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With increasing diversity of user interest and preference, personalized location recommendation is essential and beneficial

to our daily life. To achieve this, the most critical challenge is the cold-start recommendation problem, for we cannot learn

preference from cold-start users without any historical records. In this paper, we demonstrate that it is feasible to make

personalized location recommendation by learning user interest and location features from app usage data. By proposing a

novel generative model to transfer user interests from app usage behavior to location preference, we achieve personalized

location recommendation via learning the interest’s correlation between locations and apps. Based on two real-world datasets,

we evaluate our method’s performance with a variety of scenarios and parameters. The results demonstrate that our method

outperforms the state-of-the-art solutions in solving cold-start problem, i .e ., when there are 60% cold-start users, we can still

achieve a 77.0% hitrate in recommending the top five locations, which is at least 9.6% higher than the baselines. Our study is

the first step forward for transferring user interests learning from online fingerprints to offline footprints, which paves the

way for better personalized location recommendation services.

CCS Concepts: • Information systems → Collaborative filtering; Personalization; Decision support systems.

Additional Key Words and Phrases: Location recommendation, cold-start problem, generative model

ACM Reference Format:

Zhen Tu, Yali Fan, Yong Li, Xiang Chen, Li Su, and Depeng Jin. 2019. From Fingerprint to Footprint: Cold-start Location

Recommendation by Learning User Interest from App Data. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 3, 1,

Article 26 (March 2019), 22 pages. https://doi.org/10.1145/3314413

∗This is the corresponding author.

This work was supported in part by the National Key Research and Development Program of China under grant 2017YFE0112300, the National

Nature Science Foundation of China under 61861136003, 61621091 and 61673237, Beijing National Research Center for Information Science

and Technology under 20031887521, and research fund of Tsinghua University - Tencent Joint Laboratory for Internet Innovation Technology.

Authors’ addresses: Zhen Tu, Department of Electrical Engineering, Tsinghua University, China; Yali Fan, Sun Yat-Sen University, China,

fanyali@mail2.sysu.edu.cn; Yong Li, Department of Electrical Engineering, Tsinghua University, Beijing, 100084, China, liyong07@tsinghua.

edu.cn; Xiang Chen, Sun Yat-Sen University, China, chenxiang@mail.sysu.edu.cn; Li Su, Tsinghua University, China; Depeng Jin, Beijing

National Research Center for Information Science and Technology(BNRist), Department of Electrical Engineering, Tsinghua University,

China.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that

copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page.

Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy

otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from

permissions@acm.org.

© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.

2474-9567/2019/3-ART26 $15.00

https://doi.org/10.1145/3314413

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 3, No. 1, Article 26. Publication date: March 2019.



26:2 • Z. Tu et al.

1 INTRODUCTION

In such an information exploding era, it is essential to learn user interest from their online behaviors to make

recommendations. One of the most fundamental problems is location recommendation, which aims to predict

which new locations the user may like [9, 23]. For example, many location based mobile applications (i.e., Yelp

and MaFengWo [30]) provide users new attractions to have fun, and such location recommendations should be

customized to satisfy diverse user interests. For a young mother with a little baby, an appropriate recommendation

may be a children’s playground. While for a high school student, probably an educational museum is very suitable.

Both mobile users and location owners can benefit from the effective location recommendation: for mobile users,

they can more easily find favorite locations and have better life experiences; for location owners, they are able to

target potential customers and attract them by precision marketing.

With the increasing diversity of user interest and activity, personalized location recommendation [15, 21, 22, 50,

51] becomes very necessary to provide satisfactory user services. To achieve this task, the most critical challenge

is cold-start recommendation problem [33, 38, 44, 48], i.e., providing recommendations for cold-start users or

locations without any historical records. User cold-start recommendation problem [44, 48] aims to recommend

locations to users who have not previously visited any locations. Due to the lack of interactions with locations,

we cannot learn their potential interest. While location visiting patterns of different users are rather diverse, it is

hard to predict suitable locations to achieve an effective recommendation. Likewise, in location(item) cold-start

recommendation problem [33, 44], where a location has not been previously visited by anyone, learning its

features and recommending it to potential users is also impossible [34]. To solve these cold-start problems, we

need to look at other data sources, e .д., learning user interest from other related behavior data or learning location

features from other side information. Generally, one type of external information, i .e ., user side or item side, can

only solve one type of problems, either user cold-start problem or location cold-start problem. In this paper, we

consider utilizing human app usage data to assist location recommendation, which is feasible to solve these two

types of cold-start problems together. On the one hand, using mobile app is now becoming the most important

online activity in daily life, resulting in large amounts of app usage data. On the other hand, mobile app usage

data can reflect user interests and correlates with location properties. Different users may use different apps

according to their interests [2, 37, 46]. More importantly, app usage is closely correlated with locations, which

have quite different usage patterns with distinct functions [42]. For example, people tend to use more office apps

in their office. While staying at home, entertainment apps are used more frequently. These examples indicate

that it is likely to learn user’s interest from the app usage behaviors, and at the same time obtain the features of a

location from the app usage information aggregated in it. Therefore, app usage data can be regarded as both

user side and item side information, which has the potential to solve both user and location cold-start location

recommendation problems. These two features provide us a unique opportunity to transfer knowledge from user

app usage fingerprints to their footprints in the physical world.

In this paper, we propose a transfer learning based generative model for the personalized location recommen-

dation problem, which transfers user interest and location features from app usage data to help cold-start location

recommendation. By building user-location matrix, user-app matrix and location-app matrix from the data, we

jointly learn the latent vectors of users, locations and apps, especially for cold-start users or locations. Based on

the latent vectors, we estimate the user preferences towards the unobserved locations so as to recommend the

TopK ones. To sum up, the main contributions of this work are three-fold:

• To the best of our knowledge, we are the first to solve cold-start location recommendation problem by

transferring app usage information, which enables learning user interest and location features to make up

for the lack of historical records for cold-start users or locations, respectively.
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• We propose a generative model based on collaborative filtering to achieve personalized location recommen-

dation, which transfers knowledge from app usage domain into location visit domain by jointly learning

the underlying interest correlations across these domains.

• We evaluate the performance of our model based on two real-world datasets with a variety of scenarios and

parameters. The results demonstrate that our method outperforms the other state-of-the-arts in solving

cold-start problem, i .e ., when there are 60% cold-start users, Top5 Hitrate of our solution can achieve

77.0%, at least 9.6% higher than other baselines; when there are 30% cold-start locations, we can achieve

95.5% hitrate when recommending Top5 users to them.

The rest of the paper is organized as follows. Section 2 describes the dataset and Section 3 motivates our

research. Section 4 defines the problem and introduces our methodology, and Section 5 evaluates its performance.

Finally, Section 6 reviews the related work and discusses its implication, and Section 7 concludes the paper.

2 DATASET AND OBSERVATION

In our study, we aim to solve the cold-start location recommendation problem with the help of app usage data. In

order to validate the feasibility of this idea, we use two real-world mobile app usage datasets with both location

and app information. Now we introduce them in details.

TalkingData Dataset (public): This dataset is collected by TalkingData SDK (i.e., integrated within mobile

applications) and released in the Kaggle website [14]. It records fine-grained app usage behavior and spatiotempo-

ral information of mobile users in their devices. For each record, it contains the anonymized device ID, timestamp,

longitude and latitude, and the active app ID. Since the location information is represented by a GPS coordinate

and users are distributed all around China (too large), we perform pre-processing to make it suitable for our

investigated problem. Firstly, we transfer GPS coordinates to grid IDs by dividing the coverage area into many

1km*1km grids. Secondly, we reduce the geographical coverage by choosing the densest 200km*200km area

(located in Guangzhou, a major metropolitan city of China), and then extract all records of targeted users who

have at least 30 records generated within the area. Thirdly, we filter out locations and apps with very few users for

the sake of data sparsity. Through the process, finally we obtain a small-scale but fine-grained mobile app usage

dataset with 256 users, 439 different locations and 689 distinct apps. On average, a user has visited 9 locations

and used 27 apps. The key statistics of this dataset is shown in Table 1.

Telecom dataset: This dataset is a large-scale mobile app usage dataset, which is collected during April 20-26,

2016 from a major mobile network operator in China [42]. It contains the access records of the users when they

issue a connection request to the cellular towers, covering 1.37 million users and 9.4 billion records during one

week. Each record contains anonymized user ID, timestamp, connected cellular tower ID and its GPS location,

and the used app ID and its category. In addition, all the used apps cover the most popular 2,000 apps across

App Store (iOS apps) and Google Play (android apps). Based on the original data, we perform standard data

pro-processing as follows: we first select active users with more than 10 visited locations and 5 used apps, after

filtering out locations and apps with rare users. As shown in Table 1, the finally utilized dataset contains 10,000

users and 11,584 cellular towers with 1,327 apps. On average, a user has visited 40 locations and used 47 apps.

To further demonstrate the quality of the Telecom dataset, we show some basic statistic results in Figure 1. As

for Figure 1 (a), we plot the Cumulative Distribution Function (CDF) of the number of locations and apps that a

user visited and used, respectively. From the results, we can observe that only 30% of users have visited less than

20 different locations, which means most of users have been in dozens of locations in the one-week duration. In

addition, 5% of users are very active and have visited more than 100 different locations. Likewise, for user app

usage, we can observe that the number of used apps per user ranges from 5 to 200, and over 40% of users have

used more than 50 different apps.
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Table 1. Major statistics and key features of our utilized datasets.

Datasets & Metrics TalkingData Dataset Telecom Dataset

Source Mobile application Cellular network

City Guangzhou, China Shanghai, China

Time Duration 1st-7th, May, 2016 20th-26th, April, 2016

Records 180,106 40,470,865

Users 256 10,000

Locations 439 11,584

Apps 689 1,327
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Fig. 1. Illustration of the key statistical characteristics of our Telecom dataset.
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Fig. 2. (a) The distribution of different kinds of app usage in different locations. (b)-(c) The statistical correlation of location

similarity and app similarity between pairwise users.

In addition, we measure the difference of user behaviors in this dataset from the perspective of location visit

and app preference, which serves as a necessary precondition for our solution. In Figure 1 (b), we plot the

Cumulative Distribution Function (CDF) of Jaccard Distance [3] of visited locations between users and used apps

between users. We can find that for 90% of pairwise users, their Jaccard Distance of visited locations is more than

0.9, showing that their visited locations are rather different. As for app usage, we can observe that for 80% of

pairwise users, their Jaccard Distance is more than 0.8. All these results demonstrate that this dataset contains rich

information of users’ location visit and app usage behaviors. More importantly, user preferences towards locations
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and apps are very diverse. On the one hand, it indicates that it is necessary to develop personalized location

recommendation for each user since user location preferences are so different. On the other hand, it shows that it

may be possible to learn different user interests from app usage data so as to help location recommendation.

According to above analysis, the two datasets have different data sources and user scales, which makes our

investigation covering a broad range of scenarios and data quality. Testing recommendation effectiveness in two

real-world datasets (one is public), also assesses the repeatability and generalization of our proposed method.

Ethics. We also want to point out that we are very aware of the privacy implications of using these two

datasets for research and have taken active steps to protect privacy of mobile users. First, the app usage datasets

do not contain any personally identification information or any user-level meta-data. The user ID has been

anonymized (as a bit string) by our data providers, and we never have the access to the true user ID. Second, all

the researchers are regulated by a strict non-disclosure agreement. Two datasets are stored in a server protected

by authentication mechanisms and firewalls. This work also has received the approval from both data providers.

3 MOTIVATION

In this study, we intend to solve cold-start location recommendation problem, whose challenges come from two

aspects. On the one hand, we need to recommend locations to cold-start users, who don’t have any historical

location visiting records for recommendation. On the other hand, we need to recommend users to cold-start

locations, i.e., a newly built POI or a location which has not been previously visited by anyone in the system. Since

we cannot extract characteristics of such cold-start users or locations, it is challenging to provide personalized

recommendations to them and satisfy their diverse requirements.

To tackle above challenges, we look at other data sources and find app usage data is very suitable to serve

as external information, which can solve user and location cold-start problems together. On the one hand, app

usage data is now becoming increasingly prevalent since this is the most important thing we are doing on the

website. On the other hand, app usage preference does have a strong relationship with location visiting behavior.

Next, we utilize the large-scale Telecom dataset to show statistic correlations between app usage and location

visiting behaviors.

First, we investigate the correlation between apps and locations, i .e ., how apps are used in different locations.

Usually, what app a user uses is often related to where she is. In Telecom dataset, we randomly select six locations

with different functions, i .e ., entertainment, shopping, education, company, sports and tourism, then calculate

the distribution of different kinds of apps used in these locations. Note that we simply label each location by

crawling Point of Interest (POI) Information within the area and regarding the category of the most prevalent

POI as the label. The results are shown in Figure 2 (a). From the results, we can find that in entertainment and

sports locations, the most frequently used app’s type is music and its proportion is much higher than other apps.

As for educational location, obviously, users use the related educational apps more frequently. Comparing all

locations, the distributions of different kinds of app usage are quite different, and more importantly specific apps

are used much more frequently in semantically similar locations. All these results show that we are likely to

differentiate different locations or find similar locations according to app usage information in distinct locations.

Therefore, even for a cold-start location, we are able to utilize app usage behaviors nearby to learn its features,

which absolutely help solve location cold-start problem.

Second, we study the correlation of user’s location visitation and app usage behaviors at the individual level.

Since we tend to utilize app usage information to help personalized location recommendation, one critical question

is whether two users using similar apps tend to visit the same locations. In a case study, we find that 2 users

with 8 common apps have the same 3 frequently-visited locations and 3 users sharing 4 common apps have

visited the same 5 locations, etc. In order to answer this question comprehensively, we analyze the statistical

correlation of location similarity and app similarity between pairwise users. Based on used apps and visited
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locations, we utilize Cosine Similarity [28] to compute app similarity and location similarity between pairwise

users, respectively. In specific, app similarity vector Pi = {pi j } denotes app similarity between user i and other

users, with pi j representing app similarity between user i and j . So as the location similarity vector Qi = {qi j }. If
the app similarity between user i and user j and their location similarity are closely related, the app vector Pi
and location vector Qi , i.e., the distribution of similarity, will have a strong correlation. Thus, to further quantify

the relationship between apps and locations, we still use Cosine Similarity to compute the correlation between

app similarity vector Pi and location similarity vector Qi for user i . The correlation Ci of Pi and Qi is computed

as follows:

Ci = cos(Pi ,Qi ),∀i, j = 1, ...,N , (1)

with N representing the total number of users.

After formal definition, we demonstrate the results of the correlation between apps and locations in Figure 2 (b)

and (c). In Figure 2 (b), we can obviously observe that app similarity and location similarity between different users

are linear correlated. As for Figure 2 (c), we plot the Cumulative Distribution Function (CDF) of the correlation

C = {Ci }. From the result, we can observe that for nearly all the users, the correlation between their app usage

and location visit is more than 92%. In addition, 80% of users have a very high Cosine Similarity (over 96%)

between their used apps and visited locations, which means most of users’ app usage behaviors have a strong

relationship with their mobility patterns. All these results indicate that individual app usage and mobility behavior

are correlated strongly. Therefore, for a cold-start user without historical location visiting records, we can learn

user interest from her app usage behaviors and choose suitable locations to recommend, which solves the user

cold-start problem.

All the above analysis demonstrates that individual app usage behaviors and their location visiting patterns are

strongly correlated, which provides a unique opportunity to learn characteristics of cold-start user or locations

from the app usage data, so as to make location recommendations. Thus, it is feasible to utilize individual and

location app usage data to improve the effectiveness of personalized location recommendation.

4 SOLUTION

In this section, we first formally define our investigated problem, then introduce our proposed personalized

location recommendation system.

4.1 Problem Definition

Location recommendation is to predict what other locations the user will like to visit besides those are known

from the observations. It requires us to learn user interest and location features accurately and predict user

preferences towards different locations. Due to the sparsity of location visitation information, we may only

learn a small part of information or even cannot obtain any knowledge about user or location features, leading

to the failure of personalized location recommendation, especially for cold-start users or locations. Since we

have verified the feasibility of transferring user interest and location characteristic from app usage data to help

with personalized location recommendation, in this study we aim to learn more about user interest and location

characteristic with the help of app usage data. Based on this targeted scenario, we formally define the investigated

problem as follows.

Suppose there are N users, L locations and M apps, then we obtain a user-location matrix X = {xi j } and a

user-app matrix Y = {yik }, with xi j and yik representing the visited frequency of location j and usage frequency

of app k for user i , respectively. In addition, based on aggregated app usage information, we can acquire a

location-app matrix Z = {zjk }, where zjk denotes the aggregated times of using app k in location j for all the
users. For our targeted user-location matrix X, xi j = 0 means we haven’t observed user i visited location j,
indicating that user i’s preference towards location j is still unknown and needs to predict. In the cold-start
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setting, for a cold-start user i , all the values in the i-th row of user-location matrix X are missing. Accordingly,

for a cold-start location j, all the values in the j-th column of user-location matrix X are missing. In this study,

we mainly focus on the recommendation effectiveness of these cold-start users and locations.

Therefore, our investigated problem is how to predict user preferences towards the unobserved locations after

knowing user-location matrix, user-app matrix and location-app matrix. Formally, our targeted personalized

location visit prediction problem can be defined as:

Input: Users’ location visit information denoted by user-location matrix X, users’ app usage information

denoted as user-app matrix Y and locations’ app usage information denoted as location-app matrix Z.

Output: A predicted denser user-location matrix X̂, i .e ., a personalized location ranking preference towards

the unobserved locations for each user. More precisely, the prediction of the unobserved values (the zero values)

in user-location matrix X.

4.2 System Design

Fig. 3. The framework of our transfer learning based personalized location prediction system.

In recommendation system, transfer learning is a prevalent strategy to incorporate different data source infor-

mation to accomplish a task. Beyond transfer learning models, matrix co-factorization is one of the most common

and effective implement methods in personalized recommendation. In our personalized location recommendation

task, we need to combine user-location matrix, user-app matrix and location-app matrix and transfer latent

features of users, locations and apps beyond them, so we also adopt this methodology to solve our problem.

Figure 3 is the framework of our designed transfer learning based and personalized location recommendation

system.
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As the figure shows, we first have a sparse user-location matrix X (even with some rows or columns empty),

and obtain a user-app matrix Y and a location-app matrix Z as the input. Then, we assume features of users,

locations and apps are shared in these matrices and design a generative model to learn their latent vectors. Finally

we recover a dense user-location matrix X̂ as the output, which achieves the target of predicting user preferences

towards the unobserved locations. Now we introduce the key part – how we learn the latent representatives of

three different entities.

In order to learn user-location, user-app and location-app information together, we use a generative model

to transfer the knowledge among them. What we transfer among the user-location domain, user-app domain

and location-app domain are the latent feature vectors of users, locations and apps. Specifically, we denote

U ∈ RH×N ,L ∈ RH×L and A ∈ RH×M to represent the latent vectors of user, location and app feature matrices

respectively, with column vectors ui , lj ,ah representing the K-dimensional latent feature vector of user i , location
j and app k respectively.

We propose a generative model to learn these vectors by maximize the log-posterior likelihood, which is equiv-

alent to minimizing the following objective function, i.e., a sum of squared errors with quadratic regularization

terms:

ζ (U,L,A) =
1

2
| |IX ◦

(
X − д

(
U�L

) )
| |2F +

β1

2
| |IY ◦

(
Y − д

(
U�A

) )
| |2F

+
β2

2
| |IZ ◦

(
Z − д

(
L�A

) )
| |2F +

(
λu
2
| |U| |2F +

λl
2
| |L| |2F +

λa
2
| |A| |2F

)
,

(2)

where the logistic function д(x) = 1/(1 + exp(−x)) bounds the matrix multiplication range within [0, 1] interval,
◦ means the point-wise matrix multiplication, and IX , IY , IZ are denoted as flag matrices for user-location data,

user-app data and location-app data respectively. If record of user i and location j is known, then IX (i, j) = 1,

otherwise IX (i, j) = 0. IY and IZ are defined in the similar ways. ‖ · ‖2F denotes the Frobenius norm. β1 is the
weight of user-app data we use for transfer learning, β2 means the weight of location-app data. The last three

terms are regularization terms with coefficients λu
2 ,

λl
2 ,

λa
2 , respectively. More details can be found in Section 7.

There exist several methods to reduce the time complexity of model training, and we adopted mini-batch

gradient descent approach to learn the parameters. With random sampling, the cost of the gradient update

no longer grows linearly in the number of entities related to latent feature vectors, but only in the number of

entities sampled. The hyper-parameters, i .e ., number of latent features and regularization coefficient, are set by

cross-validation.

In conclusion, we propose a transfer learning model to accomplish the personalized location prediction task,

which inputs user-location matrix X, user-app matrix Y and location-app matrix Z, then outputs a denser

user-location matrix X̂ by sharing the latent feature vectors of users, locations and apps.

5 EVALUATION

To evaluate the performance of our proposed personalized location recommendation system, we conduct a series

of experiments to answer the following three key research questions:

• RQ1: Can our method outperform the state-of-art recommendation approaches in different cold-start

scenarios, i .e ., user cold-start problem and location cold-start problem?

• RQ2: What performance can our method achieve under different levels of data sparsity?

• RQ3: How do different hyper-parameter settings, i .e ., two transfer weights and the dimension of latent

feature vectors, affect the performance of our method?
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5.1 Experimental Setting

5.1.1 Metrics. In order to compare the recommendation performance between our method and other baselines,

we adopt three prevalent metrics, i .e ., TopK Hitrate , TopK Accuracy, and nDCGK , to evaluate the accuracy of

recommendation results.

TopK Hitrate : This metric measures the percentage of users whose Top-K locations are successfully predicted

(correct for at least one location) in the test set, which is commonly used since the recommendation system

usually recommends a list of items to expect users click at least one of them. The computation is as follows:

TopK Hitrate =

∑N
i=1(|L

pred
i ∩ Ltesti | � 1)

N
, (3)

where L
pred
i denotes the set of predictedTopK locations and Ltesti denotes the most frequently visited K locations

by the user among locations in the testing set, for each user ui ∈ U.

TopK Accuracy: This is a metric that measures the mean prediction accuracy on TopK prediction of all users,

which can be expressed as follows:

TopK Accuracy =

∑N
i=1(|L

pred
i ∩ Ltesti |/K)

N
. (4)

nDCGK : This metric is a common measure of ranking quality which can measure the effectiveness of our

location recommendation algorithm. It can be expressed as follows:

nDCGK =
DCGK

IDCGK
=

N∑
i=1

∑K
j=1 rel

pred (i)
j /loд2(j + 1)∑K

j=1 rel
test (i)
j /loд2(j + 1)

/N , (5)

where rel
pred(i)
j denotes the relevance (the normalized usage frequency) of the j-th predicted app and rel test (i)j

denotes the relevance (the normalized usage frequency) of the j-th app in the testing set, for each user ui ∈ U.

Taking TopK recommended locations into consideration, these three metrics can measure whether we recom-

mend effective locations and how accurate our recommendation is. Therefore, they are enough to reflect the

performance of a recommendation system.

5.1.2 Baselines. In order to investigate the performance of our model, we compare it with other seven state-of-art

algorithms.

SVD [17]: In recommendation systems, SVD is used as a collaborative filtering (CF) algorithm, which predicts

an item pair rating for a user based on the history of ratings given to the items by the user. Here the item refers

to location. With no prior information, SVD only utilizes the user-location matrix.

MF [32]: MF also only utilizes the user-location matrix without any external information. Here we choose a

popular low-rank factorization method to complete such a typical collaborative filtering task. MF is equivalent to

our approach in the case that we set β1 = 0 and β2 = 0. We consider this baseline to show that with such sparse

user location visit data, the quality of personalized location recommendation is poor if we do not transfer any

information from other resources.

CMF-U: Considering external information from user side, CMF-U utilizes both user-location matrix and

user-app matrix to do collaborative matrix factorization. CMF-U is equivalent to our approach with β2 = 0.

CMF-L [36]: Considering external information from item side, CMF utilizes both user-location matrix and

location-app matrix to do collaborative matrix factorization. CMF-L is equivalent to our approach with β1 = 0.

KNN: Based on user-app matrix Y, for each user, KNN first finds the nearest K neighbor users, then predicts

the visited locations in the testing set according to these neighbors’ location visiting behaviors. Assume the
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app usage similarity between user ui and his K neighbors UK
i , denoted as {Si j },∀uj ∈ UK

i , then the location

predication of user ui can be expressed as follows:

X̂i =
∑
j

Si jXj/
∑
j

Si j ,∀uj ∈ UK
i . (6)

SoRec [24]: Besides the user-location matrix, SoRec also introduces a user-user matrix to do collaborative

matrix factorization. Originally, the user-user matrix is filled by social friendship information (whether friend or

not). Here we replace it with the cosine similarity of app usage information between pairwise users. Note that for

cold-start location recommendation, we replace user-user matrix with location-location matrix.

SR [25]: Compared with MF, it integrates social information to via a social regularization term which can limit

the distance in latent space of users’ embedding vectors with their friends. Again, we utilize the similarity of

app usage to reflect the social relationship between users and the weight of the social regularization term is the

cosine similarity of app usage between users.

5.1.3 Parameter Setting. In our method, we have the following hyper-parameters: dimension of latent feature

vectorH , weight for user-app matrix β1, weight for location-app matrix β2, regularization coefficients [ λu2 ,
λl
2 ,

λa
2 ],

learning rate η, and maximum iteration times T .
For the system based on Telecom dataset, to determine the dimension of latent feature vector, we experiment

with a sequence of settings ranging from 5 to 50 and empirically select H = 20 as our default value. Likewise, we

empirically set β1 = 0.7, β2 = 0.07. As for the other parameters, we set [ λu2 = 0.1, λl2 = 0.1, λa2 = 0.1], η = 0.01
and T = 600. In order to keep consistency and guarantee the comparability of results, we set the same dimension

of latent feature vector, regularization coefficients, learning rate and maximum iteration times for our baselines.

In addition, for SR, we set the weight for the social regularization term αu
2 to 0.1, and for KNN, we set the number

of nearest neighbors K = 20.

Likewise, for the system based on TalkingData dataset, we set H = 10, β1 = 0.2, β2 = 0.03, η = 0.8 andT = 200.

Besides, values of [ λu2 ,
λl
2 ,

λa
2 ], and

αu
2 for SR are the same with the system based on Telecom dataset. In addition,

for KNN, we set the number of nearest neighbors K = 5.

5.2 Cold-start Problem Solving(RQ1)

In our targets, there are two types of cold-start problems. In these two scenarios, only the user-location matrix is

not enough, thus our two baselines SVD and MF fail to work. To solve cold-start problems, we must transfer

knowledge from either user side (CMF-U) or item side (CMF-L) external information. Moreover, our model (Ours)

utilizes both side external information to solve cold-start problems.

To investigate the performance in user cold-start scenario, we randomly sample some cold-start users by hiding

all their location visit records and try to recommend locations to them by utilizing location visit records of the

rest of users plus extra information from user-app matrix and location-app matrix. To be specific, we split the

training set and test set as follows: Firstly, we hide values of some rows in user-location matrix X by random

sampling, i .e ., the relevant users without any location records are regarded as cold-start users to form the test set.

It means other users are regarded as the training users. Secondly, we input matrices of X, Y and Z into our system,

then predict location preferences of the test users and evaluate the effectiveness of location recommendation to

different proportions of cold-start users. The performance comparisons are shown in Figure 4 and Figure 5. From

the results, we can observe that our method achieves higher hitrate and accuracy than other baselines in both

datasets. For example, in Figure 4, considering the top 3 locations, with 30% cold-start users, we achieve 50.1%

hitrate, which is 11.1% higher than baselines. With 60% cold-start users, Top5 Hitrate of our method reaches

77.0%, which is 5.5% higher than CMF-U, 6.6% higher than SR, 18.3% higher than SoRec, 27.7% higher than KNN.

Moreover, nDCG5 of our method is 58.1%, which is 4.9% higher than CMF-U, 6.4% higher than SR, 9.3% higher

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 3, No. 1, Article 26. Publication date: March 2019.



From Fingerprint to Footprint: Cold-start Location Recommendation by Learning User Interest ... • 26:11

than SoRec, and 12.9% higher than KNN. In addition, even with 70% cold-start users, the hitrate and accuracy of

recommending Top3 or Top5 locations still outperform other four baselines. The TalkingData dataset in Figure 5

also shows similar results. According to these results, we can infer that user app usage information is more

beneficial for learning user interest so as to recommend locations to these cold-start users. In addition, our

method, a combined utilization of user and location app usage information, can further improve the effectiveness

of location recommendation greatly for cold-start users.
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Fig. 4. The performance comparison between our method and two baselines for user cold-start problem on Telecom dataset.
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Fig. 5. The performance comparison between our method and two baselines for user cold-start problem on TalkingData

dataset.

Likewise, in the location cold-start scenario, we also obtain some cold-start locations by hiding all their user

interactions and recommend users to them. We show the performance of our method and baselines in Figure 6
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and Figure 7. Obviously, our method has better performance than CMF-L, SR and SoRec and KNN. Take the

Telecom dataset in Figure 6 for example, with 30% cold-start locations, Top5 Hitrate can reach 95.5% when

recommending users to them, which is 5.0% and 6.8% higher than KNN and SR, respectively. Even with 70%

cold-start locations, our model can also provide 13.5% improvement of Top3 Accuracy compared to SoRec. In

addition, theTop3Hitrate can also reach over 90%, which means that for those locations without user information,

users recommended by our model are likely to visit the locations. So as the TalkingData dataset in Figure 7.

Notice that we measure the accuracy of recommending Top2 locations because users have less visited locations

in the dataset and predicting Top2 locations is meaningful. The performance comparison based on two datasets

shows obviously that our method can effectively solve location cold-start problem, for better understanding of

user interest and cold-start locations’ characteristics from app usage information.

In a short summary, our approach performs very well in both user and location cold-start problems. Considering

60% cold-start users,Top5 Hitrate of our model is 77.0%, at least 9.6% higher than other baselines. In addition, for

30% cold-start locations, we can achieve 95.5% hitrate when recommending Top5 users to them.

30% 40% 50% 60% 70%
0.6

0.7

0.8

0.9

1

Ratio of Cold−Start Locations

T
op

3 
H

itr
at

e

 

 

Ours
CMF−L
SoRec
SR
KNN

(a) Top3 Hitrate

30% 40% 50% 60% 70%
0.4

0.5

0.6

0.7

0.8

Ratio of Cold−Start Locations

T
op

3 
A

cc
ur

ac
y

 

 

Ours
CMF−L
SoRec
SR
KNN

(b) Top3 Accuracy

30% 40% 50% 60% 70%
0.6

0.65

0.7

0.75

0.8

Ratio of Cold−Start Locations

nD
C

G
3

 

 

Ours
CMF−L
SoRec
SR
KNN

(c) nDCG3

30% 40% 50% 60% 70%
0.6

0.7

0.8

0.9

1

Ratio of Cold−Start Locations

T
op

5 
H

itr
at

e

 

 

Ours
CMF−L
SoRec
SR
KNN

(d) Top5 Hitrate

30% 40% 50% 60% 70%
0.3

0.4

0.5

0.6

0.7

Ratio of Cold−Start Locations

T
op

5 
A

cc
ur

ac
y

 

 

Ours
CMF−L
SoRec
SR
KNN

(e) Top5 Accuracy

30% 40% 50% 60% 70%
0.55

0.6

0.65

0.7

0.75

Ratio of Cold−Start Locations

nD
C

G
5

 

 

Ours
CMF−L
SoRec
SR
KNN

(f) nDCG5

Fig. 6. The performance comparison between our method and two baselines for location cold-start problem on Telecom

dataset.

5.3 Performance in Varying Data Sparsity(RQ2)

The above analyses have shown our significant advantages in solving the cold-start problem. Now, we investigate

how our method performs under different data sparsity. In order to split training and test set, we randomly select

a part of locations for each user and regard visit behaviors among these locations as the training set, then assume

that the rest locations are unknown so as to form the test set. In addition, to simulate different levels of data

sparsity, we extract different percentages of known locations from each user to form the training set. Thus, we

select five different ratios of training set: 30%, 40%, 50%, 60% and 70%. We adopt six metrics, i .e ., Top3 Hitrate ,
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Fig. 7. The performance comparison between our method and two baselines for location cold-start problem on TalkingData

dataset.

Top3 Accuracy, Top3 nDCG, Top5 Hitrate , Top5 Accuracy, Top5 nDCG for Telecom dataset and three metrics,

i .e ., Top2 Hitrate , Top2 Accuracy, Top2 nDCG for TalkingData dataset to evaluate location recommendation

accuracy. Based on our two real-world datasets, we compare their performances and show the results in Figure 8

and Figure 9.
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Fig. 8. The performance comparison between our method and several baselines under different data sparsity levels on

Telecom dataset.

Firstly, let’s look at the results of the Telecom dataset. From Figure 8 (a), we can observe that our method

(Ours) outperforms the other baselines under different sparsity levels. By taking external information of user side

or item side into consideration, CMF-U and CMF-L perform better than MF and SVD, indicating both user-app

matrix and location-app matrix are useful for personalized location recommendation. In addition, SR and SoRec

utilize user similarity information directly while CMF-U and CMF-L still outperform them, which shows that
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Fig. 9. The performance comparison between our method and several baselines under different data sparsity on TalkingData

dataset.

the method of CMF is more effective than considering user correlation directly in collaborative filtering or

regularization term. Moreover, these above methods generally perform better than KNN, which shows that

collaborative matix factorization is more effective than just considering several nearest neighbors. In terms

of our designed method, with 30% to 50% training data, Our Top3 Hitrate is 9% to 13% higher than SVD and

MF, and 5% to 6% higher than CMF-U and CMF-L. It shows adding user-app and location-app data information

simultaneously provides progressive performance improvement. So as the Top3 Accuracy. Under different levels
of data sparsity, our recommendation is more accurate than others. Similar results have been shown in Figure 8

(d) and (e), which measure those methods’ performances by Top5 Hitrate and Top5 Accuracy. With 50% training

data, theTop5 Hitrate of our approach is over 90%, which is about 3.4% higher than CMF-U, 4.1% higher than SR,

5.8% higher than SVD, 10.6% higher than KNN. As for nDCG5, our method still outperforms other baselines.

We also show the performance under the TalkingData dataset in Figure 9. The results demonstrate that our

solution performs better than the other baselines in all cases. For example, when utilizing 50% training data, our

method achieves 89.1% Top2 Hitrate , which is 1.7% higher than CMF-L, 3.0% higher than MF, and 3.5% higher

than KNN.

In summary, results on two datasets both demonstrate that our designed recommendation system outperforms

the other baselines under different sparsity levels. With 30% training data, Top3 Hitrate of our method is 55.7%,

providing 5.7% and 10.8% improvements compared to CMF-U and MF respectively. Moreover, our method has a

83.1% hitrate in predicting Top5 apps. All these results show that adding user-app and location-app matrices

provides progressive performance improvement, especially in the sparse data.

5.4 Hyper-parameter Impact(RQ3)

In this section, we measure the impact of different hyper-parameter settings and evaluate the impact of properties

of user-app and location-app on the location prediction accuracy. More specifically, we will investigate the

performance of our method when setting two transfer weights and the dimension of latent feature vector with

different values. The results are shown in Figure 10 and Figure 11.

Firstly, we evaluate the impact of the weight for user-app matrix β1 and the weight for location-app matrix

β2 separately. We set the ratio of training set to be 50% and keep other parameters the same. The results are

shown in Figure 10 (a) and Figure 11 (a), for Telecom dataset and TalkingData dataset respectively. now let’s

look at Figure 10 (a) based on Telecom dataset. From the results we can observe that Top3 Hitrate grows at

the beginning then decreases when β1 gradually increases from 0 to 30. It is because when β1 is very small, the

model cannot fully utilize user-app information to capture user interests and the relationship among different

users. When β1 becomes large, the user-app information dominates the object function, thus overwhelming the

location visit information from user-location matrix. With β1 = 0.7, the system finds a balance and achieves
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Fig. 10. (a) The impact of transfer weights on the location recommendation accuracy, based on Telecom dataset. (b) The

impact of the dimension of latent feature vector on the location recommendation accuracy, based on Telecom dataset.

0 0.01 0.03 0.1 0.2 0.4 0.8 1.0
0.85

0.86

0.87

0.88

β
1
(Weight for User−App Matrix)

T
op

2 
H

itr
at

e

 

 

β
2
=0

0 0.01 0.03 0.1 0.3 1.0
0.8

0.82
0.84
0.86
0.88

β
2
(Weight for Location−App Matrix)

T
op

2 
H

itr
at

e

 

 

β
1
=0.2

(a) β1, β2

5 10 15 20 25 30 35 40 45 50
0.8

0.82

0.84

0.86

0.88

H(Dimention of Latent Features)

T
op

2 
H

itr
at

e

 

 

β
1
=0.2,β

2
=0.03

(b) H

Fig. 11. (a) The impact of transfer weights on the location recommendation accuracy, based on TalkingData dataset. (b) The

impact of the dimension of latent feature vector on the location recommendation accuracy, based on TalkingData dataset.

the best performance, with a 63.2% Top3 Hitrate , which provides 3.2% improvement than the case that β1 = 0.

So as β2, the weight for location-app matrix. We find the most suitable value of β2 is 0.07, in this case, the best

Top3 Hitrate are 66.8%, which provides 6.4% improvement than the case that β2 = 0 with β1 = 0.7. We can also

find the same trend of β1 and β2 in Figure 11 (a) which is based on TalkingData dataset. Similarly, with β1 = 0.2
and β2 = 0.03, the system achieves the best performance. These results validate our intuition that user-app and

location-app correlation information are useful thus making full use of them can benefit personalized location

recommendation.

Secondly, we evaluate the impact of the dimension of latent feature vector H . We change it from 5 to 50, and

the results are shown in Figure 10 (b) and Figure 11 (b), for Telecom dataset and TalkingData dataset respectively.

When H = 20 for Telecom dataset and H = 10 for TalkingData dataset, their corresponding systems perform the

best, but the performance does not change too much indeed, showing our model is very robust and performs
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equally well under various H values. Thus we set H = 20 for Telecom dataset and H = 10 for TalkingData dataset

in our evaluation.

In conclusion, our proposed personalized location recommendation system is very robust and outperforms

other state-of-art algorithms in different cold-start and data sparsity settings, indicating that the introduction of

app usage data is very beneficial, and making full use of them can greatly improve the performance of cold-start

location recommendation.

6 DISCUSSION AND RELATED WORK

In this study, we make full use of individual app usage data to infer user interest and extract location features,

then further recommend locations to cold-start users or help cold-start locations target potential visitors, i.e.,

solving cold-start location recommendation problem. Indeed, the considered scenario is practical in our daily

life, for people now highly rely on recommendation services of mobile applications, in order to reduce the

cost of information acquisition in such an information explosion era. Many mobile applications, such as Yelp

and MaFengWo [30], provide users personalized location recommendations (e.g., restaurants and attractions)

mainly based on their collected online activity data, (e.g., user app usage fingerprints), with the user agreement

[1, 5, 11, 16]. Therefore, the need for utilizing online fingerprints to predict offline footprints does exist and

application vendors usually own the required data base. Under these conditions, our study is very meaningful.

Our idea of transferring online app usage information to help predict offline location visitation behaviors,

is actually a first successful attempt of "from online fingerprints to offline footprints" application. Nowadays,

people use mobile applications everyday and everywhere, thus many offline activities are recorded by online

fingerprints. Online behaviors, such as mobile app usage, have rich and diverse contents and can absolutely

reflect user interests and characteristics [8, 20, 37, 46], therefore, posing the possibility of predicting user offline

behaviors. Quantitative analysis in this study has verified the strong correlation of online app usage and offline

location visiting patterns. Moreover, our performance evaluation, based on both a large-scale dataset and a public

dataset, has shown the generalization of domain knowledge transformation from online fingerprints to offline

footprints.

More generally, our work reveals the huge benefits of transfer learning applications by combining user’s online

and offline behaviors. Since the diverse activities in smart phones make users generate a great deal of online

behavior data, such as app usage information and web browsing history [6, 7, 13]. Many studies have shown that

these fine-grained and informative data can capture user’s habits, preferences and requirements [2, 26, 31, 37, 46].

While for offline behaviors, many location based services [22, 30, 39, 51], like trajectory prediction and location

recommendation, require precise user portraits and suffer from limited information about user behavior. Therefore,

it is essential and effective to boost offline prediction and recommendation applications by learning knowledge

from online user behaviors. Our work takes a first step forward to promote a better understanding of the intrinsic

correlation between individual’s online and offline behaviors and the benefits of combining them. This is an

important research area of ubiquitous computing and a vibrant research topic in the UbiComp community and

beyond. In addition, during the past few years, many works [2, 19, 37, 42, 45, 46] in UbiComp have realized

the importance and great value of app usage data and conducted different studies to explore its applications.

Our work, is also a follow-up to show the possibility of utilizing app usage data to help personalized location

recommendation, which poses a brand-new angle of applying app data into practice.

6.1 Location Recommendation and Prediction

Location recommendation systems have been widely used and a wide range of approaches have been proposed,

which are usually achieved by using additional information of time, activities, etc. [15, 21, 22, 50, 51]. Zheng et al.

and Karatzoglou et al. presented collaborative filtering based recommendation algorithm and used a large-scale
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user data pool to collaboratively filter the like-minded users at different locations or activities [15, 50]. Zhu et

al. [51] focused on the problem of insufficient information from individual users by learning the common location

preference of many users. Kostakos et al. [18] applied a Markov state transition model to predict next screen

event. Zhao et al. [47] proposed a spatial-temporal latent ranking method to explicitly model the interactions

among user, POI, and time. Liu et al. [22] proposed a neural network solution for location recommendation. Other

works also concern about the problem of location prediction, which aims to predict the future visited locations

based on the historical data. Considering the mobility similarity between user group, Zhang et al. [43] proposed

GMove to share significant movement regularity among users. Moreover, pattern-based methods [10, 27, 41]

were also utilized to predict the mobility based on these popular patterns.

Existing works mainly utilize spatiotemporal information to discover similar users and find some common

interested locations to recommend. However, due to data sparsity problem, it is very hard to find actually similar

users only based on the mobility trajectories. In this paper, we consider utilizing a new data source – app usage

information to help location recommendation. App usage behavior can directly reflect user interest and preference,

therefore, it is more promising and effective to filter similar users and discover potential locations to recommend,

which makes up for the sparsity of location visiting data.

6.2 Cold-start Problems

To solve the cold-start problem, the common practice is to find addition datasets to obtain necessary information

for the cold-start users/items without any records in the target domain. In this paper, we focus on the cold-start

problem of location recommendation. Recently, many studies concern about this issue. Xie et al. [38] proposed

a generic graph-based embedding model, taking sequential, geographical, temporal and semantic factors into

consideration. Gao et al. [9] addressed the cold-start location recommendation problem by utilizing both social

and geographical relationships among users. Long and Joshi [23] proposed a HITS-based POI recommendation

algorithm to recommend POIs to LBSN users considering their social relationships. [34] et al. utilized basic

demographic data (gender, age, location) or social network information (Facebook friends or page likes) to

solve cold-start problems. In addition, [25] integrated social information to recommender system via a social

regularization term which can limit the distance in latent space of users’ embedding vectors with their friends

when performing the recommendation task.

Note that many existing works require user profiles or social relationship of users, compared with these works,

our study first introduces online app usage data to learn the "interest relationship" between different users and

verifies its effectiveness to boost cold-start location recommendation. More importantly, with app usage data, we

are able to learn both user’s interest and location’s features and solve user and location cold-start recommendation

problem together.

6.3 App Usage Modelling

Recent works have studied how users use mobile apps by focusing on three aspects: user interactions, network

traffic, and energy drain [6, 7, 13]. Church et al. [4] summarized the challenges for mobile phone usage learning

and analysis, as well as a series of studies and applications on mobile phone usage. Falaki et al. [6] discovered

immense diversity usage activities among users. Another related work [2, 26, 31, 37] reveals that users can be

identified through the sets of apps they use. Other studies cluster mobile users according to their app usage

records[46]. Moreover, users’ mobility patterns can impact the way that the apps are used [49]. Context such as

location and time are shown to have an impact on app usage [12, 35]. A multi-faceted approach to predict app

usage is developed in [40].

Most studies focus on discovering app usage patterns to boost the understanding of users. While in our paper,

we make full use of app data to serve as an additional but important information to help solve the cold-start
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problem of location recommendation. On the one hand, app usage information can reflect user interest so as to

measure user similarity, which can solve cold-start recommendation problem of users with no location records.

On the other hand, app usage information can reflect the functional attributes of locations to some degree, which

can help the recommendation of cold-start locations. To the best of our knowledge, it is the first work to show the

possibility of utilizing app usage data to help personalized location recommendation, which poses a brand-new

angle of applying app data into practice.

6.4 Limitations

Our work has some limitations. First, app usage data has not been published extensively, which throws the

doubt on its accessibility and seems to limit the utility of our proposed method. However, it is encouraging that

the situation now begins to change. Recently, some mobile app usage datasets [14, 29] have been published. In

addition, a study [42] shows it is possible to utilize POI information to infer which types of apps users use given

a particular location. That means, even the app usage dataset is not available, we can still utilize POI information

to infer app usage information. Moreover, as we mentioned before, in industry, many mobile operators and

application vendors [2, 37, 42, 46] do have such online behavior data to learn user interest and provide personalized

recommendation services with the user agreement. Therefore, we believe the situation will be gradually improved

and our study is meaningful and prospective. Second, our recommendation is static rather than a dynamic one,

since we don’t consider the temporal factor in our model. Indeed, this work takes the first step to show the

benefits that app usage information can bring to location recommendation. And we leave further explorations of

time-variant personalized location recommendation to future work.

7 CONCLUSION

In this paper, we demonstrate the feasibility of making personalized location recommendation by transferring

app usage information, especially in solving the cold-start problem. Accordingly, we propose a generative model

to transfer knowledge from app usage behaviors into location visiting preference. Based on two real-word

mobile app usage datasets, we evaluate the performance of our method and find it outperforms the other four

state-of-the-art algorithms in both user and location cold-start problems. Moreover, our method also shows a

great performance under different levels of data sparsity, indicating our method’s effectiveness and robustness.

Our study is the first step forward for transferring user interests learning from online fingerprints to offline

footprints, which paves the way for providing better personalized location recommendation services for mobile

users.

APPENDIX: THE GENERATIVE MODEL

We define the conditional distribution over the user-location matrix X, user-app matrix Y, and location-app

matrix Z as follows:

ρ(X,Y,Z|U,L,A,σ 2
1 ,σ

2
2 ,σ

2
3 ) = ρ(X|U,L,σ 2

1 )ρ(Y|U,A,σ
2
2 )ρ(Z|L,A,σ

2
3 )

=
∏

N (xi, j |д((ui )
�lj ),σ

2
1 ) ×

∏
N (yi,k |д((ui )

�ak ),σ
2
2 ) ×

∏
N (zj,k |д((lj )

�ak ),σ
2
3 ) ,

(7)

where we consider the most common Gaussian distribution and N (·|μ,σ 2) is the probability density function of

the Gaussian distribution with mean μ and variance σ 2. The function д(x) is the logistic function 1/(1 + exp(−x))
to bound the range within [0, 1] interval, since our data are composed of implicit feedbacks. From the conditional

distribution above, we can observe that the latent feature vectors of users, locations and apps are shared in

user-location domain, user-app domain and location-app domain. We also place spherical Gaussian priors on
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Fig. 12. The graphical representation of our generative model.

user, location and app feature vectors, which are defined as follows:

ρ(U|σ 2
u ) =

N∏
i=1

N (ui |0,σ
2
u I ), ρ(L|σ

2
l ) =

L∏
j=1

N (lj |0,σ
2
l I ), ρ(A|σ 2

a) =

M∏
k=1

N (ak |0,σ
2
a I ). (8)

The graphical representation of our model is illustrated in Figure 12. Its generative process runs as follows:

• For each user i , draw the vector as ui ∼ N (0,σ 2
u I );

• For each location j, draw the vector as lj ∼ N (0,σ 2
l
I );

• For each app k , draw the vector as ak ∼ N (0,σ 2
a I );

• For each user-location pair (i, j), draw the value xi, j ∼ N
(
д((ui )

�lj ),σ
2
1

)
;

• For each user-app pair (i,k), draw the value yi,k ∼ N
(
д((ui )

�ak ),σ
2
2

)
;

• For each location-app pair (j,k), draw the value zj,k ∼ N
(
д((lj )

�a2
k
),σ 2

3

)
.

Through Bayesian inference, the posterior probability of the latent feature vector sets U , L and A can be

obtained as follows:

ρ(U,L,A|X,Y,Z,σ 2
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2
2 ,σ

2
3 ,σ

2
u ,σ

2
a ,σ

2
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2
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2
3 )ρ(U |σ 2
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2
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2
a)

=
∏

N (xi, j |д((ui )
�lj ),σ

2
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∏

N (yi,k |д((ui )
�ak ),σ

2
2 ) ×

∏
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�ak ),σ
2
3 )

×
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2
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2
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M∏
k=1

N (ak |0,σ
2
w I ).

(9)
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The log of posterior distribution over the user, app and word latent feature vector is calculated as follows:

ln ρ(U,L,A|X,Y,Z,σ 2
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(10)

where C is a constant that does not depend on the parameters. ‖ · ‖2F denotes the Frobenius norm. Keeping the

parameters, i .e ., observation noise variance and prior variance, fixed, maximizing the log-posterior over the

latent feature of users, apps and locations is equivalent to minimizing the following objective function, which is a

sum of squared errors with quadratic regularization terms:
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1

2
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2
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2
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)
,
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where ◦ means the point-wise matrix multiplication. IX , IY , IZ are denoted as flag matrices for user-location data,

user-app data and location-app data respectively. If record of user i and location j is known, then IX (i, j) = 1,

otherwise IX (i, j) = 0. IY and IZ are defined in the similar ways. β1 is the weight of user-app data we use for

transfer learning, β2 means the weight of location-app data. Specifically, β1 = σ 2
1 /σ

2
2 , β2 = σ 2

1 /σ
2
3 and λu = σ 2

1 /σ
2
u ,

λl = σ 2
1 /σ

2
l
, λa = σ 2

1 /σ
2
a .

Then, we perform gradient descent on ui , aj ,Lk for all users, apps and locations to get a local minimum of the

objective function. The formulas run as follows:
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where д′(x) is the derivative of the logistic function and д′(x) = exp(−x)/(1 + exp(−x))2.
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