULATION

The goal of churn prediction is to forecast whether a user will stop
using a service or a platform in a future period. Specifically, it has
three inputs, including a user feature matrix X, recording users’
demographics and historical behaviors, a user interaction feature
matrix X recording the interactions between users, and a social
network G. It outputs a binary prediction for each user, which
indicates whether a user will churn in a future period. Formally, it
can be formulated as follows:

y = F(G, X0, Xe). (1)
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Figure 1: The causal graph model and our proposed CFChurn
framework. (a) According to prior works, exogenous social
influence and endogenous user intention are two major types
of causes that account for user churn. (b) Our proposed frame-
work models the two different causes by two embeddings
separately, and we designed a three-headed counterfactual
prediction framework to enable our model to answer coun-
terfactual questions while giving accurate churn predictions.

where X, € R"™0*N x, e R%*K ¢ ¢ RN with nyg and neg as
the dimension of user features and interaction features, respectively.
Here, N, K is the number of users and user relations, respectively.
In this paper, we model the social network G as a graph, with
users modeled as nodes and user relations modeled as edges. Thus,
we have G = (V, &) with |'V| = N, |E| = K, and its adjacency
matrix A € RVXN_ Further, we model the user features as node
features and the user interaction features as edge features.

3 PROPOSED METHOD: CFCHURN

Generally speaking, there are two major types of reasons for user
churn [20]. One originates from ones’ endogenous intentions, e.g.,
one lost interest in a service. The other comes from the social
influence from one’s social connections, which is exogenous. For
example, one may stop using a service because he/she feels pressure
to conform when most of his/her friends stop using it [3]. We use
a causal graph to illustrate the causal relationships between these
two causes and churn in Figure 1(a).

We build our model CFChurn based on this causal graph, and its
architecture is shown in Figure 1(b). Specifically, CFChurn is based
on a backbone that utilizes two separate embeddings to model users’
endogenous churn intentions and the exogenous social influence.
With the two embeddings as inputs, the proposed counterfactual
modeling framework contains two modules: the counterfactual
data augmentation module and the three-headed counterfactual
prediction module. The augmentation module solves the challenge
of lacking counterfactual observations and transforms the counter-
factual learning problem into a supervised learning problem with



partially labeled data. The prediction module is designed to tackle
the challenge of learning the causal effects. Based on the sufficiency
of the propensity score theory, it combines the augmented counter-
factual data and the original data to train the two embeddings with
three tasks and a novel causal regularizer. In the following sections,
we first introduce the backbone framework and then elaborate on
the counterfactual modeling framework.

3.1 Backbone Model

The exogenous social influence and endogenous user intentions
are two major reasons for user churn. In this paper, we model
them by two separate embeddings to capture different sources
of information. A novel design - SGAT - is proposed to model
the relationships between users better so that the embedding it
learns can potentially capture social influence information. This
section introduces how we get the node embeddings and edge
embeddings from the raw features, and then we elaborate on how
the model learns the social influence embeddings and user intention
embeddings.

3.1.1 Inputs and Feature Embeddings. Our model first takes
the user node features X and edge features X, as inputs and trans-
forms them into embeddings. Since we model users as nodes, we
suppose the node embedding H,, to contain all the user information.
Thus, in addition to two fully connected layers, we also use two
GCN layers to model their social relationships automatically so
that we do not have to do feature engineering to extract network
features, such as the nodes’ degree manually. This process can be
formulated as follows,

Hy, =0 (Wga (w;,’xz, +b2) + b},) ,
Hy = 0(AHy, Wy), @
Hy = Hg”Huo,

where A = D"1/2AD71/2 + 1, D € RN*N s the degree matrix of
the graph, I € RN*N is an identity matrix. Hy, € R™<N, with n,
as the dimension of the node embeddings. Wz(,) , Wz}, Wy, b?,, and
bl are model parameters. (-||-) denotes concatenation, and o(-)
denotes a non-linear activation function.

We suppose the edge embeddings He to records all the user
interaction information. Thus, we apply two fully connected layers
on the edge features, which can be formulated as follows,

H, = o (Who (WoX, + bg) + b;) , 3)

where H, € R™*N with n, as the dimension of the edge em-
beddings. Wg , Wel, bg, and bl are model parameters.

3.1.2 Learning User Intention Embeddings and User Social
Influence Embeddings. Users’ own intentions can be inferred
from three types of information, including who they are, what they
have done, and what friends they have. All the above information
is included in the node embeddings, and thus we simply use two
fully connected layers to learn the user intention embeddings Hyy.

To model peer influence, Graph Neural Network (GCN) is a
common choice [21, 24]. However, the original GCN model cannot
effectively utilize the interaction information between users [11],
which is one of the most important indicators of social influence.
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Figure 2: A detailed illustration of the architecture of the
social interaction guided graph attentional network (SGAT).

To deal with this problem, we propose a social interaction guided
graph attentional network (SGAT), which modifies the propagation
step of GAT [31] to capture the information of user interactions.
We show the details of the proposed propagation mechanism in
Figure 2. Specifically, for each pair of connected nodes, SGAT takes
the node embeddings hy,, hy; and the embedding he,; of the edge
that connects the two nodes as inputs and learns a vector €;; to
capture peer influence, which can be formulated as follows,

€jj =0 (We (hu,-||hvj||he,~j) +be), 4)

where W, € R%eX(1e+2X10) and b, e R"*! are model parameters
with n. as the dimension of the learned vector. Note here €;; # €;i,
which portrays the unbalanced mutual influences.

Then, the model takes the learned vector and the original node
embedding as the input of a standard graph attentional network to
updates the hidden state hf,i of node v; in layer 1. Intuitively, this
step captures the potential different effects of influence from differ-
ent friends by an attention mechanism. Formally, the propagation
step can be formulated as follows,

Wyt =al Wikl + ) o Wl(el ohl),
JEN(i) (5)
aj; = softmax(a(a’ [Why, [IW{ (e}; © b)),

where O refers to an element-wise multiplication. N (i) is the set
that contains all the neighbors of the user node i. Wsl and a are
model parameters. In our framework, we stack two SGAT layers to
enhance the representation power of the model, and the output of
the SGAT is the social influence embedding Hgj.

3.2 Counterfactual Modeling Framework

Before going into the details of our counterfactual modeling frame-
work, we first introduce preliminaries on the causal notations we
use for clarity. In this work, we adopt the notations from the most



commonly used causal inference framework - the potential out-
comes framework [23, 27]. Basically, it links the causal effect on an
individual to the difference between the outcomes that would be
observed with versus without intervention or treatment.

In our case, we define the treatment t as whether a user has
churned friends and the potential outcome y as whether a user will
churn in a future period. If a user has churned friends, and he/she
churned in the next period, his churn could be potentially attrib-
uted to the social influence from his/her friends, and we want our
model to distinguish whether he/she is influenced or not. Note that
here, we follow prior work to simplify the problem by presuming
that social influence on churn originates from the churn of ones’
friends [20]. We denote the potential outcome under ¢t = 0 as y;,
and the potential outcome under t = 1 as y;,. Since an individual
can either have churned friends (¢ = 1) or not (¢ = 0), we can only
observe the outcomes under the treatment that has taken place. We
denote the outcomes we observe in our data as the factual outcomes
yr and the unobserved outcomes as the counterfactual outcomes
Ycf- Formally, the relationships between the variables mentioned
above are as follows,

yf:txytl+(1—t)><yt0,

6
ycfztxyto+(l—t)><yt1. ©)

3.2.1 Counterfactual Data Augmentation. One of the major
challenges for deep learning models to learn causality is the absence
of counterfactual data. Existing methods that use causal informa-
tion to promote the performance of deep learning models typically
learn causal information by estimating the counterfactual data dis-
tribution from the factual data, and then they use the estimated
causal effects as an additional input of the predictor [16]. However,
due to the general existence of selection bias that the distribution
of the factual outcomes and counterfactual outcomes differs signifi-
cantly, the observed factual outcomes contain limited information
about the counterfactual distribution. Further, this method is also
not an end-to-end learning framework, and thus the performance
of deep learning models could be constrained.

Inspired by an in-depth analysis of the customer churn problem,
we propose to solve the challenge from the root - by counterfactual
data augmentation based on causal knowledge. Specifically, we
make an assumption that generally applies to user churn scenarios,
which can be formally stated as follows,

AssuMPTION: Users’ churn probability when they have churned
friends is not less than the churn probability when they do not
controlling other conditions to be the same, i.e.,

P(yfl) >= P(yto)' (7)

This assumption holds conditioned on the causal graph because

for an individual, removing a cause will only reduce his/her churn

probability controlling other variables. Based on this assumption,

we further derive two corollaries that supplement us with counter-
factual data, which we formally stated as follows:

CoROLLARY 1: If a user churns (yy = 1) when none of his/her
friends churn (t = 0), then the user would also churn (y.¢ = 1) if
he/she had churned neighbors (¢ = 1) controlling other conditions.
COROLLARY 2: If a user does not churn (yy = 0) when he/she
has churned friends (¢ = 1), then the user would not churn (y.r =

0) if he/she had no churned neighbors (¢t = 0) controlling other
conditions.

These two corollaries provide us with counterfactual labels based
on prior causal knowledge on customer churn, which can be for-
mulated as the following equation,

Ocf1 = {yif = yil = 1|y} = yio =Lie Of},

Oz = {yif = yfo = 0|y} = yil =0,i € Of}, (8)
ch :chl U OCfZ’

where O.f1 and O, represent the counterfactual datasets we
construct according to the two corollaries, and Oy represents the
dataset we observe. In this way, we can transfer the counterfac-
tual prediction problem into a supervised learning problem with
partially labeled data.

3.22 Three-headed Counterfactual Prediction. With the coun-
terfactual augmented dataset, we design a framework that predicts

the factual outcomes and the counterfactual outcomes simultane-
ously to facilitate our model to learn the causal information and

provide explainalble predictions. For example, we expect the model

can answer counterfactual questions such as would a user stay

if he/she was not influenced by his/her friends by providing the

counterfactual predictions. Since it is a binary prediction problem,

we use the binary cross entropy loss as the prediction loss, which

can be formulated as follows:

R 1 . N . i
Lplypdp) = & ZO] yplog(§)) + (1 - yplog(1 = gf).  (9)
i€Of

. 1 i o i pe;
LogWer-Ger) = 77 D Veplog(@l)+(1-yi log(1-4L ). (10)
iEOEf

where N, M are the number of instances in dataset Of and O, £
respectively.

In order to facilitate the causal information learning process,
we further design two components. First, we introduce a causal
regularizer based on our causal assumption. Specifically, we enforce
the model prediction in the branch with treatment to be not less
than the prediction in the branch without treatment, which can be
formulated as a regularization loss as follows,

Z max(0, g%, — g1), 11)

A 1
L (Gt 01,) = i
iEOfU(),;f

Second, inspired by previous work [26], we propose to facilitate
the model to learn causal information by using the social influence
embedding to predict the treatment, as shown in Figure 1(b). The
key intuition behind this idea originates from the theory of the
sufficiency of the propensity score [22], which illustrates that if the
causal effect is identifiable from observational data, it suffices to
learn the causal effect from only the information that is relevant to
the treatment. In other words, predicting the treatment helps the
model to learn useful causal information. Thus, we construct a treat-
ment prediction task to facilitate the social influence embedding to
capture the causal information and formulate the corresponding
loss as follows,



Lt(t,f):m Z tlog () + (1 - thlog(1 - ). (12)

iEOfUOC f
The aforementioned tasks, including the factual outcome pre-
diction task, the counterfactual outcome prediction task, and the
treatment prediction task, along with the causal regularizer form
the core of our proposed counterfactual prediction framework for
churn prediction.

3.3 Outputs and Training

Outputs. To transform the social influence embedding and the user
intention embedding into churn predictions, we first concatenate
them and use a self-attention layer to fuse them together. Then, we
use two fully connected layers to calculate the predictions, which
can be formulated as follows,

§ = sigmoid(p” o(Wycattention(Hsy||Hyp) +bre)).  (13)

where Wy, by, p are model parameters. Note that both the factual
outcomes and the counterfactual outcomes use this predictor. To
predict the treatment, we feed the social influence embedding to a
single fully connected layer.

Training. As illustrated in Section 3.2.2, we train our model to
predict the factual outcomes, counterfactual outcomes, and treat-
ments simultaneously. Note that the training data for customer
churn are typically biased towards negative samples because churned
users are less than stayed users, which hinders the training process.
To deal with this problem, we add a weight «; to reward the model
to pay more attention to the minority class following prior work on
churn prediction [38]. Thus, the objective function can be defined
as follows,

L=00+yrxag) X (Lr+acpLep) +arLs +acLe, (14)

where a.f, a;, and ac are hyper-parameters that make a balance
between different tasks.

4 EXPERIMENTS

To comprehensively evaluate our proposed method, we conduct
extensive experiments on two large-scale real-world datasets to
answer the following research questions:

e Q1: How is the overall prediction performance of CFChurn
compared with state-of-the-art methods?

e Q2: How do different parts of the counterfactual prediction
framework, including the SGAT, the counterfactual data aug-
mentation, and the three-headed counterfactual prediction
framework with causal regularizer, contribute to the perfor-
mance?

e Q3: How well does CFChurn learn the causal information,
and how does it facilitate the prediction performance?

4.1 Experiment Setup

4.1.1 Datasets. We evaluate our proposed model on two large-
scale real-world datasets that differ in scale, type of social connec-
tions, and social network density. Here, we briefly introduce them
as follows:

o Beidian: We collect a dataset from a leading social e-commerce
platform in China, Beidian, where users can share items with

Statistics Beidian  Epinions
The number of users 20611 6585
The number of churned users 8241 3457
The number of users’ friends 154384 19414
The number of social relationships 2112274 40916
Average degree 20.60 5.24
Average clustering coefficient 0.2670 0.0752

Table 1: The basic statistics of our datasets.

their friends. This dataset covers users’ demographic data,
historical activity data, and social interaction data based on
sharing, along with the users’ social relationships on the plat-
form from 01/2019 to 12/2019. We determine users’ churn
based on a threshold derived from the maximum consecutive
logins a user, following prior work’s approach [15]. Since
90% of the maximum time between two consecutive logins of
users is within 180 days, we regard users without any login
for 180 days as churned users. In this way, we can accurately
determine the churn time of users whose last login is before
06/2019. Thus, we predict whether a user will churn between
04/2019 and 06/2019 given the data from 01/2019 to 03/2019.

e Epinions: A public dataset! from a product review website
with 11 years’ data [28]. Users can rate products on this web-
site and choose to trust others’ reviews. We use the mutual
trust relationship between users to form a ‘trust’ social net-
work, and we use historical review records to generate six
basic user features, including the number of times that one
trusts others, the number of times one is trusted, the number
of times one rates, the number of categories of items one
rates, the mean rating score, and the mean rating helpful-
ness score. Using the same way for the first dataset, we get
a maximum re-login time of three years and regard those
without any login for three years as churned users. We use
the data in the first three years to predict whether one will
churn in the 4-6th year.

The statistical summaries of these two datasets are reported in
Table 1. As we can see, the social network of the Beidian dataset is
much larger and denser than that of the Epinions dataset. Denser
social networks typically have stronger social influence. Further,
the social connections on Epinions are essentially different from the
friend relationships on Beidian since users who trust each other’s
reviews are not necessarily friends in reality. This suggests that
the social connections on Epinions are not as strong as those on
Beidian.

4.1.2 Baseline Methods. We compare the performance of CFChurn
with state-of-the-art methods from four research lines with mini-
mum modification to adapt them to our problem.

Diffusion-based Methods:

o SPA [7]: A classical diffusion model based on spreading acti-
vation techniques.

o IR/SR [36]: A propagation model based on an infection rule
(IR) and a stopping rule (SR). The IR is defined as a probability
threshold of churn, and the SR is defined as the number of
propagations.

https://www.cse.msu.edu/ tangjili/datasetcode/truststudy.htm



Beidian Epinions

Groups Models AUC Accuracy AUC Accuracy
. SPA [7] 0.595 +0.000  0.619 % 0.000 0.583 +0.000  0.584 + 0.000
Diffusion-based Models IR/SR [36] 0.671 % 0.000  0.663  0.000 0.664 +0.000  0.668 = 0.000
, , Inf2vec [10] 0503+ 0.012  0.503 + 0.012 0.520 +0.009  0.521 = 0.010
Social Influence Embedding Models Inf-VAE [24] 0.505 = 0.007  0.569 + 0.068 0.542 +0.007  0.585 + 0.029
GCN [11] 0.705 % 0.003  0.682 + 0.002 0.645+ 0.004  0.645 = 0.004
GCN-based Models GAT [31] 0.707 = 0.003  0.687 + 0.002 0.648 + 0.003  0.646 + 0.004
RF [12] 0.692 + 0.000  0.690 = 0.000 0.702 £0.000  0.705 + 0.000
XGBoost [1] 0.696 +0.000  0.698 % 0.000 0.714 £0.000  0.716 % 0.000
SOTA Churn Models ClusChurn [33]  0.641+0.013  0.633  0.004 0.685 +0.004  0.686 + 0.003
FIN [29] 0.665+0.015  0.611 = 0.011 0.644 +0.008  0.649 = 0.007
Survival Model [17]  0.670 £0.000  0.659  0.000 0.654 +£0.000  0.652 % 0.000
Ours CFChurn 0.729 £0.003 0.706 + 0.002 __ 0.723 £0.002 0.724 + 0.002

Table 2: The performance evaluation results on Beidian and Epinions datasets.

Social Influence Embedding Methods: We compare our method
with two state-of-art social influence embedding methods that orig-
inally designed for diffusion prediction, i.e., predicting the set of
users in the future diffusion path given the seed set of activated
users. To fit them into our scenario, we set the churned users in the
period of the training set as the seed set and regards the models’
prediction outcome as the predicted churned users.

e Inf-VAE [24]: A variational autoencoder framework that
jointly models homophily and influence.

o Inf2vec [10]: A latent representation method for social influ-
ence embedding.

SOTA Churn Methods. For a fair comparison, we add network-
specific features, including the degree, clustering coefficient, av-
erage demographics of friends, and average network features of
friends, into these models’ inputs.

e Random Forest (RF) [12]: An ensemble learning method
based on decision trees.

e XGboost [1]: An advanced tree-based boosting method.

e ClusChurn [33]: A two-step method based that first clus-
ters users into groups and uses different LSTM for different
groups for prediction.

e FIN [29]: A feature interaction network based on factoriza-
tion machine.

e Survival Model [17]: A state-of-the-art statistical model for
churn prediction. We use a cox proportional hazards regres-
sion model for prediction.

GCN-based Methods. Prior work utilizes Graph Neural Net-
works to model social influence in social recommendation systems
and achieves a good performance [9]. We adapt it to the user churn
prediction problem by feeding the node embeddings of CFChurn
to two stacked GCN layers followed by two fully connected layers
for prediction. We use two variants as our baselines:

e GCN [11]: A current state-of-the-art variant of GCN that can
efficiently learn from graph-structured data.

e GAT [31]: A variant of GCN that utilizes an attention mech-
anism to update the embeddings of each node.

4.1.3 Evaluation Protocols and Reproducibility. We perform
5-fold cross-validation and use two widely used metrics in prior
work, including area under the ROC curve (AUC) and accuracy

for evaluation [1, 33], and we perform a grid search on hyper-
parameters, including the learning rate, batch size, I regularization
coefficient, dropout rate, and all the trade-off weights of the multi-
task loss function to find the best parameters for CFChurn and all
the baselines. For reproducibility, we make our implementation
codes of CFChurn avalible?.

4.2 Overall Performance Comparison (Q1)

To examine whether modeling causality can make the churn pre-
diction model more accurate, we compare CFChurn with different
types of state-of-the-art baselines and show their prediction perfor-
mance on two large-scale datasets in Table 2. Here, we summarize
key observations and insights as follows:

e CFChurn’s superior performance: Our proposed model
CFChurn outperforms all different state-of-the-art methods
across all evaluation metrics. Specifically, in terms of AUC
and accuracy, it provides a relative performance gain of 3.1%
and 1.1% on the Beidian dataset and 1.3% and 1.1% on the
Epinions dataset, respectively, comparing to the best base-
line. All improvements are statistically significant, which
demonstrates the effectiveness of our model. Further, AUC
reflects the model’s ability to give high predicted churn prob-
ability to those who actually churned, while accuracy reflects
the model’s overall ability to distinguish those who churn
and those who do not. Our experiments show that baseline
models typically make a trade-off between these two met-
rics, while our model has a consistent improvement, which
further demonstrates our model’s effectiveness.

e CFChurn’s robustness across different scenarios: Com-
paring the results between the two datasets with different
scales, social relations, and social network structures, we
find that many baseline models are not robust in different
scenarios. For example, GCN-based methods perform signif-
icantly better on the Beidian dataset than on the Epinions
dataset. A plausible reason is that Beidian’s social network is
much denser than Epinions’. In contrast, our model achieves
the best performance in both datasets, which demonstrated
our model’s robustness across different scenarios.

Zhttps://github.com/tsinghua-fib-lab/CFChurn
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Figure 3: The ablation study on different modules of
CFChurn.

Beidian Epinions

Right causal relationships 3428 1373
Wrong causal relationships 7 2

Table 3: Examination on whether CFChurn captures the cor-
rect causal relationships.

e Analysis on the poor performance of diffusion-based
models: Diffusion-based models’ performances are poor
because they treat the sequential information of user churn
as the effects of social influence, while the churn order may
contain many non-causal noises. This observation indicates
the importance of learning causal information for churn
prediction models.

e Analysis on the poor performance of social influence
embedding models: The poor performance of social influ-
ence embedding models can be explained by the difference
between their original design context and our problem set-
ting. They are originally proposed for diffusion prediction,
which requires multiple types of diffusion that happens mul-
tiple times as inputs to enable the model to learn the social
influence between users in the diffusion process. However,
when we treat user churn as a diffusion process, we only
have one type of diffusion, and it will only happen once.

4.3 Ablation Study (Q2)

To evaluate how different parts of our proposed counterfactual
prediction framework contribute to the performance, we conduct
two ablation studies with different granularities, including a coarse-
grained module-level experiment and a fine-grained loss-level ex-
periment on the Beidian dataset.

We use the coarse-grained experiment to validate the effective-
ness of different modules, including the SGAT module, counterfac-
tual data augmentation module (CFD), and three-headed counter-
factual prediction module (CFP). We substitute each module with
a simplified one to generate corresponding variants of CFChurn
and obtain the performance gain of a module by comparing the
performance of CFChurn with the simplified variants. Specifically,
we design three variants, including CFChurn-SGAT, CFChurn-CFD,
and CFChurn-CFP. Here, CFChurn-SGAT means substituting SGAT
with a simple GAT, CFChurn-CFD means training CFChurn without
the counterfactual data, and CFChurn-CFP means making CFChurn
predict only the factual outcomes. The results are shown in Fig-
ure 3, and we have two observations. First, removing any module
results in a decrease in the performance, which suggests that all
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Figure 4: The ablation study on different losses of the coun-
terfactual prediction framework.

the proposed components are effective. Second, removing the coun-
terfactual prediction module results in the largest performance
decrease, which suggests it to be the most effective part.

We further conduct a fine-grained experiment to examine the
effectiveness of the three proposed losses, including L, £ L, and
L;. Similarly, we examine the performance gain of a loss by com-
paring CFChurn with a variant trained without the loss. Specifically,
we design four variants - CFChurn-cf1, CFChurn-cf2, CFChurn-c,
CFChurn-t. Here, having a specific suffix name means removing
the corresponding loss. Note that CFChurn-cf1 stands for removing
the counterfactual dataset O, f;, which is equivalent to partially
removing L. The same applies to CFChurn-cf2. As shown in Fig-
ure 4, removing any loss results in a performance decrease, which
demonstrates that every task is indispensable in the designed multi-
task learning framework. A second observation is that removing
any parts of L. results in the largest performance decrease, which
suggests that the counterfactual prediction task is the most vital
one for customer churn prediction with causal effects.

4.4 How Well Does CFChurn Learn the Causal
Information and How does It Facilitate the
Prediction Performance? (Q3)

After validating that our model provides accurate predictions, we
further investigate how well does CFChurn capture the causal ef-
fects of social influence to facilitate its prediction performance. This
question can be broken down into two parts: (1) Does CFChurn
learn correct causal relationships? (2) How does the causal infor-
mation facilitate the prediction performance? In this section, we
first answer these two questions by an in-depth analysis of the pre-
dictions of CFChurn, and then we further show how the treatment
prediction task helps our model learn the causal effects.

44.1 Does CFChurn learn Correct Causal Relationships? To
answer this question, we analyze CFChurn’s factual predictions and
counterfactual predictions on the test set and check if the predic-
tions are in line with the prior causal knowledge, i.e., users’ churn
probability when they have churned friends is not less than the
churn probability when they do not, controlling all other variables.
In other words, the factual outcomes for users who have churned
friends should be larger than the counterfactual outcomes, and for
users who do not have churned friends, vice versa. As shown in
Table 3, over 99.9% predictions on both datasets depict the correct
causal relationship, which validates our model’s ability to learn
causality from data. In this way, our model can provide explain-
able prediction results by comparing the counterfactual outcomes
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Figure 5: T-SNE plot of embedding hs;y of CFChurn. (a)
CFChurn without the treatment prediction task. (b) CFChurn
with the treatment prediction task.

with the factual outcome. For example, for a user who has churned
friends, if the factual outcome predicts him/her to churn, and the
counterfactual outcome predicts him/her to stay, our model indi-
cates that the user will churn because of his friends’ social influence.

4.4.2  How does the causal information facilitate the prediction per-
formance? To answer this question, we compare the prediction
results of CFChurn with its ablation version that does not contain
the counterfactual data augmentation and three-headed counterfac-
tual prediction framework. Overall, we found 84 additional correct
predictions and 32 additional wrong predictions. Here, the perfor-
mance gain can be attributed to the CFD and CFP module. Further,
among the 84 additional correct predictions, 66 of them have their
factual prediction differing from their counterfactual prediction,
which means that our model suggests these users’ behaviors are
influenced by their friends. Put differently, most of the addition cor-
rect predictions can be owing to the learning of causal information.

4.4.3 The Effectiveness of the Treatment Prediction Task.
We design the treatment prediction task based on the sufficiency
of the propensity score theory. Our ablation study validated that
it improves the model performance, and here we examine how it
works. According to the theory, if the causal effect is identifiable
from observational data, it suffices to learn the causal effect from
only the information that is relevant to the treatment. In other
words, the ability to distinguish the treatment is equivalent to the
ability to learn useful information that captures the causal effects.
Following this lead, we project hgy into a low-dimensional space
and visualize it by t-SNE [30] to see whether the treatment predic-
tion task helps hgy learn useful causal information. As shown in
Figure 5, the embeddings without the treatment prediction task are
mixed together, while they are separated according to the treatment
with the task, which confirms the effectiveness of the treatment
prediction task.

5 RELATED WORK

5.1 Modeling Social Influence for Churn
Prediction

Modeling the effects of social influence on user churn to improve

the prediction performance has been a recent trend [1, 12, 19, 33].

Existing methods mainly approach this problem in two ways. One
is to model the network structure as a proxy of social influence.

For example, Ahmad et al. [1] use social network analysis to derive
network-based features for machine learning model. Yang et al. [33]
use network features to cluster users in different groups and predict
customer churn with a deep learning model. The other approach is
to model the sequential order of churn as a diffusion process and
use propagation models such as IR/SR [36] and SPA [7] to simulate
the diffusion process and give predictions. However, these two
approaches failed to capture the causal nature of social influence.
To bridge this gap, this paper tackles the user churn prediction
problem from a causal standpoint for the first time, and we provide
a counterfactual prediction framework that can effectively capture
the causal effects of the social influence on churn.

5.2 Learning Causality in Deep Learning Models

Recently, researchers begin to investigate how to use causal in-
formation to build better deep learning models [4, 18, 25, 34, 37].
Applications include eliminating the bias between the observed
data and the application scenarios [4, 37] and learning the causal ef-
fects to give more accurate predictions [13, 25]. Our work is closely
related to the latter one.

One of the major challenges for deep learning models to learn
causal information is the lack of counterfactual data. Existing solu-
tions mainly deal with this problem from the perspective of estimat-
ing the counterfactual data distribution. For example, Johansson
et al. [13] propose to use domain adaption techniques to adapt the
model from the factual domain to the counterfactual domain. Yoon
et al. [34] propose to generate the counterfactual outcomes by a
GAN framework that learns from the factual observations. How-
ever, these solutions ignore the characteristics of the problem itself,
not to mention that the observed factual outcomes contain limited
information about the counterfactual distribution. This work pro-
poses to solve the challenge of missing counterfactual data from
the root - by a counterfactual data augmentation procedure based
on prior causal knowledge that generally applies to different user
churn scenarios.

6 CONCLUSION

In this paper, we investigate the user churn problem from a causal
perspective by developing a general framework CFChurn for mod-
eling the causal effects of social influence for user churn prediction.
Based on a counterfactual data augmentation procedure and a three-
headed multi-task prediction framework, CFChurn consistently
outperforms state-of-the-art methods in two large-scale datasets
from different application scenarios. The prediction results show
that CFChurn effectively learns the correct causal relationships
and causal effects, which provides insights into making targeted
campaigns for user retention. A meaningful direction for future
work is to extend CFChurn to learn beyond binary causal effects.
Overall, this work also echos prior work’s findings that introducing
causal knowledge to help deep learning models to achieve better
prediction performance is a promising way [4, 18, 25, 37], and calls
for more attention on this research direction.
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