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Abstract— Understanding mobile traffic patterns of large scale
cellular towers in urban environment is extremely valuable
for Internet service providers, mobile users, and government
managers of modern metropolis. This paper aims at extract-
ing and modeling the traffic patterns of large scale towers
deployed in a metropolitan city. To achieve this goal, we need
to address several challenges, including lack of appropriate tools
for processing large scale traffic measurement data, unknown
traffic patterns, as well as handling complicated factors of urban
ecology and human behaviors that affect traffic patterns. Our
core contribution is a powerful model which combines three
dimensional information (time, locations of towers, and traffic
frequency spectrum) to extract and model the traffic patterns
of thousands of cellular towers. Our empirical analysis reveals
the following important observations. First, only five basic time-
domain traffic patterns exist among the 9600 cellular towers.
Second, each of the extracted traffic pattern maps to one type
of geographical locations related to urban ecology, including
residential area, business district, transport, entertainment, and
comprehensive area. Third, our frequency-domain traffic spec-
trum analysis suggests that the traffic of any tower among
9600 can be constructed using a linear combination of four
primary components corresponding to human activity behaviors.
We believe that the proposed traffic patterns extraction and
modeling methodology, combined with the empirical analysis on
the mobile traffic, pave the way toward a deep understanding
of the traffic patterns of large scale cellular towers in modern
metropolis.

Index Terms— Mobile data traffic, measurement study, traffic
patterns, clustering, geographical location.

I. INTRODUCTION

HE past few years have seen a dramatic growth in cellular
network traffic, contributed by billions of mobile devices
as the first-class citizens of the Internet. The global cellular
network traffic from mobile devices is expected to surpass
24 exabytes (10'®) per month by 2019 [1], 9x larger than
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the traffic served by existing cellular network. While we are
embracing a world with ambient cellular connectivity, how-
ever, we are facing a critical and challenging problem — we
have limited understanding about the patterns of traffic expe-
rienced by cellular towers deployed in urban areas, especially
when 3G and LTE networks are widely available in current
modern metropolis [1]-[3]. We do not completely understand
how urban functional regions and ecologies, such as business
district, affect the mobile traffic of cellular towers [2]. In addi-
tion, the dominant factors that affect their traffic variations are
still unknown. Such limited knowledge significantly increases
the cost of operating thousands of cellular towers in big cities.

Despite of the aforementioned lack of knowledge, under-
standing the traffic patterns of cellular towers in the large scale
urban environment is extremely valuable for Internet service
providers (ISP), mobile users, and government managers of
modern cites [4]-[6]. If we can identify and model the patterns
of cellular towers, instead of using the same strategy to
provide services, such as using the same load balancing and
data pricing algorithms on each tower, an ISP can exploit
the modeled traffic patterns and customize the strategies for
individual cellular towers. For example, an ISP can potentially
have different pricing on individual cellular tower based on
the traffic it experiences. In addition, mobile users will benefit
from the traffic modeling as well because they can choose
towers with predicted lower traffic and enjoy better services.
Surprisingly, management departments of government will
benefit from the traffic modeling as well because they may
infer the land usage and human economy activities by looking
at the patterns of cellular traffic [7].

On the other hand, understanding the traffic patterns of
cellular towers is challenging for three reasons. First, the
traffic experienced by thousands of cellular towers deployed in
large scale modern cities is complicated and hard to analyze.
For example, our dataset includes 9,600 cellular towers and
150,000 subscribers, where lots of redundant and conflict logs
are observed. To identify traffic patterns embedded in the
thousands of towers, we need to design a system that is able
to clean and handle the data of large scale cellular traffic.
Second, we do not have the priori about the existence of
patterns that can be used for representing the behavior of
thousands of cellular towers. To make matters worse, even
if such patterns exist, we do not know their profiles. Without
these profiles, it is challenging to group thousands of cellular
towers into a small number of patterns. Third, the traffic of a
cellular tower is affected by many factors, such as time and
locations, etc. These factors, sometimes, compound with
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each other and further complicate our analysis. For example,
significant traffic variation is observed at both fine-grained
(hours) and coarse-grained (days) time scale, and across towers
deployed in different locations [5], [8]. By addressing these
challenges, in this paper, we investigate how to extract and
model the mobile traffic patterns of thousands of cellular
towers in a large scale urban environment via credible dataset
collected by one of the largest commercial mobile operators.

Our core contribution is a powerful model which combines
three dimensional information, including time, locations of
towers, and traffic frequency spectrum, for extracting and
modeling the traffic patterns of thousands of cellular towers.
A breakdown of the core contribution comprises three parts.
First, we design a system which leverages machine learning to
identify and extract five patterns from the traffic of thousands
of cellular towers. Our system is built with processing large
scale data in mind and is able to process the traffic of
thousands of towers with granularity of 10 minutes. Second,
we identify the geographical context of traffic experienced by
cellular towers by investigating the correlation between time-
domain traffic characteristics and geographical locations of
towers. Therefore, by looking at the traffic pattern of a tower,
we can infer the type of location where it is deployed and the
type of users it serves. Third, our frequency-domain traffic
spectrum analysis reveals that any traffic of the 9,600 cellular
towers can be constructed using a linear combination of four
primary components corresponding to human activity behav-
iors. This observation provides an unique angle (frequency)
for analyzing cellular traffic and significantly simplifies the
process of analysis by a linear model.

Through investigating the traffic of 9,600 cellular towers,
we find following interesting observations. First, the 9,600
cellular towers can be classified into five groups using features
extracted from time-domain traffic. This experimental result
confirms our motivation that a small number of patterns do
exist among thousands of cellular towers. Second, each of
the traffic pattern maps to one type of geographical loca-
tions, including resident, office, transport, entertainment, and
comprehensive area. Therefore, the traffic pattern of a cellular
tower does suggest the urban ecology and geographical loca-
tion context where it is deployed as well as the type of users it
serves. Third, our frequency-domain analysis reveals that the
transition between the five traffic patterns encodes the mobility
of human. For example, when the phase of residential pattern
moves toward the phase of transport pattern, people start their
commute from home to work. In summary, we believe that the
proposed traffic patterns extraction and modeling, combined
with the empirical study on large scale cellular towers, pave
the way toward a deep understanding of the traffic patterns of
large scale cellular towers.

This paper is structured as follows. In Section 2, we
provide details about the utilized dataset, and present some
basic observations of traffic spatio-temporal distributions.
In Section 3, we design our traffic processing system and
identify the key traffic patterns of the large scale cellular
towers. Based on the discovered five traffic patterns, in
Section 4 and 5, we conduct a deep analysis and reveal
the correlation among data traffic, urban ecology and human
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behaviors in the time and frequency domain respectively.
After discussing related work in Section 6, we summarize our
discoveries and discuss potential investigations in Section 7.

II. DATASET AND VISUALIZATION

In this section, we provide details about the dataset we
investigate as well as the needed preprocessing. In addition,
we visualize the spatial-temporal distribution of cellular traffic.

A. Dataset Description

The dataset is an anonymized cellular trace collected
by an ISP from Shanghai, a big city in China, between
Aug 1st and Aug 31st 2014. Each entry of the trace contains
detailed mobile data usage of 150,000 users, including the ID
of devices (anonymized), start-end time of data connection,
base station ID, address of base station, and the amount of
3G or LTE data used in each connection. The trace logs
1.96 billion tuples of the described information, contributed
by approximately 9,600 base stations all over Shanghai. The
trace contains 2.4 petabytes (10'°) logs, 77 terabytes (10'2)
per day and 8 gigabytes (10°) per base station on average. This
large scale and fine-grained dataset guarantees the credibility
of our traffic pattern analysis and modeling.

B. Preprocessing

The trace collected by the ISP needs to be preprocessed
because of the existence of redundant and conflict traffic
logs as well as the incomplete information of base stations’
locations. The preprocessing includes three steps. First, we
eliminate the redundant and conflict logs, such as the identical
traffic logs, introduced by technical issues. Second, to solve the
problem of incomplete information, we convert the addresses
of base stations to their geographical longitudes and latitudes
through APIs provided by Baidu Map, the most popular online
map service provider in China. This conversion gives us
the precise geographical location of a base station, which is
important for analyzing the ground truth of urban functional
regions. The last step of preprocessing is computing the traffic
density (byte/km?) across the city. The obtained traffic density
allows us to understand the spatial distribution of cellular
traffic.

C. Data Visualization

Before diving into a deep analysis of mobile data traffic,
we first visualize the spatial-temporal traffic distribution of
the 9,600 base stations, where we find two interesting obser-
vations.

First, the data embeds fundamental temporal patterns of
mobile data traffic. Figure 1 shows the aggregated traffic of
the 9,600 towers at different time scales. Figure 1(a) shows
the traffic distribution of a day (Aug 7th 2014, Thursday)
where we observe that the aggregated network traffic is tightly
coupled with the sleep pattern of humans. High cellular traffic
is observed during the day and low traffic is experienced
during midnight. There are two traffic peaks in each day: one
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Fig. 1. The temporal distribution of cellular traffic at different time scales. (a) Hourly. (b) Daily. (c) Weekly.
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Fig. 2. The spatial distribution of cellular traffic at different time. (a) 4AM.
(b) 10AM. (c) 4PM. (d) 10PM.

around 12PM and the other around 10PM. Similar patterns
are observed in Figure 1(b). The timing of the two peaks
suggests that most people tend to consume data traffic heavily
after lunch and before sleep. Figure 1(b) shows the traffic
distribution of a week (from Aug 4 to Aug 10 2014) and
Figure 1(c) shows the traffic distribution of a month (from
Aug 3 to Aug 31 2014). Both figures show that the traffic
exhibits a periodical pattern on the scale of a week, where
weekend’s traffic is less than weekday’s traffic. Such traffic
variation comes from people’s weekly work schedule.

On the other hand, our trace also records the spatial distribu-
tion of mobile data traffic. Surprisingly, we find that the spatial
and temporal characteristics of traffic are correlated. Figure 2
shows the geographical traffic density (bytes transmitted per
hour per km?) at 4AM, 10AM, 4PM and 10PM. As shown
in the color bar, the red one indicates higher traffic and
the blue one stands for lower traffic. We find the following
observations. First, towers deployed at the center of the city
experience high traffic despite of the time of a day. Second,
at 4AM, most areas of the city are covered by dark color,
which suggests that traffic demand is small because of human
sleep. In contrast, at I0AM, most areas of the city are covered
by light color, suggesting that traffic demand becomes high
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Fig. 3. The (a) CDF and (b) CCDF of cellular traffic.

because people start working. Therefore, the areas of peak
traffic map to areas occupied by human, such as residential
housing or central business district (CBD). Third, the traffic
demand of different area varies significantly. In Figure 3,
we present the cumulative distribution function(CDF) and
complementary cumulative distribution function(CCDF) of the
mobile traffic on cellular towers. We can observe that more
than 70% of cellular towers have a traffic demand lower than
100GB per month. However the distribution also exhibit a
“long tail”’, which suggests significant differences on traffic
demand of different cellular towers.

III. IDENTIFYING TRAFFIC PATTERNS OF
CELLULAR TOWERS

Now, we investigate the data traffic of the thousands of
3G/LTE cellular towers and design a system that is able to
identify key traffic patterns of large scale cellular towers. We
start from understanding the traffic patterns of a few cellular
towers to motivate our study.

A. Motivation and Problem Statement

Our cellular network traffic measurement and analysis are
motivated by a key observation — the traffic pattern of
one cellular tower is vastly different from another. Through
online map service, we randomly select four towers from the
positions of residential areas and four towers from business
districts, and plot their normalized traffic profile in the left and
right column of Figure 4, respectively. We can clearly observe
the difference of traffic between these two types of cellular
towers, where the traffic profiles of residential towers have
two peaks within a day and remain high across night, while
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Fig. 5.  Cellular traffic experienced by base station randomly selected
from different latitudes and longitudes. Large traffic variations are observed.
(a) Latitudes. (b) Longitudes.

the traffic profiles of towers in business district experience only
one peak within a day and get close to zero across night. This
comparison clearly reveals the difference of traffic patterns
between the two specific types of cellular towers. However,
from the perspective of an ISP, which manages thousands
of cellular towers, is the traffic pattern of one cellular tower
vastly different from another? To understand this problem, we
conduct a large scale measurement and investigate the recorded
9600 cellular towers in our dataset of Shanghai.

Figure 5 shows the normalized traffic variations within
one day with 40 randomly selected cellular towers for each
0.01 degree latitudes or longitudes respectively. The x-axis
shows the time in hours and y-axis shows the logical posi-
tions of the selected cellular towers in terms of latitude (a)
or longitude (b). For example, the first row of pixels in
Figure 5(a) represent the traffic variations of one cellular tow-
ers, of which the latitude is around 121.60 and the longitude
is randomly selected. Traffic measured on each cellular tower
is normalized by its maximum, and the color presents the
normalized value where red color indicates higher traffic and
blue color stands for lower traffic as shown in the color bar.
In these measurements, we find two observations. First, the
peak hour of one cellular tower, which is marked as red,
is vastly different from another during the day time when
serving mobile users. In fact, the variance of the peak among
the selected towers is about 10 hours. Second, while most of
towers experience low traffic in early morning, the first several
towers in Figure 5(a), of which the latitude is around 121.60,
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Fig. 6. Cellular traffic experienced by base stations selected from residential
and business district. (a) Residential Area base stations. (b) Business District
base stations.

also have low traffic during evening. Therefore, significant
differences of data traffic are observed across cellular towers.
Such differences cause troubles for an ISP to manage its
cellular network. For example, because of the unique pattern
of individual traffic, an ISP cannot obtain the optimal per-
formance by using the same load balancing strategy, which is
built on top of traffic patterns, on different towers. Therefore, a
natural question to ask is that is it possible to model the traffic
pattern of thousands of cellular towers? More specifically,
can we utilize a few simple patterns to present the traffic
of thousands of cellular towers? Identifying these patterns
of cellular towers would give an ISP significant benefits on
network management, including load balancing, pricing, etc.

Our investigation suggests that at least two, maybe more,
traffic patterns exist among thousands of cellular towers.
Figure 6 shows the normalized traffic profile of 40 selected
cellular towers deployed in residential area and in business
district for each 0.01 degree latitudes. Compared with the
disorder in both temporal and spatial dimension exhibited
in Figure 5, traffic variations for cellular towers in a single
kind of regions are more regular and similar to each other.
In addition, we find other two observations in this investi-
gation. First, in terms of the traffic of residential area, all
residential towers experience similar traffic patterns where the
peak traffic is present around 9PM. In addition, only a small
amount of traffic is observed between 8AM and 4PM because
most users leave home for work. Similar conclusion can be
drawn for towers deployed in business district. Second, the
traffic pattern of residential towers is different from towers
deployed in business district where peak hour appears around
1PM. Inspired by these two observations, we conclude that
traffic patterns do exist among thousands of cellular towers.
One key question addressed by this paper is finding out how
many traffic patterns exist among thousands of cellular towers
and how to identify them.

B. Identifying Traffic Patterns of Cell-Towers

Investigating traffic patterns among thousands of cellular
towers is extremely challenging for three reasons. First, we
have little prior knowledge about the data traffic, and do not
know which cell towers may share the same traffic pattern and
how the pattern may look like. Second, the measured cellular
traffic data is huge in terms of tracing 9,600 cellular towers
for a month. To make matters worse, the measured data is
not clean in terms of unstructured logs. Last but not least, the
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Algorithm 1: Traffic Patterns Identifier
Input: Cell towers number M, Threshold value 7T,
Traffic vector X;, fori =1,2,3...M
Output: Cluster labels of tower i, L;, fori=1,2,3..M
Initialize:

Clusters: ¢ «— [Xg], for £k =1,2,3...M,

Cluster set: C' « [c1, ¢a...cpr]

Cluster number: N «— M

Distance matrix: D «— Inf

Stop index: stop < false

false do

while stop ==
D «— Inf
for Vc;,c; € C,i # j do

| Di,j < compute_distance(c;, c;)
[Mindistance, index], index2] « find_min(D)

if Mindistance > T then
L stop < true

break;
merge(Cindes1, Cinder2)
| N— N-1
for : =1to N do
for VX, € ¢; do
L Lk <1

Iieturn L

measured cellular traffic data is noisy where large variation
of traffic is observed because the absolute traffic depends on
the number of mobile users served. All these factors make
the analysis of cellular traffic patterns extremely challenging.
To tackle these challenges, we design, implement, and evaluate
a system which is able to identify the key traffic patterns of
such large scale cellular towers. Our system is composed by
three key elements: traffic vectorizer, pattern identifier and
metric tuner.

Traffic Vectorizer: We implement a traffic vectorizer on
Hadoop platform to convert the large scale unstructured traffic
logs into traffic usage vectors. The key of designing the
traffic vectorizer is a parallel transformer, which takes the
time-domain traffic logs of thousands of cellular towers as
its input and converts each cell tower’s logs into a time-
domain traffic vector. The vector is constructed in two phases
— aggregation and normalization. In the first phase, each
cellular tower’s traffic logs are segmented into thousands of
chunks, with each chunk contains 10-minutes traffic logs. Then
we aggregate the traffic logs in each chunk and generate a
traffic usage vector. In the second phase, since we aim to
identify the similar traffic patterns without the interference of
different amplitude, we perform zero-score normalization on
each vector to eliminate their differences in amplitude, while
the difference of traffic amplitude is analyzed after the key
patterns are identified. We define the traffic vector of cellular
tower j as X;=(z;[1],...,z;[N])T, with z;[i] stands for the
normalized traffic amount in the 74, 10-minute time slot. We
remove 3 days from the month to make the duration consist of
four entire weeks. Thus, N is number of 28 days’ 10-minutes
segmentation, i.e., 4032 in our analysis.
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Pattern Identifier: Pattern identifier takes the vectorized
data from the vectorizer and runs an unsupervised machine
learning algorithm for identifying the key patterns of cellular
tower traffic. The pattern identifier addresses one key challenge
of the mining process — unknown patterns, by exploiting
hierarchical clustering [9]. The algorithm of our system is
shown in Algorithm 1. We first considers each input point
as a cluster and then bottom-up iteratively merges the nearest
two clusters until the stop condition is met. In the clustering,
we use the euclidean distance as the distance metric and define
the distance between clusters as average-linkage distance.
In each iteration, we compute the distances between each pair
of clusters, and find out the pair of clusters corresponding to
the minimum distance and merge them into a new cluster.
In addition, we set a threshold value as stop condition, which
stops the clustering when the minimum distance between two
clusters, Mindistance is above the threshold value.

Metric Tuner: As the number of traffic patterns is unknown,
a key question is when the identifier should stop its clustering.
In our system, we use Davies-Bouldin index [10] to explicitly
inform the identifier that the optimum number of patterns have
been identified. Davies-Bouldin index is utilized because it
measures both the separation of clusters and cohesion within
clusters, which mathematically guarantees good clustering
result. The mathematic formulation of Davies-Bouldin index
is as follows,

minimize
Z R S +S
R < j= 1,#1 M,

M;
subject to

M; ;= ||A;i — Aj2,
1 &
S; = E};HX;C—AZ-HQ,

where the objective function is the Davies-Bouldin index, X;
is the vectorized data of cellular tower ¢, A; is the centroid of
each cluster, R is the number of clusters and 7 is the numbers
of towers within the 4;, cluster. We minimize the Davies-
Bouldin index by considering two factors — the distance
between clusters M; ; and .S;, which are the average distance
from points to their cluster’s centroid. When the minimum
Davies-Bouldin index is obtained, the optimum number of
patterns is identified. The variation of DBI is shown in
Figure 7(a), according to which we set the stop condition—
threshold value at 16.33 to achieve optimal clustering result.
Figure 7 shows the five time-domain patterns identified by
our system from the 9,600 cellular towers((c) to (g)) and each
cluster’s CDF of points’ distance to its centroid(b). The five
clusters differ in terms of the time where peak traffic appears as
well as the amount of traffic experienced during weekday and
weekends. Figure 7(b) shows that the distance CDF curves of
clusters are similar and all of them increase rapidly as distance
increases. 80% of points’ distance to their clusters’ centroid
are less than 10, which implicates the clustering result is
good. The percentage of each cluster’s cell towers is shown in
Table I, which indicates the third cluster has most cell towers
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TABLE I
PERCENTAGE OF CELL TOWERS CLASSIFIED IN EACH CLUSTER

Cluster Index  Functional Regions  Percentage
1 Resident 17.55%
2 Transport 2.58%
3 Office 45.72%
4 Entertainment 9.35%
5 Comprehensive 24.81%

and second cluster the least. We also present the proportion
of each cluster’s cell towers explicitly in Figure 7(h).

In conclusion, we implement a system that is able to identify
the key traffic patterns among thousands of cellular towers
in this subsection. Since the five clusters are given by the
hierarchical classifier, an interesting question to ask is what
are the geographical locations where these five types of towers
are deployed?

C. Geographical Context of Traffic Patterns

To understand the geographical locations of cell towers of
the five clusters, we first manually label typical towers in the
five patterns with urban functional regions and then validate
the labels of all towers in each pattern with ground truth.
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Geographical distribution of base stations from the five identified

TABLE 11
DISTRIBUTION OF POI AT CHOSEN POINT

Point . Points of Interest ]
Resident  Transport  Office Entertain
A 195 0 19 51
B 68 2 56 36
c 151 1 1016 157
D 16 0 108 2165
E 59 0 179 26

1) Label Patterns With Urban Functional Regions: To
understand the geographical context of traffic patterns, we
label the five traffic patterns using urban functional regions.
This process is nontrivial because given thousands of cellular
towers, labelling cannot be done one by one manually. To
address this challenge, we use a few human-labeled areas
and combine with points of interests (POI) distribution to
achieve accurate labelling. POI is a specific point location
of a certain function such as restaurant and shopping mall.
An area’s POI distribution reflects its function. Therefore,
studying POI distribution of one location can help us to
accurately identify patterns’ labels. The POI data we study is
collected via APIs provided by Baidu Map introduced before.
For calculating the POI distribution, we measure the number
of four main types of POI, which are resident, transport,
office and entertainment, within 200m of each cell towers.
Figure 8 shows the geographical density map of towers in each
cluster where deep color stands for higher density. Zooming
in the urban area, for each cluster we pick the point with the
highest tower density and calculate their POI distribution as
summarized in Table II. Then, we infer the urban function
region of each cluster by checking the geographical location
information in Figure 8 and POI distribution in Table II.
We obtain the following geographical labels for the five
clusters.

Resident Area: Figure 8 shows that the towers in this cluster
(green color) are mainly distributed on the surrounding areas
of the city. In addition, the highest density point, A, is located
in a large resident neighborhood. Table II also shows that
the number of residential points in A is more than others.
Therefore,we label the area covered by this cluster’s cell
towers as residential area.

Transport Area: In Figure 8, the second cluster’s highest
density point B is close to an area with three subway stations
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and one overpass. In addition, Table II shows that around
location B the number of transport POI is higher than the rest
even though its absolute number is small. Therefore, we label
this cluster as transport area.

Office Area: Figure 8 shows that the highest density point
C is a well-known business district in Shanghai. This location
mark is also verified by the third row of Table II where the
number of office POI is dominant for the area 200m from C.
As a result, we label this cluster as office area.

Entertainment Area: The highest density point D in Figure 8
is a large shopping mall and entertainment park in Shanghai.
Table II also shows that its number of entertainment POI
is more than the rest. Therefore, we label this cluster as
entertainment area.

Comprehensive Area: Figure 8 shows the tower density map
of the last cluster, where we observe uniform distribution of
towers across the city. In addition, the highest density point,
E, is a comprehensive area, which includes all kinds of urban
functions, including residential area, offices, etc. However,
there is no obvious dominant POI type. Therefore, it is labeled
as comprehensive area.

2) Validate the Labels: In this section, we validate the labels
of the five patterns in both micro and macro scale. Our labels
are obtained by checking the geographical locations of a few
towers in each cluster and verifying with the corresponding
POI distribution. However, the correctness of labelling across
all 9,600 cellular towers remains unknown. Therefore, we
perform further analysis to validate our labels with POI data
from micro and macro two perspectives.

Validate With Case Study: To validate our labels in micro
scale, we randomly choose two areas shown in Figure 9.
According to the POI data, we first color different functional
regions in the area with different colors. Green represents res-
idential area, yellow represents transport area, red represents
office area, and blue represents entertainment area. After that,
we investigate the labels of cell towers locating in the area.
Observing both Figure 9(a) and (b), we find that the labels
attached to the cell towers exactly match with the functional
regions, which justifies our labels’ correctness.

Validate With 9,600 Towers’ POI: To validate our labels
in macro scale, we perform further analysis on all 9,600
towers’ POIL. However, different types POI vary in magnitude
significantly because of their different nature. To eliminate
this interference, we first perform min-max normalization on
each type’s POI and then average them by clusters, which
is summarized in Table III. The maximum of each row and
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TABLE III
AVERAGED NORMALIZED POINTS OF INTEREST OF FIVE CLUSTERS

Cluster . Points of Interest ]
Resident  Transport  Office Entertain

#1 0.0528 0.0285 0.0232 0.0269

#2 0.0473 0.2000 0.1012 0.1020

#3 0.0439 0.0813 0.1034 0.0515

#4 0.0474 0.1201 0.0976 0.1674

#5 0.0508 0.0373 0.0453 0.0403
#1:Resident #2:Transport #3:0ffice

Entertain.
23%

Transport )
29% |
y

\

L

Transport/‘

22%/ \/ Transport //
44%
AN
L //
#4:Entertainment #5:Comprehensive

Entertain.
23%

Entertain.
39%

Transport/
21% |

Fig. 10. Pie chart of averaged normalized points of interest of five clusters.

column is marked with color, which shows the dominant
urban function in each cluster. Figure 10 explicitly shows each
POI’s percentage in five clusters. According to Table III and
Figure 10, transport type POI dominates the region labeled
as transport area, with 44% of this area’s POI, while enter-
tainment area is dominated by entertainment type POI for
39%. These measurements validate the labels obtained from
the sampled towers of each cluster.

To conclude, in this subsection we verify our identified key
traffic patterns as well as establish their relationships with
urban functional regions.

IV. UNDERSTANDING MODELED TRAFFIC PATTERNS:
TIME DOMAIN ASPECT

Understanding the hidden physical meanings of traffic
patterns is important for exploiting them to solve practical
problems, such as traffic load balancing or land usage identi-
fication. Although we have identified key traffic patterns and
linked them to corresponding urban functional regions, we
still have little knowledge of the hidden physical meaning
of these patterns. In this section, we conduct an analysis to
reveal the time and geographical characteristics of modeled
traffic patterns.

A. Quantify Time-Domain Characteristics

It is obvious that traffic patterns of different urban func-
tional regions possess different characteristics in time-domain.
In this subsection, we dedicate to quantify these characteristics
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TABLE IV
PEAK-VALLEY FEATURES
Features Regions resident area transport area office area entertainment area comprehensive area
catures Reglons weekday weekend weekday weekend weekday weekend weekday weekend weekday weekend
maximum traffic 7.77 X 10 7.99 X 10 2.76 X 10 1.55 x 108 4.69 x 10° 2.78 x 10% 4.55 x 108 4.90 x 10 7.36 X 10 7.38 X 10
waffic | 8.70 x 107 | 8.71 x 107 | 2.07 x 10° | 1.35 x 105 [ 2.04 x 107 | 1.74 x 107 | 1.41 x 107 | 1.42 x 107 | 7.77 x 107 | 7.29 x 107
peak-valley ratio 3.93 9.17 13333 114.81 22.99 15.98 3227 3451 9.47 10.12
TABLE V
TIME OF TRAFFIC PEAK AND VALLEY
Features Region: resident area transport area office area entertainment area comprehensive area
catures Reglons Weekday Weekend Weekday Weekend | weekday weekend Weekday Weekend Weekday Weekend
time of peak 21:30 21:30 8:00 18:00 10:30 12:00 18:00 12:30
time of valley 5:00 5:00 4:00 4:30 5:00 5:00 5:00 5:0 5:00 5:00
25 1 1 T
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functional regions.

Weekday-Weekend Traffic Amount Ratio: Observing
Figure 7, traffic amount during weekday is significantly
different from weekend in transport area and office area. We
quantify this characteristic by computing the ratio between
weekday’s traffic amount and weekend’s, which is presented in
Figure 11(a). According to Figure 11(a), one day’s traffic
amount in resident area, entertainment area and comprehensive
area is almost identical between weekday and weekend.
However, weekday-weekend traffic amount ratio in transport
area is 1.49 and the ratio in office area is 1.79, which
suggests weekday’s traffic amount of those two regions is
much more than weekend. This phenomenon makes sense
because people typically go to work in weekday while they
do not in weekend.

Peak-Valley Features: Observing Figure 7, all traffic patterns
experience periodic peaks and valleys. However, the traffic
patterns are significantly different in peak value, valley value
and peak-valley ratio. We quantify these characteristics and
summarize them in Table IV. According to Table IV, in
transport area and office area weekend’s maximum traffic and
minimum traffic is much less than weekday, which is consis-
tent with last paragraph’s finding. What’s more, the transport’s
peak-valley ratio is much higher than other regions, which is
explicitly presented in Figure 11(b). However, transport area’s
maximum traffic is less than other regions both in weekday
and weekend. It suggests that transport area has the least traffic
amount and the largest peak-valley traffic difference, while
resident area and comprehensive area are the opposite.

Time of Traffic Peak and Valley: Different urban functional
regions’ traffic patterns differ not only in peak volume, but

Weekday Weekend

Fig. 12.  Understanding the interrelationships between traffic patterns.

also in peak time. We quantify this characteristic and present
it in Table V. We leave the blank unfilled, if there is not a
periodic peak or valley. Observing Table V, we find that traffic
valley always takes place in 4:00~5:00. In weekday, transport
area has two peaks in 8:00 and 18:00, which are probably
caused by rush hour. In entertainment area, weekday’s traffic
peak time is 18:00 while weekend’s traffic peak time is 12:30.
It suggests that people go for entertainment later in weekday
because of work.

To conclude, we quantify the time-domain characteristics of
each identified traffic pattern, which paves the way towards a
deep understanding of cellular traffic patterns.

B. Interrelationships Between Traffic Patterns

We compare the interrelationships between normalized
modeled traffic patterns in Figure 12. The first row of
Figure 12 compares the modeled traffic patterns of residen-
tial areas and transport hot spots. The peak of residential
area is about 3 hours later than the second peak of trans-
port, and the slope of these two peaks is almost identical.
In addition, when we compare traffic patterns of transport hot
spots and business district shown in Figure 12, we find that
the peak in business district takes place in the time period
between the two peaks of transport hot spots. In order to better
quantify the interrelationships, we compute the correlation
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Fig. 13. The correlation between traffic patterns in different area. (a) Resident
area and transport area. (b) Office area and transport area.

of these area’s traffic with variant delay and present it in
Figure 13. From the result, we can observe that the correlation
between these area are high with the maximum value up
to 0.91, which means the traffic in these area is strongly
related. In addition, the correlation between resident area and
transport area reaches its peak with delay of 2.5 hours, and
the correlation between office area and transport area reach
its peak with delay of 1 hour. These observations suggest that
these three traffic patterns probably depict the daily routine of
working populations, for them rush through heavy traffic area
to work in morning and rush back home in evening.

In the third row of Figure 12, blue line stands for the
traffic pattern in comprehensive area, and red line stands
for the average traffic pattern of all cell towers. In fact,
we find that these two patterns are of great similarity,
which suggests that comprehensive area really is a mixture
of other four kinds of functional areas. In conclusion, we
analyze the interrelationships between the traffic patterns of
different urban functional regions, which provides insightful
understanding.

V. FREQUENCY-DOMAIN REPRESENTATION FOR TRAFFIC
MODELING

In this section, we conduct frequency-domain analysis.
Such frequency-domain analysis is motivated by observing
the inherent time-domain periodicity of traffic and the dis-
advantages of pure time-domain traffic analysis, where time-
domain traffic identification is not easy, especially when
cellular towers are deployed in the comprehensive areas with
couples of behaviors. For example, we know that traffic of
cellular tower in the office area reaches the valley in weekends,
and traffic of cellular tower in transport area has two peaks
in one day, but for an arbitrary cellular tower which has
both characteristics, we do not know which of the two will
predominate. On the other hand, in frequency domain, we can
quantify these characteristics by using the amplitude and phase
of frequency corresponding to one day and one week. Thus, we
can grasp the key points and compare the strength of different
characteristics of traffic for one cellular tower, which is not
intuitive in time domain. Here, a natural question to ask is what
are the most discriminating and essential features to present
traffic patterns of cellular towers. Motivated by answering this
question, we conduct frequency domain analysis on the five
extracted patterns and reveal several important discoveries.
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Fig. 14. Performance of reconstructing time-domain traffic with principal
frequency-domain components. (a) Frequency spectrum of aggregated traffic.
(b) Time-domain traffic reconstructed by the three principal frequency-domain
components (k=4, 28, 56). (c) Energy lost of reconstructing traffic patterns.
(d) Boxplot of normalized amplitude of different frequency components.

A. Frequency Transform

In order to analyze the strong periodicity existing in time
domain, we first carry out discrete fourier transform (DFT) on
the time-domain traffic vector X = (z[1],...,z[N])”. X can
be either the time-domain traffic vector of one cellular tower,
1.e., X; for cellular tower j, or the aggregate traffic vector of
a cluster, i.e., ZjEC X for the cluster C'. The process can
be formulated as the following:

N
X[k] _ Z x[n]ef%rikn/N’

n=1

where N is the number of traffic samples, that is 28 days’
10-minutes segmentation, 7.e., 4032 as discussed before in
our analysis. X [k] is the frequency spectrum of time-domain
traffic X. Figure 14(a) shows the DFT of the aggregate traffic
of all cellular towers, where three peaks are observed, i.e.
k =4, 28, 56. Since the duration of our series is 4 weeks, the
4th point is corresponding to time-domain periodic patterns
of one week. Similarly, the 28¢h and 56th points stand for
the time-domain periodic patterns of one day and half a day,
respectively. The absolute values of the three components
are much higher than the rest of points, which suggests that
most information of the time-domain traffic could be retained
by the three components. Motivated by this hint, we use
the three components for presenting the time-domain traffic.
To evaluate the information loss of ignoring the rest of
frequency components, we reconstruct the time-domain traf-
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fic using the three main frequency components, which is
expressed as follows:

X[k], if k =0, 4, 28, 56, N-4, N-28, N-56,

0, otherwise,
" [TL] _ % 2;*01 Xr[k]e%rikn/N’

where z"[n] is the reconstructed time-domain traffic. The
reconstructed time-domain traffic of the aggregate traffic of all
cellular towers is also shown in Figure 14(b). From the result,
we can observe that the reconstructed curve is very close to the
original curve. Specifically, as shown in Figure 14(c), the lost
energy, Zg;ll X[k]2 - 21;11 X"[k]?, is less than 4% relative
to the total energy of all frequency components Zg;ll X[k]2,
which suggests the negligible energy contributed by frequency
components beyond the three main components. In addition,
the box plot of the normalized amplitude of the three principal
frequency components compared with other components for
all BSs is shown in Figure 14(d), in which their medians,
25th and 75th percentiles, most extreme points are marked
with different lines. We can also observe that compared with
other components, amplitude of the principal ones is much
larger, indicating their uncomparable importance.

To further understand the capability of signal reconstruction
using the three points, we analyze the variance of amplitude of
DFT at each frequency component for different cellular tower,
and the result is shown in Figure 15. We can observe that the
DFT variances of the three frequency components are larger
compared to the rest. In addition, we use the DFT to analyse
the aggregate traffic for cellular towers of the four primary
traffic patterns in Figure 16. We can find that the reconstructed
curves are also very close to the original curves, and their
DFT spectrum varies most significantly at the three frequency
components, which suggests that these three frequencies are
the most important components in distinguishing towers of
different traffic patterns as well as constructing a time-domain
traffic.

X"[k]=

B. Visualized Analysis in Frequency Domain

In order to better understand the five traffic patterns of tow-
ers in frequency domain, we now provide visualized frequency
analysis of them. In addition, based on our earlier observation
in Section 5.1, we only analyze the three frequencies corre-
sponding to one week, one day, and half a day. Since each DFT
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Fig. 16. Reconstructed time-domain traffic of the four patterns using the
three principal frequency domain components.

point is a complex number, we analyze the distribution of its
amplitude and phase extracted by the following expressions:

A= [ X K],
P =arg X™kl,

where A}* and P} are the amplitude and phase of DFT for
tower m at the k;j, frequency component. The larger amplitude
reflects the stronger periodicity at corresponding frequency,
while different phases of DFT indicate different peak time or
valley time. Intuitively, for example, larger A5y indicates the
cellular tower m is located at the area that is significantly
influenced by the holiday at the weekend, such as office and
entertainment area. On the other hand, since the traffic peak
at office area tends to be reached at weekdays, while it at
entertainment area tends to be reached at weekends, their Pgg
will have much difference. Thus, by frequency analysis, we
can quantify the inherent time-domain periodicity of traffic,
which is difficult to achieve by the time domain analysis.

Figure 17 shows the distribution of the amplitude and phase
of towers deployed in the comprehensive, residential, office,
transport, and entertainment areas. Meanwhile, means and
standard deviations of the amplitude and phase for towers at
the three frequency components of towers in the 5 types of
areas are presented in Figure 18.

From Figure 17(a) and Figure 18(a), we can observe that
towers in office area have the strongest periodicity of one
week. Their phases mainly concentrate around 1.35, while the
phase of towers in residential and entertainment area centers
around -1.65, about m away from 1.35. This 7 separation
suggests that towers in residential and entertainment area have
reverse traffic characteristics as that in the office area in the
scale of one week.

As we can observe in Figure 17(b), the distribution of towers
is continuous with respect to the phase of one day. Moreover,
it shows a smooth traffic transition from residential area to
comprehensive and transport area, and finally to office area.
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On the other hand, according to our priori knowledge, the
human migration flow usually leads to the peaks of traffic
of areas appear sequentially with the same order that the
flow passes through, which coincides with our observed phe-
nomenon. Thus, such transition suggests the human migration
flow from home to office via transport during rush hours. In
Figure 18(b), we can also observe that the means of their phase
are incremental with the same order.

Figure 17(c) and Figure 18(c) show characteristics of the
amplitude and phase of the frequency component which
stands for half a day. The amplitude of this frequency com-
ponent indicates the strength of double-hump characteristic.
In Figure 18(c), we can observe that the amplitude of towers in
transport area is the largest, indicating their strongest double-
hump characteristic. This result coincides with our priori
knowledge that there are two rush hours of transport area in
the morning and evening, respectively. In Figure 17(c), we find
that traffic of residential and office area are not separated by
traffic of transport area. This observation is not contradictory
to our pervious analysis because the directions of people
commute in the morning and afternoon are reversed.

Overall, the amplitude and phase of the three frequency
components show a strong capability of differentiating towers
with different traffic patterns. Based on the observations, we
make the following statements. First, the most representative
tower in each cluster is not the centroid. In fact, it is the
farthest non-noise point from the hyperplanes, which separate
clusters. To understand this problem, let us think about the

(b) ©

Means and standard deviations of amplitude and phase for cellular towers from the five identified patterns. (a) Week. (b) One day. (c) Half a day.

points around a hyperplane, where we observe similar traffic
patterns of points even though they belong to different clusters.
In geographical context, these towers are deployed in areas of
mixed urban functions. In contrast, the points far from the
separating hyperplane are located at areas of a single urban
function. Although perhaps not the most representative points,
cluster centroids can well characterize the traffic patterns since
they are distant from others clusters.

Second, the frequency-domain features of towers are distrib-
uted in a polygon. Such polygon is formed because the profile
of each cluster in Figure 17 has a cigar shape. Thus, different
features of towers can be regarded as being linear relevant or
piecewise linear relevant approximately, which overlayed with
a Gaussian noise can form the cluster with the cigar shape.
As a result, a point in the frequency domain can be seen as
a linear combination of the four vertex of the polygon, i.e.,
the four most representative points, which we call as the four
primary components.

To illustrate these two statements, we plot the distribu-
tion of towers and corresponding polygon in Figure 19. For
better understanding, we only show three features, including
amplitude and phase of one day, and amplitude of half day.
According to our first statement, the most representative tower
in each cluster is the furthest one from the hyperplane.
Specifically, we do not calculate the hyperplanes, and only
search for points with largest distance from points of other
clusters. In addition, we use the density of the towers, i.e., the
number of towers within a fixed distance away from it in the



1158

06| .

o o

duN Phase of one day

oo™

0
0.2

0.4 -
alf a day

0.6 :
jirude of N

AP

0.8

Fig. 19. Three-dimensional view of the distribution of cellular towers in the
frequency domain.

feature space, as a decision function to ensure that the tower
is not a noise point. Figure 19 shows that all the towers are
distributed in or along the edge and plane of the polygon, as
we discussed above.

C. Component Analysis of Cellular Towers in Comprehensive
Area

Based on the statements above, we may use a linear combi-
nation of the four most representative cellular towers to present
each point in the polygon. By looking at the coefficient of each
primary component, we can obtain the percentage of corre-
sponding urban function of the area where an arbitrary cellular
tower is deployed. We formulate the process of obtaining the
coefficients as a quadratic programming problem, which is
shown below:

minimize ||F — F"||?
4
Zi:l F,P(L’i = FT,
subject to E?Zl x; =1,
2, >0, i=1,..,4,
where ||-|| is the 2-norm of a vector, F' is the feature of

the target tower, I is the feature of the most representative
tower for cluster ¢ in the frequency domain, and z; is the
obtained coefficient for cluster . In this example, the feature
of tower m, F'™, is (A%%, Pig, AZL), where AL Pit, AT are
the amplitude of one day, phase of one day, and amplitude of
half a day for tower m, respectively. We use the quadratic
programming to solve the problem because the traffic of
an actual tower is usually overlayed with various noises,
such that these points close to the plane of the the polygon
may be driven out of the polygon. By solving this quadratic
programming, for points inside the polygon, we can find their
exact convex combinations, while for some point outside the
polygon, we can find the point in the polygon with the smallest
distance to the target point, which is a good approximation.
We dedicatedly select a list of towers in the comprehensive
area. Then, we use the method presented above to solve the
convex combinatorial coefficients of them. We compare these
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TABLE VI
CONVEX COMBINATION COEFFICIENTS AND NTF-IDF

Coefficient NTF-IDF

1 2 3 4 1 2 3 4
Fl 1.00 0.00 0.00 0.00 1 0 0 0
F2 0.00 1.00 0.00 0.00 | 0.00 081 005 0.14
F3 0.00 0.00 1.00 0.00 | 0.00 0.00 1.00 0.00
F4 0.00 0.00 0.00 | 1.00 | 0.00 0.00 028 ' 0.72
Pl 0.79 0.13 008 0.00 | 044 036 004 0.16
P2 0.09 0.07 000 0.84 | 036 039 003 0.22
P3 023 000 0.15 0.62 | 0.68 0.00 007 0.25
P4 0.00 029 042 0.29 | 0.00 0.68 007 0.24
P5 035 0.18 022 025 ] 0.12 055 005 0.28

coefficients with a transform of the previously introduced
POI, i.e., the term frequency-inverse document frequency
(TF-IDF) of the corresponding types and locations. TF-IDF is
a numerical statistic that is intended to reflect how important
a word is to a document. Similarly, it is used to reflect how
important the POI of a specific type is in our analysis, which
has been proposed in existing works, i.e., Yuan et al. [11]
provided a TF-IDF-based method to cluster regions of different
functions, which solely uses the POI data. Specifically, TF-IDF
can be calculated as the following:

IDF; = log(M/M;),
TF-IDF}" = IDF, - log(1 + POIL"),

where M is the total number of towers, and M, is the number
of towers of which the POI of type ¢ appears within a specific
distance, and POI" is the times that the POI of type ¢ appears
within a fixed distance of tower m. To be better compared
with, we normalize the TF-IDF of each tower by the sum of
TF-IDF of all the four types for this tower, which is called
as the normalized TF-IDF (NTF-IDF). This process can be
formulated as the following:

4
NTF-IDF;" = TF-IDF]"/ Z TF-IDF;".
j=1
The obtained NTF-IDF is proportional to the POI for each
type, which roughly represents the density of the correspond-
ing function in the corresponding area. Specifically, NTF-IDF
close to O indicates this area do not have the corresponding
function. However, the largest NTF-IDF do not completely
indicate the corresponding function is dominant in the area,
since it is also influenced by the size of related points and
corresponding distance. For example, a large and close subway
station has more influence than a small and far residential
building on a cellular tower.

Then, the result is shown in Table VI. Expect for the
towers in the comprehensive area, the NTF-IDF of the four
most representative towers is also provided in the table. We
can observe that their NTF-IDF of corresponding types is
much larger than others, which is very close to 1, indicat-
ing the areas where they are located have a single type of
function. As for towers in the comprehensive area, There
are multiple relative large NTF-IDF for a cellular tower.
As discussed earlier, this may lead to inaccuracy because of
the influence of the size of related points and corresponding
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Fig. 21. Convex combination for P5 in time domain.

distance. Thus, we only consider the consistency of the small
NTF-IDF and combination coefficients. We can observe that
the majority of the smallest NTF-IDF}" in all m for some fix
1 corresponds to the smallest coefficient in all m for the same
i, respectively. For example, NTF-IDF3 and NTF-IDF{* are
0, and their corresponding coefficients are also 0. Thus, the
obtained convex combination coefficients coincide with the
POI distribution, indicating the correctness of our theory.

To further illustrate the convex combination, we take the
tower P5 in Table VI as an example, and show its combination
of frequency and time domain, respectively in Figure 20 and
Figure 21. For a point inside the polygon, we can find its exact
convex combination, that is:

4 4
F=F =Y Fla;=F+ Y «(F —F).
i=1 i=1,i#3

As shown in Figure 20, in the feature space, the vector
(0, F'r) can be divided to the vector (0, F'3) and the weighted
sum of the vector (F'3, F1),(F3,F2),(F3,F4). For P5, the
weights are 0.35, 0.18 and 0.25, respectively, which is just as
coefficients of cluster 1, 2, 4 in Table VI of P5.

On the other hand, in Figure 21, we show the compo-

nents of traffic corresponding to four primary clusters for the
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comprehensive tower P5. Areas of different colors in the
left figure represent components of different primary traffic
patterns. To be better distinguished, each component is added
with a static bias. In addition, we plot each component
individually in the right figure. The result indicates that traffic
patterns of an arbitrarily cellular tower can be approximated
by a convex combination of four primary traffic patterns. The
size of each component is highly related to density of corre-
sponding function around the tower. It further demonstrates the
correctness and usefulness of our frequency analysis method.

VI. RELATED WORK

The digital footprints of human activities and network
behaviors contributed by mobile devices have led to a plethora
of investigations on the intersection between human and
network dynamics [7], [12]. This section summarizes relevant
research from three perspectives — data sources, types of
collected data and targeted applications.

Dataset collected from mobile devices for investigating
human behaviors and network performance can be divided
into two broad categories: (1) data collected from mobile
devices and (2) traces collected by mobile operators [2].
For the first categories, users or experimenters report their
semantically annotated data about the locations, phone usages
and network performance by installing some Apps in their
devices [13], [14]. The limitation of this approach comes
from the limited number of users sampled, which cannot
stand for the global characteristics of a large scale cellular
network. On the other hand, in the dataset collected by cellular
operators, users are passively monitored and the operators
decide which information to collect [15], [16]. As a result, the
collected data is continuous as long as devices are connected,
and includes detailed information of users behaviors, such as
duration of each Internet connection. As a result, data collected
via the second approach enables the study of overall network
behaviors, such as large scale of human mobility and call
activities analysis. In this paper, we use the data collected
by an ISP for investigating the traffic patterns of large scale
cellular towers.

Extensive studies have used various types of cellular data
for understanding the characteristics of large scale cellu-
lar towers. For example, cell phone activities, commonly
know as Call Description Records (CDR), are used for
capturing human communication activities [17]. In addition,
it is also used for recovering the human mobility trajec-
tory [15], inferring demographics [4], and uncovering urban
ecology [2]. Another type of data is the device-level metric
obtained from mobile devices, such as device and applica-
tion usage [6], [18], network access bandwidth [14], energy
computation [19], personal GPS locations [20], etc. With the
popularity of 3G and LTE access, mobile and application data
traces become available as well. Cici et al. [2] characterizes
the relationship between people’s application interests and
mobility patterns based on a population of over 280, 000 users
of a 3G mobile network. Lee et al. [5] demonstrated that the
spatial distribution of the traffic density can be approximated
by the log-normal or Weibull distribution. However, mobile
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data traffic across a city-wide range with different time scale
and variations contains complicated interaction between the
space and time, which requires a deep and comprehensive
understanding. The analysis and models in this work provide
such insights.

Cellular network traces have been used for enabling a set
of applications. One of the most important applications is
investigating and modelling human mobility. With the mobile
devices served as an ideal tool to monitor individual’s location,
human mobility has been extensively studied at different time-
scale as well as different spatial-scale in the past few years.
Barabasi [15], [21]-[23] studies the long-term mobility of
individuals based on a six months’ phone call record across
100k users. They find that the long-term mobility of an
individual is not consistent with the previously proposed levy
flight model, and achieve up to 93% accuracy in predicting
the mobility of individuals [23]. In addition, [21] proposes a
radiation model to predict the movement of a group of people.
Lee et al. [24] propose a mobility model to simulate the daily
individual person mobility. Chaintreau et al. [25] study the
human mobility across various time scale. They find that the
inter-contact time can be approximated by power law.

The cellular network traces have also been used for char-
acterizing and modelling the cellular data traffic patterns.
Zubair and Lusheng [26] modelled the internet traffic dynam-
ics of cellular devices. Jin et al. [27] characterized data
usage patterns in large cellular network. And Zhang [28] tried
to understand the characteristics of cellular data traffic by
comparing it to wireline data traffic.Other studies combine the
CDR, GPS locations, and application traces to investigate the
land usage [16], [29], social interactions [30], location-based
patterns [3], and web and data access patterns [27], [31].
In this paper, we focus on investigating the mobile data
traffic patterns from different domains, including time, location
and frequency, which provides a comprehensive understanding
of the traffic patterns of large scale cellular towers with a
simple but deep model that is able to characterize the city
geographical features and human communication regularity.

In conclusion, we study a large scale urban mobile data
access traces collected by the commercial mobile opera-
tors involving over 9600 towers and 150,000 subscribers.
We first design an analysis framework for processing large
scale cellular traffic data. Then, we reveals the basic but fun-
damental patterns embedded in thousands of cellular towers,
which paves a way toward a comprehensive understanding of
the connection among mobile data traffic, urban ecology and
human behaviors.

VII. CONCLUSIONS

In this paper, we carry out, to the best of our knowledge,
the first study of traffic patterns embedded in large scale
3G and LTE towers deployed in the urban environment.
We propose a powerful model which combines time, location
and frequency information for analyzing the traffic patterns
of thousands of cellular towers. Our analysis reveals that the
dynamic urban mobile traffic usage exhibits only five basic
time domain patterns. In addition, the traffic of any tower can
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be reconstructed accurately using a linear combination of four
primary components corresponding to human activity behav-
iors. Our analysis provides a systematic and comprehensive
understanding of dynamic and complicated mobile traffic, and
opens a set of new research directions.
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